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Abstract

We discuss a family of modal logics for reasoning about relational struc-

tures of intervals over (usually) linear orders, with modal operators asso-

ciated with the various binary relations between such intervals, known as

Allen’s interval relations. The formulae of these logics are evaluated at

intervals rather than points and the main effect of that semantic feature is

substantially higher expressiveness and computational complexity of the in-

terval logics as compared to point-based ones. Without purporting to pro-

vide a comprehensive survey of the field, we take the reader to a journey

through the main developments in it over the past 10 years and outline some

landmark results on expressiveness and (un)decidability of the satisfiability

problem for the family of interval logics.

1 Introduction

Temporal reasoning is pervasive in many areas of computer science and artificial

intelligence, such as, for instance, formal specification and verification of sequen-

tial, concurrent, reactive, real-time systems, temporal knowledge representation,

temporal planning and maintenance, theories of actions, events, and fluents, tem-

poral databases, and natural language analysis and processing.

In most cases of temporal reasoning, time instants (points) are assumed to be

the basic ontological temporal entities. However, often “durationless” time points

are not suitable to properly reason about real-world events, which have an intrinsic

duration. Indeed, many practical aspects of temporality, occurring, for instance,

in hardware specifications, real-time processes, and progressive tenses in natural

language, are better modeled and dealt with if the underlying temporal ontology

is based on time intervals (periods), rather than instants, as the primitive entities.
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As an example, consider a typical safety requirement of traffic light systems at

road intersections as the following one: ’For every time interval I during which

the green light is on for the traffic on either road at the intersection, the green

light must be continuously off and the red light must be continuously on for the

traffic on the other intersecting road, for a time interval beginning strictly before

and ending strictly after I.

The nature of time (in particular, the choice between time instants and time

intervals as the primary objects of temporal ontology) has always been a hotly

debatable philosophical theme and the philosophical roots of interval-based tem-

poral reasoning can be dated back to Zeno and Aristotle [46]. Already Zeno noted

that in an interval-based setting, several of his paradoxes ’disappear’ [4], like the

flying arrow paradox (“if at each instant the flying arrow stands still, how is move-

ment possible?”) and the dividing instant dilemma (“if the light is on and it is

turned off, what is its state at the instant between the two events?”).

Of course, the two types of temporal ontologies are closely related and tech-

nically reducible to each other: on the one hand, time intervals can be determined

by pairs of time instants (begin–end); on the other hand, a time instant can be

construed as a degenerated ’point interval’, whose left and right endpoints coin-

cide. While these reductions can be used to reconcile the different philosophical

and ontological standpoints, they do not resolve the main semantic issue arising

when developing logical formalisms for capturing temporal reasoning: should for-

mulae in the given logical language be interpreted as referring to instants or to

intervals?

The possible natural answers to this question lead to (at least) three reasonable

alternatives, respectively giving rise to point-based logics, interval-based logics,

and mixed, two-sorted logics, where points and intervals are considered as sepa-

rate sorts on a par and formulae for both sorts are constructed. This exposition is

devoted exclusively to the second alternative. The literature on point-based tempo-

ral logics is abundant and will not be discussed here. The reader is referred to [4]

for a detailed philosophical-logical comparative discussion of both approaches,

while a recent study and technical exploration of the two-sorted approach can be

found in [3].

One of the first applications of interval-based logical formalisms – to the speci-

fication and verification of hardware components – is Propositional Interval Tem-

poral Logic (PITL), introduced by Moszkowski in [45]. An extension of PITL,

called Duration Calculus (DC), featuring the notion of duration of an event over

an interval of time in order to reason about specification and design of time-critical

systems, has been actively developed and studied since the early ’90s [51]. While

DC is one of the most popular and applicable interval-based logical formalisms, its

semantics is essentially built on a point-based temporal ontology and thus we will
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not discuss it here, but we refer the reader to the recent state-of-the-art references

on it [35, 50].

An important early work in the formal study of purely interval-based temporal

ontology and reasoning in AI is [2], where Allen considers the family of binary

relations arising between two intervals in a given linear order, subsequently called

Allen’s relations. Besides these, the natural and important operation of chopping

an interval into two subintervals, giving rise to the ternary interval relation ‘chop’,

was proposed and studied in Moszkowski’s work [45].

The systematic logical study of purely interval-based temporal reasoning

started with the seminal work of Halpern and Shoham [33] (with extended jour-

nal version [34]) introducing and analyzing a multi-modal logic, that we will call

Halpern-Shoham logic (HS for short), featuring one modality for each Allen’s re-

lation. Concurrently with [34], Venema introduced and studied the even more ex-

pressive interval logic CDT involving binary modal operators associated with the

ternary relation Chop (C) and its two residual relations D and T [49]. Decidabil-

ity and finite axiomatizability issues for CDT fragments have been systematically

investigated in [36].

Halpern and Shoham’s work initiated a stream of active research on the family

F (HS) of fragments of HS, with the main technical issues arising in that research

being expressiveness, decidability/undecidability, and complexity of validity and

satisfiability. These will be the main themes of the present exposition.

While decidability has been widely assumed to be a standard and expected

feature of most (point-based) modal and temporal logics studied and used in

computer science, it turned out that undecidability is ubiquitous in the realm

of interval-based logics. The first such undecidability results were obtained for

Propositional Interval Temporal Logic PITL by Moszkowski already in [45]. Fur-

thermore, so sweepingly general undecidability results about HS are given in [34]

that for a long time it was considered unsuitable for practical applications and

attracted little interest amongst computer scientists. In particular, Halpern and

Shoham proved that validity of HS formulae in any class of interval models on

linear orders satisfying very weak conditions, including the classes of all linear

models, all discrete linear models, and all dense linear models, is undecidable.

Moreover, the validities of HS in any of the standard numerical orderings of the

natural numbers, integers, and reals (all being Dedekind complete) are not even

recursively axiomatizable. Subsequently, the techniques proving such undecid-

ability results were sharpened to apply to a multitude of – sometimes surprisingly

simple and inexpressive – fragments of HS, see [8, 28, 37, 38].

