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Abstract

Finite transducers on trees are fundamental to computer science. They

form the basis of many applications that manipulate strings and trees. The

conventional representation of finite transducers assume a finite set of states

and a finite alphabet. Classical algorithms and representations make essen-

tial use of both of these assumptions. In many cases, the complexity of the

algorithms is computed based on the number of states and alphabet size. But

how important are these assumptions really for the main operations and de-

cision problems? We have recently pursued applications of finite transducers

in the context of web security as a foundation for sanitization of potentially

malicious data. For these applications we have found that lifting the finite

alphabet restriction to be useful to enable efficient symbolic analysis and

we have developed symbolic counter-parts of the main classical operations

on finite automata. We here define Symbolic Tree Transducers as a gener-

alization of Regular Transducers as finite state input-output tree automata

with logical constraints over a background theory. The background theory
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is a parameter of the formalization. We examine key closure properties of

Symbolic Tree Transducers and we develop a composition algorithm and an

equivalence decision procedure for single-valued transducers.

1 Introduction

State machines are fundamental to computer science. General computations are
captured by Abstract State Machines [20]. An important special case is captured
by Finite State Machines. The languages accepted by finite state machines are the

ubiquitous regular languages. Several applications, ranging from web-sanitizers,
XML transformations to generic functional programs, rely on finite state machines
that transform strings or trees into strings or trees. Such state machines can con-

veniently be captured by tree transducers. Finite tree transducers accept regular
languages and produce regular languages. As usual, a language is characterized

by a set of words or trees that are labeled by symbols from an alphabet. From
a computational point of view, letters from a finite alphabet form the nucleus of
the finite state machines: letters can be stored and recognized in unit space and in

unit time. Furthermore, finite state machines are amenable to operations and anal-
ysis that eludes more general notions of computation. The membership problem,

whether a word or tree is accepted by a finite state machine, is decidable. Finite
state machines are closed under the Boolean operations of union, intersection,
complementation. They form an effective Boolean Algebra. Furthermore, the

question of whether two finite state machines accept the same language, known
as the equivalence question, is also decidable. The algorithmic complexity of
most fundamental decision problems over finite automata and transducers depend

on the size of the alphabet k as well as the number of states n:1 intersection of
nondeterministic finite word automata has complexity O(kn2) (c.f. [24, p. 59]),

determinization of nondeterministic finite word automata is O(k2n) (c.f. [24, The-
orem 2.1]), (implying the upper bound O(k2n) for deciding the equivalence of
nondeterministic finite word automata), and minimization of deterministic finite

word automata is O(k n log n) (c.f. [24, Exercise 3.30]). Under some mild restric-
tions, equivalence can also be checked between two finite state transducers.

In the context of analysis and operations, is the finite alphabet assumption es-
sential? Of course, we cannot expect unit storage space and access time for letters

from an infinite alphabet, but what about analysis? Our main results establish how
the representation of alphabets can be generalized. In fact, in practice, we have

found that a symbolic representation of even finite alphabets can be an advantage

1Some algorithms do not depend on the size of the alphabet, most notably: epsilon-elimination,
unreachable-state-elimination, and dead-end-elimination (a dead-end is a noninitial state from
which no final state is reachable).
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for these operations. We develop the results for the most general case of finite
tree transducers, and we call these Symbolic Tree Transducers (STTs). The al-

phabets of STTs are defined modulo a background theory. STTs are easily seen
more expressive than tree transducers defined over finite alphabets, yet our main
results establish that composing STTs and equivalence checking for single valued

STTs is computable, modulo the background theory. Symbolic transducers are
also practically useful for exploiting efficient symbolic solvers when performing

basic automata-theoretic transformations. In our prior work [41, 22] on symbolic
string recognizers and transducers we took advantage of this observation. We here
investigate the case of the more expressive class of tree transducers. We first ex-

amined symbolic tree transducers in [40], where we established that equivalence
checking for the special case of linear single-valued tree transducers was decid-
able. Roughly, a tree transducer is linear if the state transition relation does not

require more than one state per sub-tree. The decision procedure we developed
there created a product automaton and checked for paths and loops in the re-

sulting product automaton that could produce a counter-example to equivalence.
We left it as an open problem whether the restriction on linearity could be lifted.
The question is settled in the affirmative here. We provide a decision procedure

for the equivalence problem of generial single-valued symbolic tree transducers.
They don’t have to be linear. This paper furthermore provides the foundations for
symbolic tree transducers. We show that symbolic regular tree languages form an

effective Boolean Algebra provided the alphabet is also effective. All decision pro-
cedures are of course provided modulo decidability of the symbolic background

component.

This paper can be read as a self-contained introduction and overview of sym-
bolic tree automata and tree transducers. While it becomes technical, we only use

elementary notions, well-known from classical automata theory curricula [24]. It
builds on top of results from [40] and we include several definitions and relevant
examples from that work when useful.

The rest of the paper is organized as follows. Section 2 discusses some of
the background for our study of tree transducers over a symbolic, or parametric,

alphabet. As background for the technical development we recall preliminaries
in Section 3, and then develop the foundations for Symbolic Tree Automata in
Section 4, and Section 5 introduces Symbolic Tree Transducers. Our new algo-

rithm for equivalence checking of single-valued STTs is provided in Section 6.
Section 7 contains conclusions.
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2 Parametricity

Before devling into technical details let us discuss a main theme of this paper.
We develop Symbolic Tree Transducers that are finite state machines modulo a

method for checking constraints on the alphabets used to label the trees. The re-
sults are parametric in the underlying representation of the alphabet and we iden-
tify the sufficient conditions on constraint solving for the labeling. There is also

a branch of theorem proving dedicated to satisfibility of logical formulas modulo
background theories. It is known as Satisfiability Modulo Theories (SMT). Here,

the interpretation of the logical formulas are provided modulo a suitable back-
ground theory. The two paradigms are not disconnected: in fact the parametric
alphabets in the symbolic tree automata and transducers can be instantiated by

formulas that can be solved using SMT solvers. This has also been the method of
choice in the Automata2 tools available from Microsoft Research. The tool uses
the state-of-the-art SMT solver Z3 [8].

Our results on STTs can also be seen as connected to the modular theory

combination problem. The problem of modularly combining solvers for different
theories is identifying the minimal necessary and sufficient interfaces between the

solvers. Our procedures for symbolic tree automata are modular in a very transpar-
ent way. The algorithms on automata use symbolic solvers as black box oracles.
The interface to the symbolic solver comprises checking logical satisfiability on

transition guards.

2.1 Automata and Transducers

Before covering work on symbolic automata and transducers, let us here briefly

recall some of the important references on classical automata theory. Tree trans-
ducers and various extensions thereof provide a syntax-directed view of studying
different formal models of transformations over tree structured data [17]. Top-

down tree transducers were originally introduced in [35, 37] for studying proper-
ties of syntax-directed translations. Basic compositionality results of tree trans-

ducers were established in [4, 9]. The handbook [18] provides a uniform treat-
ment of foundational properties of tree transducers and relations to context-free
languages. A newer handbook on tree automata has been available as an online

resource for several years now [6]. It is a comprehensive source for recent results
on tree automata.

Decidability of equivalence of single-valued top-down tree transducers fol-
lows from the decidability result of single-valuedness of top-down tree transduc-

ers [10, 15]. A specialized method for checking equivalence of deterministic top-

2http://rise4fun.com/bek
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down tree transducers is provided in [7]. Decision problems, e.g. equivalence, for
specific classes of tree transducers are often based on establishing unique normal

forms and considering deterministic transducers, including string transducers [5],
top-down tree transducers [13], and top-down tree-to-string transducers [29].

Several extensions of top-down tree transducers have been studied in the lit-

erature (the following list is not exhaustive). Extended top-down tree transduc-
ers allow nonflat left-hand sides in rules [3]. Attributed tree-transducers describe

parse trees in attribute grammars [16]. Macro tree-transducers incorporate the no-
tion of implicit tree contexts [14] and have been studied in the context of analysis
of XML transformation languages, with macro attributed tree-transducers [17],

multi-return macro tree transducers [26], and macro forest transducers [34] as
further extensions. Pebble tree transducers were introduced for type checking
XML query languages [31] and are extended to pebble macro tree transducers

in [12]. Formal relationships between monadic second order logic and macro
tree transducers is studied in [11]. Extended top-down tree transducers were re-

cently studied in the context of natural language processing, where it is shown
that several interesting cases are not closed under composition [30]. Higher-order
multi-parameter tree transducers [28] allow possibly infinite trees in the output

and can be applied to higher-order recursion schemes. A related notion of pattern-
matching recursion schemes is introduced in [33] to model functional programs
that manipulate algebraic data-types.

The dual extension of finite automata and transducers to ours maintains a fi-
nite alphabet and instead admits an infinite number of states. For example, timed

automata [2] admit an infinite number of reachable states, but maintain decidabil-
ity for key problems because the states form a finite quotient with respect to the
transition relations.