The underlying technical reason for these undecidability results can be found

in the very nature of purely interval-based temporal reasoning, where all atomic

propositions, and therefore all formulae, are interpreted as true or false on every
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interval, rather than every point, in the model. Thus, the set-theoretic interpre-

tation of an HS formula in an interval model is a set of abstract intervals, that

is, a set of pairs of points (a binary relation). Thus, HS formulae translate into

binary relations over the underlying linear orders, and consequently the validity

(resp., satisfiability) problem for HS translates into the respective problem for the

universal (resp., existential) dyadic fragment of second-order logic over linear

orders.

As we already pointed out, for a long time these strong undecidability results

have discouraged both search for practical applications and further theoretical re-

search on purely interval-based temporal logics. Meanwhile, several semantic

modifications or restrictions, essentially reducing the interval-based semantics to

a point-based one, have been proposed to remedy the problem and obtain de-

cidable systems. As an example, already in [45] Moszkowski showed that the

decidability of PITL can be recovered by constraining atomic propositions to be

point-wise and defining truth of an interval as truth of its initial point (the locality

principle). The bleak picture started lightening up in the last few years with the

discovery of several rather non-trivial cases of decidable fragments of HS; see

[16, 18, 23, 43] for some recent accounts and references. Gradually, it became

evident that the trade-off between expressiveness and computational affordability

in the family F (HS) is rather subtle and sometimes unpredictable, with the bor-

der between decidability and undecidability cutting right across the core of that

family.

The study and classification of decidable and undecidable fragments of HS has

also invoked systematic and comparative analysis of their expressiveness. On the

one hand, that line of research has led to several correspondence results between

fragments of HS and natural fragments of FO; on the other hand, it motivated the

classification of the family F (HS) with respect to expressiveness. By systematic

use of bisimulations between interval models, we have established a complete set

of inter-definability equations between the modal operators of HS, thus obtaining

a complete classification of HS fragments with respect to expressiveness [29].

Using that result, we have found that there are exactly 1347 expressively different

such fragments out of the 212 = 4096 subsets of modal operators in HS.

Finally, the strive for obtaining even more expressive, yet decidable interval

logics has naturally led to the recently-initiated study of quantitative extensions

of HS fragments with metric constraints on the lengths of intervals, which will be

briefly discussed as well.

In this paper we mainly discuss the progress in the field of interval temporal

logics over the past 10 years with respect to the topics and developments in which

we have been directly involved. It is not a survey but rather travelers’ impressions

of a long journey, so we make no claim of being all-inclusive or comprehensive.
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2 Preliminaries

2.1 Intervals and interval structures

Given a strict partial ordering D = 〈D, <〉, an interval in D is an ordered pair

[d0, d1] such that d0, d1 ∈ D and d0 ≤ d1. A point d belongs to an interval [d0, d1]

if d0 ≤ d ≤ d1. If d0 < d1, then [d0, d1] is called a strict, or proper, interval;

otherwise, it is called a point interval. The set of all intervals in D, including both

strict and point intervals, is usually denoted by I(D)+, while the set of all strict

intervals is denoted by I(D)−. By I(D) we will denote either of these. Finally, we

call a pair 〈D, I(D)〉 an interval structure.

2.2 Linear orders and interval structures

All interval structures considered here will be assumed to be linear, that is, every

two points in it are comparable. This restriction can usually be relaxed without

essential complications to partial orderings with the linear interval property, that

is, partial orderings in which every interval is linear. Here is the formal definition

in first-order logic:

∀x∀y(x < y → ∀z1∀z2(x < z1 < y ∧ x < z2 < y → z1 < z2 ∨ z1 = z2 ∨ z2 < z1)),

In the figure below an interval structure with the linear interval property is given

on the left and an interval structure violating that property is given on the right.

Definition 1. A linear order, and the associated interval structure, is called:

• finite, if it has finitely many points;

• unbounded above or to right (resp., below or to left), if every point has a

successor (resp., predecessor);

• dense, if between every pair of distinct points there exists another point;

• discrete, if every point with a successor / predecessor has an immediate

successor / predecessor;

• Dedekind complete, if every non-empty and bounded above set of points

has a least upper bound.

Besides interval logics interpreted in interval structures from the above classes,

we will consider interval logics interpreted in single interval structures over the

natural orderings of the numerical sets N, Z, Q, and R.
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2.3 Allen’s interval relations

Depicted in Table 1 (first two columns) are all possible binary relations between

two strict intervals on a linear order, known as Allen’s relations. Besides the

identity relation equal (=), these are (in Allen’s original terminology): before (<),

meets (m), overlaps (o), finishes ( f ), during (d), starts (s), plus their inverses later

(>), met-by (mi), overlapped-by (oi), finished-by ( f i), contains (di), started-by

(si). These 13 relations are mutually exclusive and jointly exhaustive, meaning

that exactly one Allen’s relation holds between any given pair of strict intervals.

Each Allen’s relation gives rise to a corresponding unary modal operator with

Kripke semantics over that relation.

Remark 1. In [34], Halpern and Shoham have chosen a different notation for

Allen’s relations from the one used by Allen. For the sake of clarity, in Table 1

we briefly compare the two notations. Note that the semantics of the logic HS in

Halpern and Shoham’s paper is defined including point intervals, but the relations

corresponding to the modal operators of HS are neither mutually exclusive nor

jointly exhaustive there. As an example, in the original semantics of HS, both

relations overlaps and meets hold between two intervals [a, b] and [b, c] with a <

b < c; on the other hand, the intervals [a, b] and [c, c], with b < c, are not related

by any of Allen’s relation.

While [34] adopts non-strict semantics, with point intervals included in the

interval structure, in this paper we mainly focus on the strict semantics, where

these are excluded. This choice conforms to Allen’s definition of interval [2] and

it has at least two strong motivations. First, a number of representation problems

arise when the non-strict semantics is adopted, due to the presence of point inter-

vals, as pointed out in [2]. Second, when point intervals are included, there seems

to be no good definition for all interval relations that makes them both pairwise

disjoint and jointly exhaustive (see the above remark). On the other hand, while

admitting point intervals in the semantics usually strengthens the expressiveness

of the modal languages, all known results about decidability and undecidability

are invariant with respect to the inclusion or exclusion of point intervals.

An approach avoiding the problems arising in the non-strict semantics was

proposed in [3], where both sorts of points and intervals in interval structures are

considered on a par, with all natural intra-sort and inter-sort relations arising in

the two-sorted universe and the associated with them modal operators.

2.4 Syntax and semantics of Halpern-Shoham’s logic HS

The language of HS includes a set of propositional lettersAP, the classical propo-

sitional connectives ¬ and ∨ (all others, including the propositional constants ⊤
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Interval’s relations Allen’s notation HS notation

equals {=}

before {<} / after {>} 〈L〉 / 〈L〉 (Later)

meets {m} / met-by {mi} 〈A〉 / 〈A〉 (After)

overlaps {o} / overlapped-by {oi} 〈O〉 / 〈O〉 (Overlaps)

finished-by { f i} / finishes { f } 〈E〉 / 〈E〉 (Ends)

contains {di} / during {d} 〈D〉 / 〈D〉 (During)

started-by {si} / starts {s} 〈B〉 / 〈B〉 (Begins)

Table 1: Relations between pairs of strict intervals.

and ⊥, are assumed definable as usual), and a family of interval temporal modal

operators (modalities) of the form 〈X〉, one for each Allen’s relation. Formulae

are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ

An interval model is a pair M= 〈D,V〉, where V : I(D) → 2AP is a labeling

assigning to each interval a set of atomic propositions considered true at it.

The truth of a formula over a given interval [a, b] in an interval model M is

defined below by structural induction on formulae. The definition applies both to

the strict and the non-strict semantics; however, when point intervals are involved

some of Allen’s relations and the respective diamond operators trivialize.

• M, [a, b]  p iff p ∈ V([a, b]), for all p ∈ AP;

• M, [a, b]  ¬ψ iff it is not the case that M, [a, b]  ψ;

• M, [a, b]  ϕ ∨ ψ iff M, [a, b]  ϕ or M, [a, b]  ψ;

• M, [a, b]  〈X〉ψ iff there exists an interval [c, d] such that [a, b] RX [c, d],

and M, [c, d]  ψ, where RX is the binary interval relation corresponding to

the modal operator 〈X〉 (Table 1).

More precisely, the semantics of HS is given via the following clauses for the

modalities, where referring to an interval [a, b] automatically assumes that a < b

in the case of strict semantics and a ≤ b in the non-strict one.
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• M, [d0, d1]  〈A〉ϕ iff M, [d1, d2]  ϕ for some d2;

• M, [d0, d1]  〈L〉ϕ iff M, [d2, d3]  ϕ for some d2, d3 such that d1 < d2;

• M, [d0, d1]  〈B〉ϕ iff M, [d0, d2]  ϕ for some d2 such that d2 < d1;

• M, [d0, d1]  〈E〉ϕ iff M, [d2, d1]  ϕ for some d2 such that d0 < d2;

• M, [d0, d1]  〈D〉ϕ iff M, [d2, d3]  ϕ for some d2, d3 such that d0 < d2 and

d3 < d1;

• M, [d0, d1]  〈O〉ϕ iff M, [d2, d3]  ϕ for some d2, d3 such that d0 < d2 <

d1 < d3;

• M, [d0, d1]  〈A〉ϕ iff M, [d2, d0]  ϕ for some d2;

• M, [d0, d1]  〈L〉ϕ iff M, [d2, d3]  ϕ for some d2, d3 such that d3 < d0;

• M, [d0, d1]  〈B〉ϕ iff M, [d0, d2]  ϕ for some d2 such that d2 > d1;

• M, [d0, d1]  〈E〉ϕ iff M, [d2, d1]  ϕ for some d2 such that d2 < d0;

• M, [d0, d1]  〈D〉ϕ iff M, [d2, d3]  ϕ for some d2, d3 such that d2 < d0 and

d1 < d3;

• M, [d0, d1]  〈O〉ϕ iff M, [d2, d3]  ϕ for some d2, d3 such that d2 < d0 <

d3 < d1.

For each of the above-defined diamond modalities, the corresponding box modal-

ity is defined as a dual, e.g., [A]ϕ ≡ ¬〈A〉¬ϕ.

Finally, when the non-strict semantics is assumed, it is natural to consider an

additional modal constant for point intervals, denoted π, with the following truth

definition:

• M, [d0, d1]  π iff d0 = d1.

Validity and satisfiability are defined as usual, that is, a formula ϕ of HS is

satisfiable if there exists an interval model M and an interval [a, b] such that

M, [a, b]  ϕ; ϕ is valid, denoted |= ϕ, if it is true on every interval in every

interval model. Two formulae ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if |= ϕ↔ ψ.
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2.5 Fragments of HS

With every subset X = {〈X1〉, . . . , 〈Xk〉} of the modal operators of HS we associate

the fragment FX of HS denoted X1X2 . . .Xk, with formulae built on the same set of

propositional lettersAP, but only using modal operators fromX. The presence of

the superscript π denotes that the modal constant π is added, too. For example, AA

denotes the fragment involving the modalities 〈A〉 and 〈A〉 only, while AA
π
denotes

the fragment involving 〈A〉, 〈A〉, and π. For any given fragment F = X1X2 . . .Xk

and a modal operator 〈X〉, we write 〈X〉 ∈ F if 〈X〉 ∈ {〈X1〉, . . . , 〈Xk〉}. For any

given pair of fragments F1 and F2, we write F1 ⊆ F2 if 〈X〉 ∈ F1 implies 〈X〉 ∈ F2,

for every modal operator 〈X〉.