2.2 Symbolic Automata and Transducers

Many connections to classical automata theory and symbolic versions of automata
have surfaced in different variants. The corresponding symbolic generalization of

classical (Rabin-Scott) automata is originally studied in [32] where the motiva-
tion comes from computational linguistics. There, the symbolic generalization of
a finite state (string) transducer is called a predicate-augmented finite state trans-

ducer and it is used in the context of natural language processing. The MONA
tool [27] uses automata over a finite but large alphabet. It uses multi-terminal

binary decision diagrams to label transition relations. This allows often encoding
with exponential savings alphabets of size 2n when they are represented using n

binary values. The notion of symbolic automata is identified and developed in [41]

where the motivation came from the need to support regular expressions in param-
eterized unit testing [38] and like-expressions (which are very much like regular
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expressions) in database query analysis [42]. Such an extension seems straight-
forward at first glance, but raises many challenging questions and opens up new

approaches for automata algorithm design. For example, it is shown in [23] that
symbolic complementation by using a technique for minimizing symbolic repre-
sentations of Boolean functions leads to significant speedups compared to existing

state-of-the-art automata algorithm implementations. These techniques have also
been instrumental in applications for encoding string sanitization operations over

large (possibly infinite) alphabets for web security analysis [22]. Streaming trans-
ducers [1] provide another recent symbolic extension of finite transducers where
the label theories are restricted to be total orders.

3 Preliminaries

We use basic notions from classical automata theory [24], classical logic, and
model theory [21]. Our notions regarding tree transducers are consistent with [17].

For finite state (string) transducers a brief introduction is given in [43].

3.1 Background Universe

We work modulo a multi-sorted background universe U . For each sort σ, U σ

denotes a nonempty sub-universe of U . A predicate over σ or σ-predicate is an

effective finite representation ϕ of a subset [[ϕ]] ofU σ. Given a set of σ-predicates
P(σ), we say that

(P(σ),∧,∨,¬,⊤,⊥)

is an effective Boolean algebrawhen for each element a ∈ U σ there is a predicate
ϕa in P(σ) such that [[ϕa]] = {a}, ⊤,⊥ ∈ P(σ), [[⊥]] = ∅, [[⊤]] = U σ, and P(σ)

is effectively closed under the operations for conjunction ∧, disjunction ∨, and
negation ¬, such that

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[¬ϕ]] = ∁([[ϕ]]) = U
σ \ [[ϕ]].

We write ϕ ≡ ψ for [[ϕ]] = [[ψ]]. Without loss of generality, we will assume that
σ-predicates are formulas with a fixed free varible x of sort σ.

Example 1. A practical example of P() is the set of all quantifier free linear

arithmetic formulas over integers with at most one fixed free variable x. For ex-

ample [[0 < x ∧ x + 1 < 3]] = [[0 < x]] ∩ [[x + 1 < 3]] = {1}. ⊠

Example 2. Another practical example of P() is the set of all quantifier
free linear arithmetic formulas over rationals with at most one fixed free variable

x. For example [[0 < x ∧ x + 1 < 3]] = {r ∈ U  | 0 < r < 2}. ⊠
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Example 3. A theoretical example of P() is the set of all re-indices. ⊠

We use an abstract generic definition of finite trees that is taylored for the
symbolic extension and algorithms described below. Given a sort σwe write 〈σ〉
for the sort of σ-labeled trees U 〈σ〉 as the least set T such that:

• the empty tree ǫ ∈ T ,

• if a ∈ U σ then 〈a〉 ∈ T ,

• if a ∈ U σ and, for k ≥ 1, t1, . . . , tk ∈ T then 〈a, t1, . . . , tk〉 ∈ T .

For a (k + 1)-tuple x̄ = 〈x0, . . . , xk〉, k ≥ 0, k is called the rank of x̄, denoted

rank(x̄); for 0 ≤ i ≤ k, we let x̄[i]
def
= xi. For a nonempty tree t, t[0] is called the

label of t and, for 1 ≤ i ≤ rank(t), t[i] is called the i’th subtree of t. We define the

maximum rank of t, or maxrank(t), to be:

maxrank(t)
def
=



















−1, if t = ǫ;
0, if rank(t) = 0;

max(rank(t),max1≤i≤rank(t){maxrank(t[i])}), otherwise.

When we want to be more specific about the rank, we fix k above. In particular,

for k = 2, 2〈σ〉 is the sort of all σ-labeled binary trees.

Example 4. For example the tree t = 〈1, 〈2, ǫ, ǫ, ǫ〉, 〈3〉〉 is an -labeled tree of

rank 2 and maximum rank 3. It is sometimes useful to think of the label a of a

nonempty tree together with its rank k as a unique function symbol f ka of arity k.

Thus, t can be thought of as the term f 21 ( f
3
2 (ǫ, ǫ, ǫ), f

0
3 ). ⊠

A symbolic label with input sort σ1 and output sort σ2, or σ1/σ2-label f , is an

effective representation of a function [[ f ]] from U σ1 to U σ2 . We write F (σ1 →

σ2) for a given effective set of σ1/σ2-functors. Without loss of generality, we

assume that f is a term of sort σ2 that has at most one fixed free variable x of sort
σ1 that represents the input.

Example 5. A practical example of F (× → ) is the set of all terms of sort
 with one free variable x of sort  × , in the combined theory of quantifier

free linear arithmetic and tuples. For example if f is the term x[0]+ x[1] then [[ f ]]
is the addition function. ⊠

Given a finite (possibly empty) base set Y of terms, we define terms over

F (σ1 → σ2) and Y , denoted TY(F (σ1 → σ2)), as the least set T such that:

• ǫ ∈ T , Y ⊆ T ,
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• if f ∈ F (σ1 → σ2) then 〈 f 〉 ∈ T ,

• if f ∈ F (σ1 → σ2) and, for k ≥ 1, t1, . . . , tk ∈ T then 〈 f , t1, . . . , tk〉 ∈ T .

Given a term t and distinct variables x1, . . . , xn, we use the standard notation
t(x1, . . . , xn) to indicate that all variables in t occur among the variables in x1, . . . , xn.

Substitution is defined as usual, and for a ground term t (term without variables),
we write [[t]] for the corresponding concrete value.

Example 6. Suppose t(x, y) is the term 〈2 ∗ x, ǫ, 〈3 ∗ x, y〉〉 over F (→ ) and
{y}. Then t(3, 〈4〉) = 〈2 ∗ 3, ǫ, 〈3 ∗ 3, 〈4〉〉〉 and [[t(3, 〈4〉)]] = 〈6, ǫ, 〈9, 〈4〉〉〉. ⊠

We write 〈σ〉 for the σ-list sort 1〈σ〉. We use the notation [e1, e2, . . . , en|t]

for 〈e1, 〈e2, . . . 〈en, t〉〉〉 and we write [e1, e2, . . . , en] when t = ǫ.

4 Symbolic tree automata

We introduce an extension of tree automata with an effective encoding of labels

by predicates that denote sets of labels, rather than individual labels. We study
basic properties and algorithms for STAs. These properties and algorithms are

instrumental for proving further properties and developing decision procedures
for symbolic tree transducers.

Definition 1. A symbolic tree automaton (STA) A overP(σ) is defined as a quadru-
ple (Q,Q0,Qa,R) where Q is a nonempty finite set of states, Q0 ⊆ Q is a set of
leaf states, Qa ⊆ Q is a set of accepting states, and R is a finite set of rules

(q0, ϕ, q1, . . . , qk), where k ≥ 0, and qi ∈ Q for 0 ≤ i ≤ k.

Example 7. We illustrate an STA A that accepts integer-labeled binary trees

whose labels are constrained according to cycle order traversal [39]:

A = ({qroot, qpre, qin, qpost, qǫ}, {qǫ}, {qroot},R),

where R consists of the rules

(qroot, ℓ=0, qpre, qpost), (qin, ℓ=0, qpost, qpre),

(qpre, ℓ<0, qpre, qin), (qpost, ℓ>0, qin, qpost),
(qpre, ℓ<0, qǫ, qǫ), (qin, ℓ=0, qǫ, qǫ), (qpost, ℓ>0, qǫ, qǫ)

Thus, the root has label 0, each “pre”-node has a negative label, each “post”-

node has a positive label, and each “in”-node has label 0. There is a single initial

state qǫ and a single accepting state qroot.
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For example, the tree

0
−1 6

−2 0 0 5
3 −4

is in L (A). Classical tree recognizers that operate over a finite alphabet can of

course not recognize L (A). ⊠

We use A as a subscript to identify a component, unless A is clear from the
context. In the following let A = (Q,Q0,Qa,R) be a fixed STA. Given a rule

ρ = (p, ϕ, q̄) ∈ R, we use the following notations for extracting its left-hand-side
p, guard ϕ, and right-hand-side q̄:

lhs(ρ)
def
= p, grd(ρ)

def
= ϕ, rhs(ρ)

def
= q̄.

Definition 2. The language of A for q ∈ Q, denoted byL (A, q), is the least subset

of U 〈σ〉 such that:

• if q ∈ Q0 then ǫ ∈ L (A, q);

• if (q, ϕ, q1, . . . , qk) ∈ R, a ∈ [[ϕ]], and, for 1 ≤ i ≤ k, ti ∈ L (A, qi) then
〈a, t1, . . . , tk〉 ∈ L (A, q).

The language of A is L (A)
def
=

⋃

q∈Qa L (A, q).