3 Expressiveness

The study and comparative analysis of the expressiveness of interval logics has

been a major research direction in the area. In particular, the natural and important

problems arise to identify the mutual definabilities between the modal operators

of the logic HS and to classify the fragments of HS with respect to their expres-

siveness. We will discuss these problems here. In particular, we will present the

complete classification of the fragments of HS with respect to their expressiveness

in the strict semantics over the class of all linear orders, by identifying a sound

and complete set of inter-definability equations between the modal operators of

HS, summarizing the results presented in [29].

3.1 Expressiveness of HS modalities: some examples

Due to their interval-based interpretation, the modal operators in HS are rather

more expressive than what meets the eye. We will only give a couple of testifying

examples here:

⊲ Using the modality 〈D〉 corresponding to the sub-interval relation one can

express non-trivial combinatorial relationships between width and depth of an

interval, of the type:

d(n)
∧

i=1

〈D〉

















pi ∧
∧

j,i

〈D〉¬p j

















→ 〈D〉n⊤

for a large enough d(n).

Also, using 〈D〉 one can express quite special properties of the models, e.g.

the formula

〈D〉〈D〉⊤ ∧ [D](〈D〉⊤ → 〈D〉〈D〉⊤ ∧ 〈D〉[D]⊥)
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has neither discrete nor dense models (in the strict semantics), but is satisfiable

e.g., in the Cantor space over R.

⊲ As proved in [31] the fragment AA is sufficiently expressive to define all

important classes of liner orders mentioned in he previous section, for instance:

• The axioms (SPNLder)

(〈A〉〈A〉p → 〈A〉〈A〉〈A〉p) & (〈A〉[A]p → 〈A〉〈A〉[A]p)

and its inverse (SPNLdel) (with 〈A〉 and 〈A〉 swapped) define the class of

dense structures, extended with the 2-element linear ordering

(which cannot be separated in the language of AA).

• The axioms (SPNLdir)

[A](p∧[A]¬p∧[A]p)→ [A][A]〈A〉((〈A〉¬p∧[A][A]p)∨(〈A〉⊤∧[A][A]⊥)),

and its inverse (SPNLdil)

define the class of discrete structures.

• The axiom (SPNLc)

〈A〉〈A〉[A]p ∧ 〈A〉[A]¬[A]p → 〈A〉(〈A〉[A] [A]p∧ [A] 〈A〉¬ [A] p)

defines the class of Dedekind complete structures.

3.2 Inter-definabilities between HS modalities

Some of the HS modalities are definable in terms of others and for each of the

strict and non-strict semantics, we can identify minimal fragments that are ex-

pressive enough to define all other operators. For instance:

• In the strict semantics, the six modalities 〈A〉, 〈B〉, 〈E〉, 〈A〉, 〈B〉, 〈E〉 suffice

to express all others, as shown by the following equalities [34]:

〈L〉ϕ ≡ 〈A〉〈A〉ϕ, 〈L〉ϕ ≡ 〈A〉〈A〉ϕ,

〈D〉ϕ ≡ 〈B〉〈E〉ϕ, 〈D〉ϕ ≡ 〈B〉〈E〉ϕ,

〈O〉ϕ ≡ 〈E〉〈B〉ϕ, 〈O〉ϕ ≡ 〈B〉〈E〉ϕ.

• In the non-strict semantics, the four modalities 〈B〉, 〈E〉, 〈B〉, 〈E〉 suffice to
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express all others, as shown by the following equalities [48]:

〈A〉ϕ ≡ ([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)) ∨ 〈E〉([E]⊥ ∧ (ϕ ∨ 〈B〉ϕ)),

〈A〉ϕ ≡ ([B]⊥ ∧ (ϕ ∨ 〈E〉ϕ)) ∨ 〈B〉([B]⊥ ∧ (ϕ ∨ 〈E〉ϕ)),

〈L〉ϕ ≡ 〈A〉(〈E〉⊤ ∧ 〈A〉ϕ),

〈L〉ϕ ≡ 〈A〉(〈B〉⊤ ∧ 〈A〉ϕ),

〈D〉ϕ ≡ 〈B〉〈E〉ϕ,

〈D〉ϕ ≡ 〈B〉〈E〉ϕ,

〈O〉ϕ ≡ 〈E〉(〈E〉⊤ ∧ 〈B〉ϕ),

〈O〉ϕ ≡ 〈B〉(〈B〉⊤ ∧ 〈E〉ϕ).

Also, the modal constant π is definable in terms of 〈B〉 and 〈E〉, respectively

as [B]⊥ and [E]⊥.

Furthermore, the presence of π in the language readily embeds the strict se-

mantics into the non-strict one by means of the translation:

• τ(p) = p, for each p ∈ AP;

• τ(¬φ) = ¬τ(φ);

• τ(φ ∨ ψ) = τ(φ) ∨ τ(ψ);

• τ(〈X〉 φ) = 〈X〉 (¬π ∧ τ(φ)), for each modality of the language.

3.3 Comparing the expressiveness of fragments of HS

Now, we introduce some formal notions used for comparing the expressiveness of

logical languages, adapted to fragments of HS.

Definition 2. A modal operator 〈X〉 of HS is definable in an HS fragment F ,

denoted 〈X〉 ⊳ F , if 〈X〉p ≡ ψ for some formula ψ = ψ(p) of F , for any fixed

propositional variable p. In such a case, the equivalence 〈X〉p ≡ ψ is called an

inter-definability equation for 〈X〉 in F .

Let F1 and F2 be any pair of fragments of HS. We say that:

• F2 is at least as expressive as F1, denoted F1 � F2, if every operator 〈X〉 ∈

F1 is definable in F2.

• F1 is strictly less expressive than F2, denoted F1 ≺ F2, if F1 � F2 but not

F2 � F1.
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• F1 and F2 are equally expressive (or, expressively equivalent), denoted F1 ≡

F2, if F1 � F2 and F2 � F1.