In the following we consider STAs that accept binary trees in order to avoid
cumbersome notations. The generalization to arbitrary trees is straightforward.

The definition of A admits the following two possible classical views of tree au-
tomata:

1. As a top-down or root-to-frontier STA, a tree t is enabled at state q if t = ǫ

and q ∈ Q0, or t , ǫ and there exists (q, ϕ, q1, q2) ∈ R such that t[0] ∈ [[ϕ]]
and t[i] is enabled at qi for i = 1, 2.

2. As a bottom-up or frontier-to-root STA, if q ∈ Q0 then ǫ is enabled at q,
and if ti is enabled at qi for i = 1, 2 and there exists (q, ϕ, q1, q2) ∈ R then
〈a, t1, t2〉 is enabled at q for all a ∈ [[ϕ]].

In the general case of finite trees, the two views are symmetrical and do not affect

the expressiveness of L (A) that is the set of all (finite) trees that are enabled at
some accepting state, unless additional restrictions are placed upon the class of
STAs under consideration. For top-down tree automata, Qa is typically assumed

to be a singleton set {q} and q is referred to as the initial state, while Q0 is referred
to at the set of final states. For bottom-up tree automata the convention is the
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opposite, i.e., Q0 is assumed to be a singleton set {q} and q is referred to as the
initial state, while Qa is referred to at the set of final states. In order to avoid

possible confusion we will not use this terminology for STAs. The most important
subclasses of STAs are the following.

Definition 3. A is bottom-up-deterministic when |Q0| = 1 and, for all ρ1, ρ2 ∈ R,

if rhs(ρ1) = rhs(ρ2) and grd(ρ1) ∧ grd(ρ2) . ⊥ then lhs(ρ1) = lhs(ρ2).

The following basic property holds for bottom-up-deterministic SFAs. Let

QA(t)
def
= {q ∈ Q | t ∈ L (A, q)} (for t ∈ U

〈σ〉).

Proposition 1. If A is bottom-up-deterministic then |QA(t)| ≤ 1 for all t.

Proof. By structural induction over trees. For t = ǫ the statement follows from
|Q0| = 1. For t = 〈a, t1, t2〉 assume |QA(ti)| ≤ 1. If for some i, QA(ti) = ∅, then
QA(t) = ∅, otherwise QA(ti) = {qi} for some qi ∈ Q for i = 1, 2. Suppose there are

two rules (p, ϕ1, q1, q2) and (q, ϕ2, q1, q2) in R where a ∈ [[ϕ1]]∩ [[ϕ2]]. Then p = q

since A is bottom-up-deterministic and thus |QA(t)| = |{p}| ≤ 1. �

Definition 4. A is top-down-deterministic when |Qa| = 1 and, for all ρ1, ρ2 ∈ R, if

lhs(ρ1) = lhs(ρ2) and grd(ρ1) ∧ grd(ρ1) . ⊥ then rhs(ρ1) = rhs(ρ2).

For q̄ ∈ Q × Q let grdA(q̄) denote the disjunction of guards of all rules in A

whose right-hand-side is q̄:

grdA(q̄)
def
=

∨

ρ∈R, rhs(ρ)=q̄

grd(ρ)

Note that, if there is no rule in A whose right-hand-side is q̄ then grdA(q̄) is ⊥ (the

empty disjunction). We use the following property.

Definition 5. A is total when, for all q̄ ∈ Q × Q, grdA(q̄) ≡ ⊤.

The following basic property holds for total SFAs.

Proposition 2. If A is total then |QA(t)| ≥ 1 for all t.

Proof. Follows from the definition by structural induction over trees. �

The following construction is used for complementation of total bottom-up-

deterministic SFAs.

A
def
= (Q,Qǫ ,Q \ Qa,R)

Let elem({q})
def
= q.
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Proposition 3. If A is total bottom-up-deterministic then L (A) = ∁(L (A)).

Proof. By Propositions 1 and 2, t ∈ L (A) ⇔ elem(QA(t)) < Qa ⇔ t < L (A).

�

Two STAs A and B are equivalent when L (A) = L (B). Any STA can be
effectively transformed into an equivalent total STA by using the following trans-

formation where qsink is a new state.

Tot(A)
def
= (Q ∪ {qsink},Q

0,Qa,

R ∪ {(qsink,⊤, q̄) | q̄ ∈ Q × {qsink} ∪ {qsink} × Q ∪ {(qsink, qsink)}}

∪ {(qsink,¬grdA(q̄), q̄) | q̄ ∈ Q × Q})

Note that, for all q̄ ∈ Q × Q, grdTot(A)(q̄) ≡ grdA(q̄) ∨ ¬grdA(q̄) ≡ ⊤, and for all

cases when one of the states is the sink state then there is a rule with guard ⊤.
Thus, Tot(A) is total. The following properties hold.

Proposition 4. For all q ∈ Q, L (A, q) = L (Tot(A), q). If A is bottom-up-
deterministic then Tot(A) is bottom-up-deterministic.

Proof. Let q ∈ Q. Clearly L (A, q) ⊆ L (Tot(A), q). For the direction L (A, q) ⊇

L (Tot(A), q) view A as a bottom-up STA and note that any use of a rule not in
R will introduce the sink state that cannot be eliminated. Next, assume that A is

bottom-up-deterministic and let q̄ ∈ Q × Q. If (p, ϕ, q̄) ∈ R then for the new rule
(qsink,¬(ϕ∨ · · · ), q̄) it holds that ¬(ϕ∨ · · · )∧ ϕ ≡ ¬ϕ∧¬(· · · )∧ ϕ ≡ ⊥. The other
cases are immediate. So bottom-up-determinism is preserved in Tot(A). �

It follows from the well-known fact in classical theory of finite tree automata
that top-down-deterministic STAs are less expressive than general STAs, i.e., there
exists a tree language that is accepted by an STA that is not accepted by any top-

down-deterministic STA. However, as in the case of finite tree automata, bottom-
up-deterministic STAs have the same expressive power as general STAs. We lift
the classical powerset construction to STAs. Let P(X) denote the powerset of a

set X. Note that P(∅) = {∅}. The powerset STA P(A) of an STA A is defined as
follows.

R(q1, q2)
def
= {ρ | ρ ∈ R, rhs(ρ) ∈ q1 × q2} (for (q1, q2) ∈ P(Q) ×P(Q) )

grd(S , q̄)
def
=

∧

ρ∈S

grd(ρ) ∧
∧

ρ∈R(q̄)\S

¬grd(ρ) (for S ∈ P(R(q̄)))

lhs(S )
def
= {lhs(ρ) | ρ ∈ S } (for S ∈ P(R))

P(A)
def
= (P(Q), {Q0}, {q ∈ P(Q) | q ∩ Qa

, ∅},

{(lhs(S ), grd(S , q̄), q̄) | q̄ ∈ P(Q) ×P(Q), S ∈ P(R(q̄))})

Note that the empty conjunuction is ⊤ and thus, when q̄ = (∅, _) or q̄ = (_, ∅) then
R(q̄) = ∅, grd(∅, q̄) = ⊤, and (∅,⊤, q̄) ∈ RP(A).
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Theorem 1. For all STAs A:

(a) P(A) is total and bottom-up-deterministic;
(b) for all t, {QA(t)} = QP(A)(t);

(c) L (P(A)) = L (A).

Proof. Proof of (a). To show that P(A) is total, fix a q̄ = (q1, q2) ∈ P(Q)2.

We need to show that grdP(A)(q̄) ≡ ⊤. Assume that q1 , ∅ and q2 , ∅ or else
grdP(A)(q̄) ≡ ⊤ follows directly. Let R(q̄) = {ρi}i∈I and let ϕi = grd(ρi) for i ∈ I.

We have that

grdP(A)(q̄) ≡
∨

{grd(S , q̄) | S ∈ P(R(q̄))}

≡
∨

J∈P(I)

(
∧

i∈J

ϕi ∧
∧

i∈I\J

¬ϕi)

≡ ⊤

where the last equivalence follows from basic properties of Boolean algebras,
since all possible Boolean combinations of truth assignments of ϕi are included in

the disjunction.
To show that P(A) is bottom-up-deterministic, let q̄ ∈ P(Q) ×P(Q) and let

S 1, S 2 ∈ P(R(q̄)) such that S 1 , S 2. It suffices to show that

grd(S 1, q̄) ∧ grd(S 2, q̄) ≡ ⊥

which follows from S 1 , S 2 and the definition of grd(S , q̄) because then there
exists a rule ρ ∈ R(q̄) such that [[grd(S i, q̄)]] ⊆ [[grd(ρ)]] and [[grd(S j, q̄)]] ⊆

[[¬grd(ρ)]] where {i, j} = {1, 2}.
Proof of (b). It follows from (a) and Propositions 1 and 4 that, for all t,

|QP(A)(t)| = 1. We prove (b) by induction over trees. The base case t = ǫ fol-
lows immediately from the definitions since {QA(ǫ)} = {Q

0} = QP(A)(ǫ). For the

induction case suppose t , ǫ and as IH assume that, for i = 1, 2, {QA(t[i])} =
{qi} = QP(A)(t[i]). Let q̄ = (q1, q2). The following statements are equivalent by
using the definitions and the IH for the equivalence between 2 and 3. Let p ∈ Q.