• F1 and F2 are expressively incomparable, denoted F1 . F2, if neither F1 �

F2 nor F2 � F1.

In order to show that F1 � F2, it suffices to prove that every modality of F1

is definable in F2, while in order to show that F1 � F2, we must show that some

modality in F1 is not definable in F2.

To show non-definability of a given modal operator in a given fragment, we

use a standard technique in modal logic, based on the notion of bisimulation and

the invariance of modal formulae with respect to bisimulations (see, e.g., [5]). Let

F be an HS fragment. An F -bisimulation between two interval models M =

〈I(D),V〉 and M′ = 〈I(D′),V ′〉 over AP is a relation Z ⊆ I(D) × I(D′) satisfying

the following properties:

• local condition: Z-related intervals satisfy the same propositional letters

overAP;

• forward condition: if ([a, b], [a′, b′]) ∈ Z and ([a, b], [c, d]) ∈ RX for some

〈X〉 ∈ F , then there exists [c′, d′] such that ([a′, b′], [c′, d′]) ∈ RX and

([c, d], [c′, d′]) ∈ Z;

• backward condition: likewise, but from M′ to M.

The important property of bisimulations, used here, is that any F -bisimulation

preserves the truth of all formulae in F . Thus, in order to prove that an operator

〈X〉 is not definable in F , it suffices to construct a pair of interval models M and

M′ and an F -bisimulation between them, relating a pair of intervals [a, b] ∈ M

and [a′, b′] ∈ M′, such that M, [a, b]  〈X〉p, while M′, [a′, b′] 6 〈X〉p.

3.4 Expressiveness classification of the fragments of HS

As already discussed, in order to classify all fragments of HS with respect to their

expressiveness, it suffices to identify all definabilities of modal operators 〈X〉 in

fragments F , where 〈X〉 < F . We say that a definability 〈X〉 ⊳ F is optimal if

〈X〉 6⊳F ′ for any fragment F ′ such that F ′ ≺ F ; a set of definabilities is optimal if

it consists of optimal definabilities. The rest of the section is devoted to sketching

the proof of the following theorem.

Theorem 1 ([29]). The set of inter-definability equations given in Table 2 is sound,

complete, and optimal.
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〈L〉p ≡ 〈A〉〈A〉p 〈L〉⊳A

〈L〉p ≡ 〈A〉〈A〉p 〈L〉⊳A

〈O〉p ≡ 〈E〉〈B〉p 〈O〉⊳BE

〈O〉p ≡ 〈B〉〈E〉p 〈O〉⊳BE

〈D〉p ≡ 〈E〉〈B〉p 〈D〉⊳BE

〈D〉p ≡ 〈E〉〈B〉p 〈D〉⊳BE

〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p 〈L〉⊳BE

〈L〉p ≡ 〈E〉[B]〈E〉〈B〉p 〈L〉⊳BE

Table 2: The complete set of inter-definability equations.

Most of the equations in Table 2 are known from the seminal work of Halpern

and Shoham [34], while the definability 〈L〉⊳BE and its symmetric one, 〈L〉⊳BE,

are first obtained in [29].

Lemma 1. The set of inter-definability equations given in Table 2 is sound.

Proof. As already noted, we only need to prove the soundness for the new inter-

definability equation 〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p (the proof for the symmetric one

defining 〈L〉 is completely analogous, and thus omitted). First, we prove the left-

to-right direction. Suppose that M, [a, b]  〈L〉p for some model M and interval

[a, b]. This means that there exists an interval [c, d] such that b < c and M, [c, d] 

p (see Figure 1). We exhibit an interval [a, y], with y > b such that, for every x

(strictly) in between a and y, the interval [x, y] is such that there exist two points y′

and x′ such that y′ > y, x < x′ < y′, and [x′, y′] satisfies p. Let y be equal to c. The

interval [a, c], which is started by [a, b], is such that for any of its ending intervals,

that is, for any interval of the form [x, c], with a < x, we have that x < c < d

and M, [c, d]  p. As for the other direction, we must show that 〈B〉[E]〈B〉〈E〉p

implies 〈L〉p. To this end, suppose that M, [a, b]  〈B〉[E]〈B〉〈E〉p for a model M

and an interval [a, b]. Then, there exists an interval [a, c], for some c > b such that

[E]〈B〉〈E〉p is true on [a, c] (see Figure 1). As a consequence, the interval [b, c]

must satisfy 〈B〉〈E〉p, that means that there are two points x and y such that y > c,

b < x < y, and [x, y] satisfies p. Since x > b, then M, [a, b]  〈L〉p. �

Proving the completeness is the hard task; optimality is established together

with it. In the following, we provide a general overview of the proof idea. A

detailed sketch of the proof of Theorem 1 is presented in [29] and the complete

proof with all technical details can be found in [28].

For each HS operator 〈X〉, we show that 〈X〉 is not definable in any fragment

of HS that does not contain 〈X〉 and does not contain as definable (according to

Table 2) all operators of some of the fragments in which 〈X〉 is definable (accord-
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a b

〈L〉p
〈B〉[E]〈B〉〈E〉p

c d
p

[E]〈B〉〈E〉p

Figure 1: 〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p.

ing to Table 2). More formally, for each HS operator 〈X〉, the proof consists of the

following steps:

1. Using Table 2, identify all fragments Fi such that 〈X〉 ⊳ Fi.

2. Produce the list M1, . . . ,Mm of all ⊆-maximal fragments of HS that con-

tain neither the operator 〈X〉 nor any of the fragments Fi identified by the

previous step;

3. For each fragmentMi, for i ∈ {1, . . . ,m}, provide a bisimulation forMi that

is not a bisimulation for X.

3.5 Expressiveness classification: summary

We have used the equations in Table 2 as the basis of a simple computer program

that identifies and counts all expressively different fragments of HS with respect

to the strict semantics on the class of all linear orders. Using that program, we

have established that there are exactly 1347 expressively different such fragments

of HS, out of the 212 = 4096 subsets of HS modalities.