1. p ∈ QA(t)

2. There exists (p, ϕ, q̄) ∈ R for some q̄ ∈ q1 × q2 such that t[0] ∈ [[ϕ]].

3. There exists S ∈ P(R(q̄)) such that t[0] ∈ [[grd(S , q̄)]] and p ∈ lhs(S ).

4. There exists q ∈ P(Q) such that p ∈ q and QP(A)(t) = {q}.

The equivalence of 1 and 4 for all p implies that {QA(t)} = QP(A)(t), that proves
(b). Finally, (c) follows from (b) by definition of Qa

P(A)
. �
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The above constructions enable us to effectively complement langauges ac-
cepted by STAs. For complete closure under Boolean operations we use the fol-

lowing product construction that is a lifting of the standard product of finite tree
automata to STAs.

Definition 6. Let Ai = (Qi,Q
0
i ,Q

a
i ,Ri), for i = 1, 2, be STAs. The product of A1

and A2 is the following STA.

ρ1 × ρ2
def
= ((p1, p2), ϕ1 ∧ ϕ2, (q1, q2), (r1, r2)) (for ρi = (pi, ϕi, qi, ri) ∈ Ri)

A1 × A2
def
= (Q1 × Q2,Q

0
1 × Q0

2,Q
a
1 × Qa

2, {ρ1 × ρ2 | ρ1 ∈ R1, ρ2 ∈ R2})}

The following theorem implies that we can effectively intersect languages ac-
cepted by STAs.

Theorem 2. Let Ai = (Qi,Q
0
i
,Qa

i ,Ri), for i = 1, 2, be STAs. Then:

(a) for all q1 ∈ Q1, q2 ∈ Q2, L (A1 × A2, (q1, q2)) = L (A1, q1) ∩L (A2, q2);
(b) L (A1 × A2) = L (A1) ∩L (A2);
(c) A1 × A2 is total if and only if A1 and A2 are total;

(d) if A1 and A2 are bottom-up-deterministic then so is A1 × A2;
(e) if A1 and A2 are top-down-deterministic then so is A1 × A2.

Proof. We prove (a) by induction over trees. For the base case we have

ǫ ∈ L (A1 × A2, (q1, q2))⇔ q1 ∈ Q0
1 ∧ q2 ∈ Q0

2 ⇔ ǫ ∈ L (A1, q1) ∧ ǫ ∈ L (A2, q2)

For the induction case assume t = 〈a, t1, t2〉 and as IH assume that, forall (q1, q2) ∈

Q1 × Q2 and i = 1, 2,

ti ∈ L (A1 × A2, (q1, q2))⇔ ti ∈ L (A1, q1) ∩L (A2, q2).

The following statements are equivalent for all (p1, p2) ∈ Q1 × Q2, where IH is
used for equivalence between 2 and 3:

1. t ∈ L (A1 × A2, (p1, p2))

2. There exist (q11, q
1
2), (q

2
1, q

2
2) ∈ Q1 × Q2 and ϕ1, ϕ2 such that

• t1 ∈ L (A1 × A2, (q
1
1, q

1
2)) and t2 ∈ L (A1 × A2, (q

2
1, q

2
2)) and

• ((p1, p2), ϕ1 ∧ ϕ2, (q
1
1, q

1
2), (q

2
1, q

2
2)) ∈ RA1×A2 and a ∈ [[ϕ1 ∧ ϕ2]].

3. There exist q11, q
2
1 ∈ Q1, q

1
2, q

2
2 ∈ Q2 and ϕ1, ϕ2 such that

• t1 ∈ L (A1, q
1
1), t2 ∈ L (A1, q

2
1), (p1, ϕ1, q

1
1, q

2
1) ∈ R1, a ∈ [[ϕ1]]

• t1 ∈ L (A2, q
1
2), t2 ∈ L (A2, q

2
2), (p2, ϕ2, q

1
2, q

2
2) ∈ R2, a ∈ [[ϕ2]].
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4. t ∈ L (A1, p1) and t ∈ L (A2, p2)

Equivalence of 1 and 4 proves the induction case and implies (a). (b) follows from
(a) by definition of Qa

A1×A2
.

Proof of (c). Assume first that A1 and A2 are total. Let q = ((q
1
1, q

1
2), (q

2
1, q

2
2)) ∈

(Q1 ×Q2)
2. We need to show that grdA1×A2

(q) ≡ ⊤. Let q1 = (q
1
1, q

2
1), q2 = (q

1
2, q

2
2).

Assume grdA1
(q1) =

∨

i≤m ϕi and grdA2
(q2) =

∨

j≤n ψ j. Then

grdA1×A2
(q) ≡

∨

i≤m, j≤n

ϕi ∧ ψ j ≡ grdA1
(q1) ∧ grdA2

(q2) ≡ ⊤ ∧ ⊤ ≡ ⊤

where the second equivalence holds by deMorgan’s laws and the third equivalence
holds by using the assumption. For the opposite direction suppose one of A1 or A2

is not total, say A1. Then there exists q1 ∈ Q2
1 such that grdA1

(q1) . ⊤ and thus,
for any q2 ∈ Q2

2, grdA1
(q1)∧ grdA2

(q2) . ⊤. It follows that the product is not total.
Proof of (d). Assume that A1 and A2 are bottom-up-deterministic. Then clearly

|Q0
1 × Q0

2| = 1. Consider any two rules ((p, q), ϕ1 ∧ ψ1, (p1, q1), (p2, q2)) and
((p′, q′), ϕ2 ∧ ψ2, (p1, q1), (p2, q2)) where ϕ1 ∧ ψ1 ∧ ϕ2 ∧ ψ2 . ⊥ in the product.

Then ϕ1 ∧ ϕ2 . ⊥ and ψ1 ∧ ψ2 . ⊥ and, by using the assumption, it follows that
p = p′ and q = q′.

Proof of (e). Similar to the proof of (d), note that |Qa
1 × Qa

2| = 1. �

We use the following definition for constructing the union of tree languages.

Definition 7. Let Ai = (Qi,Q
0
i ,Q

a
i ,Ri), for i = 1, 2, be STAs. The sum of A1 and

A2 is the following STA. Assume states are renamed so that Q1 ∩ Q2 = ∅.

A1 + A2
def
= (Q1 ∪ Q2,Q

0
1 ∪ Q0

2,Q
a
1 ∪ Qa

2,R1 ∪ R2)

Proposition 5. L (A1 + A2) = L (A1) ∪L (A2).

Proof. Immediate from definitions. �

Let q be some fixed state and define

⊥STA
def
= ({q}, {q}, ∅, {(q,⊤, q, q)}),

⊤STA
def
= ({q}, {q}, {q}, {(q,⊤, q, q)}),

Ac def
= P(A).

Let STA(P(σ)) denote the set of all STAs for some given label theory P(σ). Let

L (STA(P(σ))) denote the corresponding set of tree langauges.

Theorem 3. (STA(P(σ)),×,+, c,⊥STA,⊤STA) is an effective Boolean algebra.



 !" #$%%"&'( )* &!" +, -.

 !!

Proof. By using Propositions 3 and 5, and Theorems 1 and 2. Note that all STA
constructions are effective. �

We say that P(σ) is decidable if the problem of deciding ϕ ≡ ⊥ for ϕ ∈ P(σ)
is decidable. A rule ρ ∈ RA such that grd(ρ) . ⊥ is feasible. We say A is clean if
all rules in RA are feasible.

Theorem 4. If P(σ) is decidable then STA(P(σ)) is decidable.

Proof. Assume P(σ) is decidable and let A be an STA over P(σ). We need to

show that L (A) = ∅ is decidable. First, eliminate infeasible rules from A by
using the decision procedure for P(σ). It follows easily from the definitions that
L (A) is unchaged. Next, assume A is clean, view all label predicates as abstract

symbols, and use a standard reachability (finite tree automata) algorithm to decide
the emptiness. �

An efficient incremental procedure for product of STAs uses DFS (Depth First
Search) and starts from the accepting states to build the product while eliminating
all the infeasible rules, thus also eliminating all unreachable states. Moreover, a

backwards reachability algorithm can be applied to eliminate all rules that contain
dead-ends that are reachable states at which no tree is accepted.

An STA A can also be extended with a set of epsilon rules Rε ⊆ Q × Q, such

that if (p, q) ∈ Rε then L (A, q) ⊆ L (A, p). As with finite tree automata, epsilon
rules can be effectively eliminated and do not affect the expressive power of STAs

or the results.

5 Symbolic Tree Transducers

In this section we introduce an extension of tree transducers through a symbolic

encoding of labels by predicates. The main advantage of the extension is succinct-
ness and modularity with respect to the background theory of labels.

Definition 8. A symbolic tree transducer (STT) over (P(σ1),F (σ1 → σ2)) is a
tuple (Q, q0,R) where Q is a finite set of states, q0 ∈ Q is the initial state, and
R = Rǫ ∪

⋃

k≥0 R
k is a finite set of rules, where a rule in Rǫ , or ǫ-rule, is:

• q
ǫ
−→ u where q ∈ Q and u ∈ T(F (σ1 → σ2)) is ground,

and a rule in Rk, or k-rank-rule, is:

• q
ϕ
−→ u where q ∈ Q, ϕ ∈ P(σ1) and u ∈ T{q(yi)|q∈Q,1≤i≤k}(F (σ1 → σ2)).
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Note that a 0-rank rule does not contain any terms q(yi), but it may be non-
ground (the symbolic labels may depend on the input).