We emphasize that not all inter-definability equations listed in Table 2, neither

the resulting classification, apply in the non-strict semantics. For instance, as

shown in [48] that in the non-strict semantics 〈A〉 (resp., 〈A〉) can be defined in BE

(resp., BE). Moreover, the completeness of the set of equations in Table 2 need not

hold any longer if the semantics is restricted to specific classes of linear orders.

For instance, in discrete linear orders, 〈A〉 can be defined in BE as follows: 〈A〉p ≡

ϕ(p)∨〈E〉ϕ(p), where ϕ(p) is a shorthand for [E]⊥∧〈B〉([E][E]⊥∧〈E〉(p∨〈B〉p));

likewise, 〈A〉 is definable in BE. As another example, in dense linear orders, 〈L〉

can be defined in DO as 〈L〉p ≡ 〈O〉(〈O〉⊤∧[O](〈O〉p∨〈D〉p∨〈D〉〈O〉p)); likewise,

〈L〉 is definable in DO.
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4 Deciding Satisfiability

Perhaps the currently most challenging, still open problem in the area of interval

temporal logics is to obtain a complete classification of the fragments of HS with

respect to decidability/undecidability of their satisfiability problem. In particular,

we are interested in identifying all maximally expressive, yet decidable such frag-

ments. In this section, we outline the decidability/undecidability landscape in the

family of the fragments of HS and discuss the general techniques, used so far for

proving decidability and undecidability of satisfiability for these fragments.

A complete picture of the state of the art about the classification of HS

fragments with respect to the satisfiability problem can be found in [28, Ap-

pendix A]. Besides, a collection of web tools is available on the website http:

//itl.dimi.uniud.it/content/logic-hs, that can be used to identify the

status (decidable/undecidable/unknown yet) of the satisfiability problem of any

specific fragment, over several classes of linear orders (all, dense, discrete, and

finite) in both strict and non-strict semantics, as well as to compare relative ex-

pressive power of any pair of HS fragments.

4.1 Overview of decidability methods and results

The early decidability results about interval logics were based on radical restric-

tions of the interval-based semantics, essentially reducing it to a point-based one.

Such restrictions include locality, according to which all atomic propositions are

evaluated point-wise, meaning that their truth over an interval is defined as truth

at its initial point, and homogeneity, according to which truth of a formula over

an interval implies truth of that formula over every sub-interval. By imposing

such constraints, decidability of interval logics can be proved by embedding it

into a suitable point-based temporal logic, as in [45, 48]. Decidability can also

be achieved by constraining the class of temporal structures over which the logic

is interpreted. This is the case with split-structures, where any interval can be

“chopped” in at most one way. The decidability of various interval logics, includ-

ing HS, interpreted over split-structures, has been proved by embedding them into

decidable first-order theories of time granularities [44].

For some simple fragments of HS, like BB and EE, decidability can be ob-

tained immediately and without any semantic restriction, by means of direct trans-

lation to the point-based semantics and reduction to decidability of respective

point-based temporal logics [32]. In any of these logics, one of the endpoints

of every interval related to the current one remains fixed, thereby reducing the

interval-based semantics to the point-based one by mapping every interval of the

generated sub-model to its non-fixed endpoint. Consequently, these fragments

can be polynomially translated to the basic temporal logic with Future and Past
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TL[F,P], thus proving their NP-completeness when interpreted on the class of all

linearly ordered sets or on any of N, Z, Q, and R [30, 32].

We note that most of the fragments of HS are sufficiently expressive to force

infinity of an interval structure, and therefore the standard approach to proving

decidability in modal logic based on recursive axiomatization plus finite model

property is not applicable here. Automata-based methods, based e.g. on Büchi

and Rabin theorems (implying decidability of MSO theories of various linear or-

ders and trees), do not apply either, because, as mentioned earlier, satisfiability

and validity in interval logics are dyadic, not monadic, second-order properties.

Thus, new approaches for obtaining decidability results for fragments of HS with

unrestricted and genuinely interval-based semantics, non-reducible to point-based

one, were needed.

The first such decidability results are obtained in the early 2000s by means of

suitable translations to other logics, already known to be decidable over linear or-

ders. Such a translation is constructed for the fragment AA, also known as Propo-

sitional Neighborhood Logic (PNL) [31] into the two-variable fragment of first-

order logic with uninterpreted binary relations over linear domains FO2[=, <].

Thus, decidability, in NEXPTIME, of PNL is obtained in [17, 18] by reduction

to the NEXPTIME-complete decidability result for FO2[=, <] due to Otto [47].

In fact, the satisfiability problem for PNL turns out to be NEXPTIME-complete,

too, by translation from FO2[=, <] back to PNLπ in the non-strict semantics, thus

implying that the latter logical language is expressively equivalent to the former.

Otto’s results, and consequently the decidability of PNL, apply not only to the

class of all linear orders, but also to some natural sub-classes of it, such as the

class of all finite linear orders, the class of all well-founded linear orders, and N.

The so far most fruitful and widely applicable method for obtaining decidabil-

ity results and decision procedures for fragments of HS not reducible to point-

based logics has been the method of semantic tableau, often combined with a

(bounded) pseudo-model property. The method of semantic tableau consists in

developing sound, complete, and terminating procedures for tableau-based search

of a finite, satisfying the input formula “pseudo-model”. Pseudo-models are ab-

stract finite Hintikka-type structures that can be obtained from (possibly infinite)

interval structures by filtration-like constructions, specific to the fragment under

consideration, that preserve truth of formulae from that fragment, so that a formula

is satisfiable if and only if there is a pseudo-model that satisfies it.

This method has been successfully applied for instance to the fragment D, with

modality associated with the (strict) sub-interval relation, interpreted over dense

linear orderings [14, 15, 16]. In Figure 2 we illustrate a typical pseudo-model

(on the left) for the fragment D that corresponds to an interval structure (on the

right) over the ordering of the rationals Q. The irreflexive nodes of this pseudo-

model represent single intervals while the reflexive ones represent infinite clusters
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Figure 2: An example of a finite pseudo-model for D (on the left) and its corre-

sponding interval D-structure (on the right) on the ordering of the rationals Q.