A rule q
ϕ
−→ u ∈ Rk corresponds to a conditional transformation of an input tree

of rank k from q: e.g., if k = 2, t = 〈a, t1, t2〉 ∈ U 〈σ1〉 and a ∈ [[ϕ]] then t can be

transformed to a tree u ∈ U 〈σ2〉 by applying all the symbolic labels in u to a and
by replacing, for i = 1, 2, each occurrence of p(yi) in u by some transformation of

ti from p.

In the following we assume that Rk
= ∅ for k , 2, i.e., the definition is over

binary trees. Generalization to arbitrary ranks is straightforward. The formal

semantics is as follows. Let y be a fixed variable, Y = {q(y), q(y1), q(y2) | q ∈ Q}

and u ∈ TY(F (σ1 → σ2)). The state q(y) will be used for referencing the root of

an input tree, the states q(y1) and q(y2) are used to reference the left, respectively
right child of an input tree. Given a set X we write P(X) for the powerset of X.
Then ⌊u⌋A is defined as the following function from U 〈σ1〉 to P(U 〈σ2〉).

⌊ǫ⌋A(t)
def
= {ǫ} (1)

⌊q(y)⌋A(ǫ)
def
= {[[t]] | q

ǫ
−→ t ∈ Rǫ} (q ∈ Q) (2)

⌊q(y)⌋A(t)
def
= ∪{⌊u⌋A(t) | q

ϕ
−→ u ∈ R, t[0] ∈ [[ϕ]]} (t , ǫ, q ∈ Q) (3)

⌊q(yi)⌋A(t)
def
= ⌊q(y)⌋A(t[i]) (i ∈ {1, 2}, q ∈ Q) (4)

⌊〈 f , u1, u2〉⌋A(t)
def
= {〈[[ f ]](t[0]), u1, u2〉 | u1 ∈ ⌊u1⌋A(t), u2 ∈ ⌊u2⌋A(t)} (5)

Informally, the rules for ⌊u⌋A(t) create the set of output terms obtained by filling
out the states in u with the set of terms produced by transforming t. When A is

clear from the context we often omit the index A.

Example 8. Consider the STT A = ({q0, q1, q2}, q0,R) where

R = { q0
⊤
−→ 〈x, q2(y1), q1(y2)〉,

q1
x<0
−−→ 〈x − 10, q1(y2), ǫ〉, q1

ǫ
−→ ǫ,

q2
x>0
−−→ 〈x + 10, ǫ, q2(y1)〉, q2

ǫ
−→ ǫ }

Let t = 〈−1, ǫ, 〈−3, ǫ, ǫ〉〉. Then ⌊q1(y)⌋A(t) = {〈−11, 〈−13, ǫ, ǫ〉, ǫ〉} but t is not
accepted at q2 because t[0] is not positive, so ⌊q2(y)⌋A(t) = ∅. ⊠

The semantics of A is the following function from U 〈σ1〉 to P(U 〈σ2〉).

Definition 9. The transduction of A is the function TA
def
= ⌊q0

A
⌋A.

Example 9. Consider A and t from Example 8. ThenTA(t) = {〈−1, ǫ, 〈−13, ǫ, ǫ〉〉}.
⊠
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Definition 10. The domain of A for q isD(A, q)
def
= {t | ⌊q⌋A(t) , ∅} and the domain

of A is D(A)
def
= D(A, q0

A
).

Given a rule ρ = q
γ
−→ u ∈ R, where γ = ǫ or γ ∈ P(σ1), q is called the

left-hand-side of ρ, denoted lhs(ρ), γ is called the guard of ρ, denoted grd(ρ), and

u is called the right-hand-side of ρ, denoted rhs(ρ). Two rules ρ1, ρ2 ∈ Rǫ overlap

when lhs(ρ1) = lhs(ρ2). Two rules ρ1, ρ2 ∈ Rk overlap when lhs(ρ1) = lhs(ρ2) and

grd(ρ1) ∧ grd(ρ2) . ⊥.

We say that a k-rank rule is linear if, for 1 ≤ i ≤ k, yi occurs at most once in

its right-hand-side.

Definition 11. A is linear when the right-hand-sides of all rules in A are linear.

Definition 12. A is single-valued when, for all t, |TA(t)| ≤ 1.

Definition 13. A is deterministic when it contains no two overlapping rules with
distinct right-hand-sides.

Example 10. A classical top-down finite state transducer is over a finite alphabet,

say { f , g} with f binary and g unary, and contains rewrite rules such as

q( f (y1, y2)) −→ f (q1(y2), g(q2(y1))), q1(g(y)) −→ f (q2(y), q1(y)),

where q, q1, q2 are states that are considered as unary functions symbols and y1, y2
are variables. SupposeU σ1 = {c f , cg}. The corresponding STT has the same states

and corresponding rules

q
x=c f
−−−→ 〈c f , q1(y2), 〈cg, q2(y1)〉〉, q1

x=cg
−−−→ 〈c f , q2(y1), q1(y1)〉,

in R2 and R1 respectively. The second rule is not linear.

In the following examples, all STTs are single-valued and linear. The first ex-

ample illustrates some simple transformations over -labeled binary trees. The
point is to illustrate how global STT properties depend on the theory P(σ1) of

labels.

Example 11. Let the input and the output domains be binary trees with integer-

labels. Swap is an STT that swaps the left and the right subtrees if the label is

non-zero. Neg is an STT that multiplies all labels by -1, Double multiplies labels

by 2. Cut is an STT that cuts the left subtree y1 of 〈x, y1, y2〉 when x > 0 and cuts
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the right subtree y2 when x < 0.

Swap = ({q}, q, {q
ǫ
−→ ǫ, q

x,0
−−→ 〈x, q(y2), q(y1)〉, q

x=0
−−→ 〈x, q(y1), q(y2)〉})

Neg = ({q}, q, {q
ǫ
−→ ǫ, q

⊤
−→ 〈−x, q(y1), q(y2)〉})

Double = ({q}, q, {q
ǫ
−→ ǫ, q

⊤
−→ 〈2x, q(y1), q(y2)〉})

Cut = ({q}, q, {q
ǫ
−→ ǫ, q

x>0
−−→ 〈x, ǫ, q(y2)〉, q

x<0
−−→ 〈x, q(y1), ǫ〉,

q
x=0
−−→ 〈x, q(y1), q(y2)〉})

Note that global properties such as commutativity and idempotence of the STTs

clearly depend on the theory of labels, e.g., that multiplication by a positive num-

ber preserves polarity, implying in this case for example that Swap and Neg com-

mute, Cut and Double commute, and Cut is idempotent. Note also that none of the

examples can be expressed as a finite tree transducer. Our results about composi-

tion and equivalence checking for STTs, that are discussed in the sections below,

allow to establish equivalences, such as Cut is equivalent to Swap followed by

Neg,Cut, then finally Swap. The equivalence is modulo the theory of arithmetic

that establishes logical equivalences, such as −x < 0 ≡ x > 0. ⊠

The following example illustrates a nontrivial use of the label theory. The STT

Encode in the example represents the string sanitizer AntiXSS.EncodeHtml from
version 2.0 of the Microsoft AntiXSS library. The sanitizer transforms an input
string into an Html friendly format. For each character x in the input string, either

x is kept verbatim or encoded through numeric Html escaping. The example can
be extended to be part of a tree transducer over abstract syntax trees of Html where

certain parts of the tree (corresponding to strings) are encoded using Encode.

Example 12. The example illustrates a single-state -list STT Encode〈〉/〈〉

that transforms an input list of characters represented by positive integers, into an

encoded, possibly longer, list of characters. We assume that ‘...’ below repre-

sents the integer encoding of the given fixed (ASCII) character, e.g. ‘a’ = 97 and

‘z’ = 122. Let ϕ[x] be the following linear arithmetic formula:

(‘a’ ≤ x ≤ ‘z’) ∨ (‘A’ ≤ x ≤ ‘Z’) ∨

(‘0’ ≤ x ≤ ‘9’) ∨ x = ‘ ’ ∨ x = ‘.’ ∨ x = ‘,’ ∨ x = ‘-’ ∨ x = ‘_’

Encode contains the following seven rules (QEncode = {q}):

q
ǫ
−→ ǫ

q
ϕ[x]
−−−→ [x|q(y1)]

q
¬ϕ[x]∧0≤x<10
−−−−−−−−−−→ [‘&’, ‘#’, d0(x), ‘;’|q(y1)]

q
¬ϕ[x]∧10n≤x<10n+1

−−−−−−−−−−−−−→ [‘&’, ‘#’, dn(x), . . . , d0(x), ‘;’|q(y1)] (for 1 ≤ n ≤ 4)
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where

di(x)
def

= ((x ÷ 10i)%10) + 48

is a term in linear arithmetic representing the (ASCII) character value of the i’th

decimal position of x, where ÷ is integer division, + is integer addition, and %

computes the integer remainder after dividing its first operand by its second. By

using that ‘&’ = 38 (i.e., d1(‘&’) = ‘3’ and d0(‘&’) = ‘8’) and that ϕ[‘&’] does not
hold, it follows for example that

TEncode([‘&’, ‘a’]) = {[‘&’, ‘#’, ‘3’, ‘8’, ‘;’, ‘a’]}.

Note that Encode is deterministic because all the guards are mutually exclusive.

Thus, Encode is also single-valued. ⊠

The following example illustrates another class of common single-valued list-

transductions over an infinite label domain that are captured by a nondeterministic
STT but not by any deterministic STT. While it is well-known that nondetermin-
istic tree transducers are more expressive than deterministic tree transducers, the

following example illustrates a case where a deterministic tree transducer would
exist if the label domain was finite.

Example 13. The example illustrates an -list STT Extract that extracts from a

given input list all subsequences of elements of the form [‘<’, x, ‘>’], where x ,

‘<’. For example

TExtract([‘<’, ‘<’, ‘a’, ‘>’, ‘<’, ‘<’, ‘>’, ‘<’, ‘b’, ‘>’]) = {[‘<’, ‘a’, ‘>’, ‘<’, ‘b’, ‘>’]}

Extract has states {q0, q1, q2, q3} where q0 is the initial state. Extract can be visu-

alized as follows, where a rule q
ǫ
−→ ǫ is depicted by marking q as a final state,

and a rule q
ϕ[x]
−−−→ [t1, . . . , tn|p(y1)], for n ≥ 0, is depicted as a transition from q to

p having label ϕ[x]/[t1, . . . , tn]:

q2

q0 q0 q1

q3

x = ‘<’/ǫ

x , ‘<’/[‘<’, x]

x , ‘<’/ǫ

x = ‘<’/ǫ

x = ‘>’/[‘>’]

x , ‘<’ ∧ x , ‘>’/ǫ

x , ‘<’/ǫ x = ‘<’/ǫ

A deterministic version would need a state to remember each element x , ‘<’

from q1 in order to later decide whether to output or to delete the elements, which

depends on whether x is followed by ‘>’ or not. ⊠
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5.1 Composition of STTs

The composition of two transductions T1 and T2 is the transduction

T1 ◦ T2(t)
def
=

⋃

u∈T1(t)

T2(u)

Notice that ◦ applies first T1, then T2, contrary to how ◦ is used for standard
function composition. (The definition follows the convention used in [17].)

Composition is well defined if the sorts used in the range of T1 matches the
sorts used for the domain of T2. In [40], we prove the following composition

theorem:

Theorem 5. Let A be an STT over (P(σ1),F (σ1 → σ)), and let B be an STT over
(P(σ),F (σ→ σ2)).

(a) Then A ◦ B is an STT over (P(σ1),F (σ1 → σ2)) s.t. TA ◦ TB = TA◦B.

(b) If A and B are linear then A ◦ B is linear.

6 Single-valuedness and equivalence of STTs

Equivalence checking of finite transducers is undecidable when the possible num-

ber of outputs for a given input is unbounded [19, 25]. The case that is practically
more directly relevant for us is when transducers are single-valued, since this case
corresponds closely to functional transformations computed by concrete programs

over structured data (possibly over a restricted input domain). For (top-down)
tree transducers it is known that equivalence is decidable for the single-valued

case [10, 15], or more generally, for the finite-valued case [36] (when there exists
k such that, for all t, |TA(t)| ≤ k). Here we investigate the more restricted equiva-
lence problem for single-valued STTs as the practically most common case, while

the generalization to finite-valued STTs is left as a future research topic.

STTs A and B are equivalent if TA = TB. Equivalence of A and B reduces to

two separate decision problems:

• Domain equivalence: D(A) = D(B).

• Partial equivalence A � B: for all t ∈ D(A) ∩D(B), TA(t) = TB(t).

Note that both problems are independent of each other and together imply equiv-
alence. Partial equivalence in the single-valued case can be reduced to deciding

single-valuedness of STTs. Similar to STAs, STTs can be extended to have ep-
silon rules, that are rules of the form p −→ q and, for all t, ⌊p⌋A(t) ⊇ ⌊q⌋A(t).
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Definition 14. Let A and B be STTs. Assume QA ∩ QB = ∅ and let q be a new
state. The sum of A and B is the STT

A + B
def
= (QA ∪ QB ∪ {q}, q,RA ∪ RB ∪ {q −→ q0A, q −→ q0B}).

The following proposition follows directly from definitions.

Proposition 6. For all t, TA+B(t) = TA(t) ∪TB(t).

Epsilon rules can be effectively eliminated and in the following we consider

only STTs without epsilon rules.

6.1 Domain Equivalence.

Domain equivalence of STTs uses STAs. We use the following definition for

u ∈ T{q(y1),q(y2)|q∈Q}(F (σ1 → σ2)):

St(yi, u)
def
= {q | q(yi) occurs in u}.

Example 14. St(y1, f (q1(y1), f (q2(y2), q3(y1)))) = {q1, q3}. ⊠

Definition 15. The domain automaton for STT A is the STA d(A):

d(A)
def
= (Q,Q0, {{q0A}},R),

where, Q0,Q ⊆ P(QA) and R ⊆ Q × P(σ1) × Q × Q are least such that

1. ∅ ∈ Q, {q0A} ∈ Q, ∅ ∈ Q0, (∅,⊤, ∅, ∅) ∈ R,

2. if q = {q1, . . . , qn} ∈ Q then

(a) if, for all i, 1 ≤ i ≤ n, there is a rule qi
ϕi
−→ ui in R

2
A then,

i. let, for j = 1, 2, p j =
⋃n

i=1 St(y j, ui),

ii. (q,
∧n

i=1 ϕi, p1, p2) ∈ R, p1, p2 ∈ Q,

(b) if, for all i, 1 ≤ i ≤ n, there is a rule qi
ǫ
−→ ei in R

ǫ
A, then q ∈ Q0.

Note that the state ∅ ∈ Qd(A) is used when an input subtree y j does not occur in

the right-hand-side of a rule in RA, thus any input-subtree is allowed, i.e., p j = ∅

and L (d(A), p j) = U 〈σ1〉. Note also that all states in Qd(A) are singletons when

A is linear, it is only when a nonlinear rule occurs when non-singleton states are
introduced into Qd(A) in step 2(a)ii. Moreover, d(A) can be implemented using
DFS and where step 2(a)ii is performed only if the conjuction of the guards is

feasible, thus guaranteeing that the resulting STA is clean and unreachable states
are pruned away.
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Proposition 7. Let A be an STT. Then

(a) For all q ∈ Qd(A), L (d(A), q) =











⋂

q∈q D(A, q), if q , ∅;

U 〈σ1〉, if q = ∅.
(b) L (d(A)) = D(A).

Proof. We prove (a). The case when A is linear follows directly from the defi-
nitions, then the rules in d(A) correspond to the reachable rules of A and where

the output terms are omitted. Suppose there is a nonlinear rule q
ϕ
−→ u, say q1(y1)

and q2(y1) occur in u, where q1 , q2, and an input tree 〈a, t1, t2〉 is transformed

at q where a ∈ [[ϕ]]. Then t1 is simultaneously transformed from q1 and q2 and
must therefore be enabled from both states at the same time, i.e., ⌊q1⌋A(t1) , ∅

and ⌊q2⌋A(t1) , ∅. This corresponds to t1 being enabled at state {q1, q2} in d(A).

Formally, (a) follows by induction over trees. Statement (b) follows from (a) by
choosing q = {q0

A
}. �

Proposition 8. Domain equivalence of STTs is decidable if P(σ1) is decidable.

Proof. By using Theorem 4 and Proposition 7. �

Note that the size of d(A) is at most singly expontential in the size of A and

the size of guards grows at most linearly in the size of A.
For many practical considerations, domain equivalence of A and B is often not

as relevant as partial equivalence because the transductions of A and B are known
to correspond to total functions from U 〈σ1〉 to U 〈σ2〉, i.e., D(A) = D(B) =
U 〈σ1〉, reflecting a robustness assumption of the underlying programs.

6.2 Single-valuedness.

We design an algorithm for deciding single-valuedness of STTs. Partial equiva-
lence of single-valued STTs reduces effectively to single-valuedness of STTs. For

this reduction we make use of the following construction.

Definition 16. Let A be an STT and D and STA. Assume FD = {q
0
D
}. The domain

restriction of A with respect to D is an STT A↾D = (Q, q0,R) with Q = {〈p, q〉 |

p ∈ QA, q ∈ QD} as a new set of states, q0 = 〈q0A, q
0
D〉, and

R = {〈p, q〉
ϕ∧ψ
−−−→ u ⊗ (q1, q2) | 〈p, q〉 ∈ Q, p

ϕ
−→ u ∈ RA, (q, ψ, q1, q2) ∈ RD}

where u⊗ (q1, q2) denotes the term obtained from u by replacing all occurences of
r(y1) (resp. r(y2)) for r ∈ QA with 〈r, q1〉(y1) (resp. 〈r, q2〉(y2)).