(layers, or ‘cushions’) of (strict) sub-intervals satisfying the same subformulae of

the input formula.

The method is subsequently extended to the (maximal decidable) fragment

BBDDLL (and, by symmetry, EEDDLL), interpreted over Q [40, 41].

In order to establish upper complexity bounds, or sometimes even to ensure

termination of the tableau method, a bound of the size of the satisfying pseudo-

model has to be established. A method for obtaining pseudo-models of bounded

size consists in removing “redundant” points and intervals from an initial finite,

or finitely presentable (e.g. periodic) pseudo-model. Using tableau-based method

and pseudo-model size-reducing techniques, the earlier mentioned decidability

result for PNL is independently re-established and extended in [20, 21, 25], where

optimal tableau-based decision procedures for PNL and its future fragment RPNL

are developed for several different classes of orderings. More recent work extends

these decidability results to ABBL [24, 26] (and to AEEL by symmetry) and, on

finite linear orderings, to ABBA (and, by symmetry, to AEEA) [42].

4.2 Overview of undecidability methods and results

The first undecidability results for HS validity and satisfiability come from the

original work of Halpern and Shoham [34] and cover almost all interesting classes

of linearly ordered sets:

Theorem 2 ([34]). The validity problem for HS is undecidable (r.e. hard) over

any class of linear orderings that contains at least one linear ordering with an

infinite ascending or descending sequence of points.

In particular, this result applies to all natural unbounded time-flows such as N,

Z, Q, and R. The proof is by reduction from the non-halting problem for Turing

machines, involving a quite ingenious encoding of Turing machine configurations

into unbounded interval structures.

Under a natural additional assumption, Halpern and Shoham show that the

undecidability can be much worse:
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Theorem 3 ([34]). The validity in HS over any class of Dedekind complete or-

dered structures containing at least one with an infinitely ascending sequence is

Π1
1
-hard.

In particular, the validity in HS over any of the orderings of N, Z, and R

is not recursively axiomatizable. The proof is by reduction from the problem

of existence of a computation of a given non-deterministic Turing machine that

enters the initial state infinitely often to testing satisfiability in HS.

Later, Lodaya proved that the rather small fragment BE is sufficiently expres-

sive to carry out Halpern and Shoham’s idea of encoding Turing machine config-

urations and consequently, to yield undecidability [37].

More recently, a number of other HS fragments have been proved undecid-

able [8, 9, 11, 12, 28, 38, 39] by means of suitable reductions from known unde-

cidable problems. The most widely applied such reductions have been constructed

from several variants of the tiling problem: theN×N tiling problem [8], the octant

tiling problem [8, 9, 11], and the finite tiling problem [12].

In the following, we outline the idea underlying the reduction from the octant

tiling problem, which is the problem of establishing whether a given finite set of

tile types T = {t1, . . . , tk} can tile the 2nd octant of the integer plane O = {(i, j) :

i, j ∈ N ∧ 0 ≤ i ≤ j}. This problem can be easily related to interval structures

because points in O are naturally interpretable as intervals on N.

Now, the technical details. For every tile type ti ∈ T , let right(ti), le f t(ti),

up(ti), and down(ti) be the colors of the corresponding sides of ti. To solve the

problem, one must find a function f : O → T such that

right( f (n,m)) = le f t( f (n + 1,m))

and

up( f (n,m)) = down( f (n,m + 1)).

The undecidability of the tiling problem for O is proved in [6] from that of the

tiling problem for Z × Z (known to be co-r.e. complete by a reduction from the

halting problem of a Turing machine), through the tiling problem for N × N, by

application of König’s Lemma.

Given an instance of the octant tiling problem OTP(T ), where T is the finite

set of tiles types, a reduction from OTP(T ) to the satisfiability problem for a logic

L consists of the construction of a formula ΦT , parametric in T and belonging to

the language of L, such that ΦT is satisfiable if and only if T tiles O.

Let T = {t1, . . . , tk} be an arbitrary finite set of tile types. We assume the set

of atomic propositionsAP to be finite (but arbitrary) and to contain, inter alia, the

following propositional variables: u, ∗, Id, tile, t1, . . . , tk, and up_rel. The general

idea of the encoding is the following. First, for any given HS fragment L and any
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Figure 3: The encoding of the octant tiling problem: a) the cartesian representa-

tion, and b) the corresponding interval representation.

starting interval [a, b], we consider a (possibly infinite) set of intervals G[a,b] that

can be ‘reached’ by means of the modalities of L starting from [a, b]. The set

G[a,b] can be viewed as the universe of intervals on which we work. Then, we

exploit the modalities of L to define a global modal operator [G] such that [G]ϕ

holds over the interval [a, b] if and only if ϕ holds over each interval in G[a,b].

The proof is based on the following main steps:

• definition of the u-chain: we set our framework by forcing the existence

of a unique infinite chain of u-intervals (u-chain, for short) on the linear

ordering. They will be used as cells to arrange the tiling. We also have to

provide a way to step from an u-interval to its immediate successor in the

chain;

• definition of the Id-chain: the octant is encoded by means of a unique infi-

nite sequence of Id-intervals (Id-chain, for short), each of them representing

a row of the octant. An Id-interval is composed by a sequence of u-intervals;

each u-interval is used either to represent a part of the plane or to separate

two rows. In the former case it is labelled with tile, while in the latter case

it is labelled with ∗;

• encoding of the above-neighbor and right-neighbor relations, connecting

each tile in the octant with, respectively, the one immediately above it and

the one at its right, if any. The encoding of such relations must be done

in such a way that the following commutativity property holds: given any

two tile-intervals [c, d] and [e, f ], if there exists a tile-interval [d1, e1], such

that [c, d] is right-connected to [d1, e1] and [d1, e1] is above-connected to

[e, f ], then there also exists a tile-interval [d2, e2] such that [c, d] is above-

connected to [d2, e2] and [d2, e2] is right-connected to [e, f ].