Example 15. f ( f (r1(y1), r2(y2)), f (r3(y1), r1(y2))) ⊗ (q1, q2)
= f ( f (〈r1, q1〉(y1), 〈r2, q2〉(y2)), f (〈r3, q1〉(y1), 〈r1, q2〉(y2))). ⊠
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Similar to product and domain automaton constructions, domain retriction can
be implemented most efficiently using DFS that avoids unreachable states and

keeps the resulting STT clean. The following property follows from the definition.

Proposition 9. Let A be an STT and D and STA. Then

(a) D(A↾D) = D(A) ∩L (D);

(b) for all t ∈ D(A↾D), TA↾D(t) = TA(t).

Proof. By induction over trees. �

We use the following proposition to reduce partial equivalence of single-valued

STTs to single-valuedness of an STT.

Proposition 10. Let A and B be single-valued STTs. Then

A � B iff (A + B)↾(d(A) × d(B)) is single-valued.

Proof. Assume that A and B are single-valued STTs. The following statements
are equivalent by making use of the properties proved above.

1. A � B

2. For t ∈ D(A) ∩D(B) TA(t) = TB(t)

3. For t ∈ L (d(A) × d(B)) TA(t) = TB(t)

4. For t ∈ L (d(A) × d(B)) |TA+B(t)| = 1

5. (A + B)↾(d(A) × d(B)) is single-valued.

The single-valuedness assumption is used for equivalence of 3 and 4. �

We now develop an algorithm for deciding single-valuedness of STTs. Let
A = (Q, q0,R) be a fixed STT. In the following we assume that P(σ1) is decidable.

Above, we did not make any assumptions about the symbolic labels. In the fol-
lowing we need to strengthen the decidability assumption to allow us to effectively
reason about labels. The following properties are assumed to be decidable:

• For f , g ∈ F (σ1 → σ2) and ϕ ∈ P(σ1), f and g are equivalent for ϕ:

f ≡ϕ g
def
= ∀ a ∈ [[ϕ]] ([[ f ]](a) = [[g]](a)).

• For f ∈ F (σ1 → σ2) and ϕ ∈ P(σ1), f is constant for ϕ:

Constϕ( f )
def
= ∀ a, b ∈ [[ϕ]] ([[ f ]](a) = [[ f ]](b)).
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• If Constϕ( f ) then find a witness b, such that, for a ∈ [[ϕ]], [[ f ]](a) = b.

Example 16. Suppose for example that F ( → ) is the set of quantifier free

linear arithmetic terms with one variable x and P() is the set of quantifier

free linear arithmetic formulas with one variable x. Then Constϕ( f ) holds iff the

following quantifier free linear arithmetic formula (with two variables) is unsatis-
fiable: ϕ(x1) ∧ ϕ(x2) ∧ f (x1) , f (x2). Note also that f ≡ϕ g holds iff the formula

ϕ(x)∧ f (x) , g(x) is unsatisfiable, that formula is in P() since a single variable

is sufficient. ⊠

Since A is clear from the context, we write D(q) for D(A, q) and

D(q)
def
=

⋂

q∈q

D(q) (for nonempty q ⊆ Q),

i.e., D(q) is the set of trees that are simultaneously enabled at all states in q. Let

y be a fixed variable of sort 〈σ1〉. For a term u ∈ T{q(y)|q∈Q}(F (σ1 → σ2)) we let

D(u)
def
= D(St(y, u)).

i.e., D(u) is the set of trees that are simultaneously enabled at all states q such that

q(y) occurs in u.

Definition 17. Given a nonempty subset q of Q and q ∈ qwe say that q is constant
for q when |

⋃

{⌊q(y)⌋A(t) | t ∈ D(q)}| = 1.

Example 17. The state q1 is constant for {q0, q1} in Swap1.

Swap1 =

















{q0, q1}, q0,















q0
ǫ
−→ ǫ, q0

x,0
−−→ 〈x, q1(y2), q0(y1)〉,

q0
x=0
−−→ 〈x, q0(y1), q1(y2)〉, q1

⊤
−→ 〈0, ǫ, 〈1, ǫ, ǫ〉〉































⊠

In other words, q is constant for q, if independent from the input tree in D(q),

the resulting transformation from q is some fixed output tree. It also follows that
D(q) is non-empty. We can effectively decide if q is constat for q and construct
a concrete output tree, by using a DFS procedure. We omit the details of this

procedure but note that the decision procedure for Constϕ( f ) is used.
The following definition is used as a key notion in the single-valuedness algo-

rithm.

Definition 18. Let u and v be terms, and q a nonempty subset of Q such that all
states in u and v occur in q. Then u is 1-equal to v for q, is defined as

u
1
=q v

def
= ∀t(t ∈ D(q) ⇒ |⌊u⌋(t) ∪ ⌊v⌋(t)| = 1)
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Note that 1-equality is not reflexive because ⌊u⌋(t) may contain more than
one element; 1-equality is a generalization of single-valuedness of STTs because

q0(y)
1
={q0} q

0(y) holds precisely when A is single-valued.

We will in the following define a notion of a most general 1-unifier (1-mgu)

and then develop an algorithm that finds the 1-mgu when they exist. A subterm
q(yi) is treated as a variable in the following definitions. That is, we treat q1(y1),
q2(y1), q1(y2), q2(y2) as four different variables. This convention allows us to form

substitutions that map variables of the form q(yi) to output terms. The variable
q(yi) is called a yi-output variable.

Definition 19. The substitution θ is a 1-unifier for u, v and ψ if uθ and vθ have the
same tree structure, and the symbolic labels are equal modulo the constraint ψ. In

other words, for each path π to a symbolic label vθ|π ≡ψ uθ|π.

Definition 20. The substitution θ is a most general 1-unifier (1-mgu) for u, v and

ψ when θ is a 1-unifier and also every other 1-unifier θ′ is an instance of θ.

Unlike standard unification of first-order terms, the unification problem for
STTs is not unitary. There can be many different incompatible unifiers without a
most general unifier. The following algorithm succeeds only when there is a most

general unifier.

Definition 21. Two tree terms u and v 1-unify for ψ with the substitution θ when

the following conditions hold. Let qi = St(yi, u) ∪ St(yi, v) for i = 1, 2. Initialize θ
to the empty substitution [].

1. u and v unify in the usual sense with unifier θ, if all symbolic labels are
assumed identical.

2. For all positions π such that u|π and v|π are symbolic labels, u|π ≡ψ v|π.

3. For all positions π in u and v such that u|π is a y1-output variable p(y1) then
(symmetrically for y2-output variables):

(a) If v|π contains a symbolic label that is not constant for ψ then fail, else
assume that all symbolic labels in v|π are constant by replacing each

symbolic label f in v|π with [[ f ]](a) for some a ∈ [[ψ]]

(b) If v|π contains a y2-output variable q(y2), then if q is not constant for

q2 then fail, else assume that v|π contains no y2-output variables by
replacing them with the corresponding fixed output trees.

(c) If v|π contains no y1-output variables, then v|π is ground and p must be
constant for q1 and the value must be equal to [[v|π]].
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(d) If p(y1) occurs properly under a function application in v|π, then fail,
else add to θ the substitution p(y1) 7→ v|π. Apply the substitution θ to

u and v and continue.

When u and v 1-unify for ψ, the mapping θ is called a 1-unifier of u and v. The
algorithm ensures that it maps from yi-output variables to terms that have con-
stant symbolic labels and contain at least one yi-output variable and no y j-output

variables, where {i, j} = {1, 2}.

Example 18. The terms 〈2x, q1(y1), q2(y2)〉 and 〈3x, q1(y1), q2(y2)〉 1-unify for ψ ≡

x = 0. They don’t 1-unify for ψ ≡ x > 0. The terms 〈2x, q1(y1), q2(y2)〉 and
〈3x, q1(y1), 〈1, ǫ, ǫ〉〉 1-unify for ψ ≡ x = 0 when the transition for q2 derives a

term that is equal to 〈1, ǫ, ǫ〉 under ψ. For example: q2
⊤
−→ 〈x + 1, ǫ, ǫ〉.

The terms 〈max(0, x), q1(y1), q2(y2)〉 and 〈0, 〈x, q2(y1), q3(y2)〉, q3(y1)〉 1-unify

for ψ ≡ x ≤ 0 when q3 is given by q3
⊤
−→ 〈0, ǫ, ǫ〉. The 1-unifier is the substitution

[q1(y1) 7→ 〈x, q2(y1), 〈0, ǫ, ǫ〉〉]. It would also 1-unify even if q3 does not derive the
constant term, but as long as q3 is constant for {q2, q3}.

The terms f (x, q1(y1), g(q2(y2))) and f (x, g(q2(y1)), q1(y2)) 1-unify with the sub-

stitution [q1(y1) 7→ g(q2(y1)), q1(y2) 7→ g(q2(y2))].
The terms f (x, q1(y1), g(q1(y2))) and f (x, g(q2(y1)), q2(y2)) 1-unify with the sub-

stitution [q1(y1) 7→ g(q2(y1)), q2(y2) 7→ g(q1(y2))].