A generic encoding of the octant tiling problem is depicted in Figure 3.
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a) Cartesian representation

b) Interval representation

ti, j = i-th tile of the j-th Id-interval

Idi = i-th Id-interval
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Figure 4: The above-neighbor relation encoded in the fragment AO.

The above-described framework is basically the same for all the reductions

from variants of the tiling problem. The main difference, and the main difficulty

of the reduction, comes from the very limited expressiveness of the fragment un-

der consideration (a number of minimal undecidable HS fragments featuring one

or two modalities have been identified). For each different fragment, specific tech-

nical tricks are needed, making use of additional propositional letters besides the

above-mentioned ones.

As an example, in Figure 4, we show the encoding of the above-neighbor

relation for the OTP(T ) in the HS fragment AO, whose modalities correspond to

Allen’s relations meets and overlaps [9].

Lastly, strong and rather unexpected undecidability results have been obtained

in [39] and [38] for the HS fragments BD and D, respectively, by means of a

reduction from the halting problem for two-counter automata.
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5 Metric and spatial extensions

Both interval structures and interval logics are amenable to various natural exten-

sions. In this section, we briefly discuss two of them:

1. metric interval logics, based on interval structures over linear orders en-

dowed with distance between points, and thus with a natural notion of in-

terval length, and with language extended with arithmetic constraints on

interval length;

2. spatial interval logics, extending the one-dimensional interval structures to

two- and more- dimensional spatial structures.

5.1 Metric interval temporal logics

The idea of adding metric features to point-based temporal logics has been ex-

plored in several ways, but metric extensions of purely interval-based logics have

only been developed and investigated quite recently, so far mainly on interval

structures over the natural numbers.

In [19], Bresolin et al. introduce and study a family of metric extensions of

the HS fragment A, also known as Right PNL (RPNL for short), with a special

attention to decidability and expressive completeness issues. Such a work has

been subsequently extended to the family of metric extensions of the full PNL [7,

10]. The most expressive language in that family, called Metric PNL (MPNL, for

short) features a set of special atomic propositions representing integer constraints

(equalities and inequalities) on the length of the intervals over which they are

evaluated. In [7, 10], MPNL has been proved to be decidable in 2NEXPTIME,

and EXPSPACE-hard and particularly suitable for dealing with metric constraints,

thus emerging as a viable alternative to existing logical systems for quantitative

temporal reasoning.

In [22], decidability of MPNL has been extended to the class of interval struc-

tures over finite linear orders and to Z. Moreover, an optimal decision procedure

running in EXPSPACE is provided, thus proving that the satisfiability problem for

MPNL over finite linear orders (resp., N, Z) is EXPSPACE-complete.

5.2 Spatial generalization of metric interval logics

The transfer of formalisms, techniques, and results from the temporal context to

the spatial one is quite common in computer science. However, it (almost) never

comes for free: it usually involves a blow up in complexity, that can possibly yield

undecidability.
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The main goal of spatial formal systems is to capture common-sense knowl-

edge about space and to provide a calculus of spatial information. Information

about spatial objects may concern their shape and size, the distance between them,

their topological and directional relations. Depending on the considered class of

spatial relations, we can distinguish between topological and directional spatial

reasoning. While topological relations between pairs of spatial objects (viewed as

sets of points) are preserved under translation, scaling, and rotation, directional

relations depend on the relative spatial position of the objects. A comprehensive

and up-to-date survey on topological, directional, and combined constraint sys-

tems and relations can be found in [1, 27].

In [13], Bresolin et al. investigate a two-dimensional variant of metric RPNL,

called the Directional Area Calculus (DAC). DAC allows one to reason with ba-

sic shapes, such as lines, points, and rectangles, directional relations, and (a weak

form of) areas. It features two modal operators: somewhere to the north and some-

where to the east. Moreover, by means of special atomic propositions, it makes

it possible to constrain the length of the horizontal (resp., vertical) projections

of objects. Despite its simplicity, DAC allows one to express meaningful spatial

properties. As an example, combining horizontal and vertical length constraints,

conditions like “the area of the current object is less than 4 square meters” can

be expressed in DAC. The satisfiability problem for DAC has been proved to

be decidable in 2NEXPTIME [13]. In the same paper, the authors also study a

proper fragment of DAC, called Weak DAC (WDAC), which is expressive enough

to capture meaningful qualitative and quantitative spatial properties. Decidability

of WDAC is proved by a decision procedure whose complexity is exponentially

lower than that for DAC. Optimality is an open issue for both DAC and WDAC.

6 Concluding remarks: the roads ahead

Despite the very substantial progress over the past 10 years in the research area of

interval temporal logics, the field is still very rich with interesting challenges and

unexplored paths. Here we will outline our present view of the main immediate

and long-term challenges in the field.

The main items in the current research agenda are:

• extending the expressiveness classification result for the family of frag-

ments of HS from [29] to the non-strict semantics and to the most important

classes of linear orders (e.g., finite, discrete, dense, etc.);

• obtaining a complete classification of the family of HS fragments with re-

spect to decidability/undecidability of their satisfiability problem, first on
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the class of all interval structures over linear orders, and then on the impor-

tant subclasses of it. Currently, more than 90% of these fragments have al-

ready been classified (for a summary of the current state of the classification,

see the web page https://itl.dimi.uniud.it/content/logic-hs),

but the remaining cases are expected to be the most difficult to settle;

• extending the study of metric extensions of interval logics from PNL to

other important fragments of HS, and over other important metrizable linear

orders, notably Q.

The long-term research perspectives in the field include:

• quest for automata-based techniques for proving decidability of interval log-

ics;

• development of methods and algorithms for model-checking in finitely pre-

sentable infinite interval structures, such as ultimately periodic ones.

• last but not least, identifying and developing major applications of interval

logics studied here, that would justify and reward the sustained research

investment presented here.
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