Consider the STT A = ({p0, p1, p2}, p0,R) where

R = { p0
⊤
−→ 〈x, p1(y1), p2(y1)〉,

p1
x≥0
−−→ 〈x, p1(y1), p1(y2)〉, p1

ǫ
−→ ǫ,

p2
x≤0
−−→ 〈x, p2(y1), p2(y2)〉, p2

ǫ
−→ ǫ }

Let u be 〈x, p1(y1), p2(y1)〉 and v be 〈−x, p2(y1), p2(y1)〉. Then u and v 1-unify for

ψ : x = 0. In the algorithm for 1-unification, we see that the set q1 is {p1, p2}

so we are only considering trees that are accepted by following both p1 and p2.

The constraint x = 0 implies that the outputs generated from p1 and p2 will be

identical. ⊠

The single-valuedness algorithm is a constraint saturation procedure over 1-
equalities. The set of constraints is represented as a map C from Q × P(Q) to

terms in T{q(y)|q∈Q}(F (σ1 → σ2)) with constant symbolic labels. Initially

C = {(q0, {q0}) 7→ q0(y)}.

A constraint ((p, q) 7→ u) ∈ C stands for the assertion q = D(u) and p(y)
1
= u.

The intuition is as follows: The state p is the current state we check for single-
valuedness and we check it over a specialization over a partial output t with the
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states q. All these states should produce the same output modulo the guards on
transitions over q. We will ensure that all states q in t are applied to either only y

(the variable used for the root symbol) or only y1 (variable for the left sub-term)
or only y2 (variable for the right sub-term). There is a frontier F ⊆ Q × P(Q)
of unexplored state combinations. Initially F = {(q0, {q0})}. The general idea is

that constraints are added to C for unexplored state combinations by exhaustively
considering all rules from the states in the state combination. When a conflict of

1-equalities arises, it follows that A is not single-valued. If no conflicts arise, C
gets saturated (a fixpoint is reached) and it follows that A is single-valued. The
detailed description is as follows.

1. Choose (p, q) ∈ F and remove (p, q) from F. Let q = {q1, . . . , qk} and
t = C(p, q).

2. For each combination of rules p
ǫ
−→ u, q1

ǫ
−→ u1, . . . , qk

ǫ
−→ uk ∈ Rǫ:

• Let θ = {q1(yi) 7→ u1, . . . , qk(yi) 7→ uk}, where yi is either y, y1 or y2.

• If [[u]] , [[tθ]] then fail.

3. For each combination of rules p
ϕ
−→ u, q1

ϕ1
−→ u1, . . . , qk

ϕk
−→ uk ∈ R2 such that

ψ = ϕ ∧ ϕ1 ∧ · · · ∧ ϕk . ⊥:

• Let v = t{q1(yi) 7→ u1, . . . , qk(yi) 7→ uk}, where yi is either y, y1 or y2.

• If u and v do not 1-unify for ψ then fail.

• Let θ be a 1-mgu for u and v. Notice that each mapping in θ will either
use y1 or y2, but not both.

• Call Insert(θ, ψ), which is defined recursively below:

The procedure Insert(θ, ψ) is defined:

1. For each (p(yi) 7→ w(yi)) ∈ θ do:

• Let q be St(y1,w).

• IfC contains no constraint for (p, q) then add the constraint (p, q) 7→ w

to C; add (p, q) to the frontier F.

• Otherwise, C contains a constraint (p, q) 7→ w′. If w does not 1-unify
with w′ for ψ then fail else let θ′ be the 1-mgu of w and w′, replace

(p, q) 7→ w′ by (p, q) 7→ wθ′, and call Insert(θ′, ψ).

The algorithm is a constructive proof of the following Proposition.

Proposition 11. Single-valuedness of STTs is decidable if P(σ1) is decidable.
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Correctness of the algorithm is established by checking that it implements
an exhaustive case analysis for checking single-valuedness. The algorithm, and

in particular the procedure Insert terminates as one should expect: Let us first
notice that the algorithm maintains an invariant ((p, q) 7→ t(yi)) ∈ C implies that
St(yi, t) = q and that t only contains either y1, y2 or y variables. Now notice that

a 1-unifier substitution produces terms t(yi) with fewer states than the the states
from w and w′. In other words we have the descending measure: St(yi, t(yi)) ⊂

St(yi,w) = St(yi,w
′) = q.

The resulting algorithm works for single-valued symbolic tree transducers.

This is more general than the algorithm that we developed in [40], which checked
1-equality of single-valued linear symbolic tree transducers. That algorithm visits

at most |QA| × |QB| states. The current algorithm for non-linear symbolic tree
transducers visits at most |(QA ∪QB)×P(QA ∪QB)| states. It is an open problem
whether this is the tightest upper bound.

Propositions 8 and 11 imply:

Corollary 1. If P(σ1) is decidable then the question whether two STTs are single
valued and equivalent is decidable.

The algorithm can be implemented using any SMT solver or constraint solver

as an oracle that supports satisfiability checking and model generation (that is
needed above). In our implementations we have used the SMT solver Z3 [8].

The equivalence algorithm for two symbolic transducers checks the logical
statement ∀x . A(x) ≡ B(x) for validity. Dually, it checks satisfiability of a formula

of the form A(x) . B(x). Can we also check satisfiability of formulas of the form
A(x) ≡ B(x)? The answer turns out to be no as the following simple theorem
establishes.

Theorem 6. Satisfiability of equality is undecidable for finite alphabet tree trans-

ducers.

Proof. Recall the PCP (Post’s Correspondence Problem). Given v1, . . . , vk and
w1, . . . ,wk where vi,wi ∈ Σ

∗ (for some output alphabet Σ). The question, does
there exist i1, . . . , im, m > 0, such that vi1vi2 . . . vim = wi1wi2 . . .wim , is known to be

undecidable.

We use the following encoding into PCP: Let Σ′ be the input alphabet {1, . . . , k}

and let A have states q0 and q1 (q1 is final), and transitions {q0
i/vi
−−→ q1, q1

i/vi
−−→ q1},

for each i. Likewise, let B have states p0 and p1 (p1 is final), and transitions

{p0
i/wi

−−→ p1, p1
i/wi

−−→ p1}, for each i. Then ∃x(A(x) ≡ B(x)) iff the given PCP
instance has a solution Note that both A and B are deterministic. �
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6.3 Checking Non-equivalence Symbolically

Let us recall from [40] also how we can formulate a simple semi-decision pro-
cedure for checking non-equivalence of symbolic tree transducers. It does not

assume single-valuedness. Here, we formulate a version that applies to non-linear
symbolic transducers. Given a transducer A, that does not contain ǫ loops, we can
encode a predicate AccA(q

0
A
, t, s, n), such that A takes the term t and produces the

term s with at most n transitions along any given branch. Non-equivalence can
then be checked by showing that

∃t, s, n .

(

(AccA(q
0
A, t, s, n) ∧ ¬AccB(q

0
B, t, s, n))

∨ (¬AccA(q
0
A
, t, s, n) ∧ AccB(q

0
B
, t, s, n))

)

.

The definition is given by:

AccA(q, f (t0, t1, t2), s, n) ≡
∨

τ∈RA



































n > 0 ∧ ϕ[t0]∧
s = u[t0, ℓ1(s), . . . , ℓk(s)]∧
k

∧

i=1

AccA(qi, t ji , ℓi(s), n − 1)



































AccA(q, ǫ, ǫ, n) ≡ true

where, as usual, τ is of the form q( f (x, y1, y2))
ϕ
−→ u[x, q1(y j1), q2(y j2), . . . qk(y jk)],

ji is either 1 or 2, and ℓi(s) selects the subterm of s corresponding to the path
supplied in u. The formulas produced by unfolding AccA are always ground, and
satisfiability of the formulas can be checked using the background label theory

together with the theory of algebraic data-types. For single valued linear STTs we
can fix n to |QA × QB| to bound unfolding; for general STTs we can convert the

definition into first-order formulas whose instantiations correspond to step-wise
unfoldings of the transition relation.

7 Conclusions

We investigated the classes of Symbolic Tree Automata and more generally Sym-

bolic Tree Transducers as a generalization of tree automata and transducers over
finite alphabets. We established that symbolic tree automata form an effective

Boolean algebra, provided the underlying symbolic domain is also effective. As
a side-effect it is possible to define tree automata over alphabets of tree-automata
ad infinum. We also established, by providing an algorithm, that equivalence of

single-valued symbolic tree transducers is decidable. This settled a question left
open in [40].
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A generalization of our equivalence checking algorithm to the finite-valued
case is not expected to be straightforward, because the corresponding general-

ization of decidability of equivalence for finite-valued tree transducers [36] uses
results from combinatorics and is mathematically challenging.

We are using symbolic automata and symbolic transducers in applications re-
lated to web-sanitizers and test case generation. There are likely many other ap-

plications of symbolic analysis of automata and transducers; and our experience
so far indicates that coupling the analysis of the symbolic automata and trans-
ducers with SMT solvers offers a compelling combination. There are also many

interesting problems to work on in this area. For example, ongoing work includes
adding registers to symbolic string transducers. Registers allow storing characters
from the input for an indefinite number of transitions. The resulting automata and

transducers are strictly more general, and without further restrictions, are Turing
complete. So a challenge is identifying such extensions that are both useful and

admit practical analysis.
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