
The Distributed Computing Column

Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

This month, the Distributed Computing Column is featuring Siddhartha Jayanti,
winner of the 2023 Principles of Distributed Computing Doctoral Dissertation
Award. His thesis presented a multitude of important concurrent algorithms, in-
cluding the first scalable algorithm for concurrent union-find, algorithms for con-
current fast arrays, new abortable queue locks and recoverable queue locks, and
many more. He defined a new fundamental problem known as “generalized wake-
up,” whose hardness yields new insights on the work needed for a variety of basic
objects. And the thesis contains many more results than can be easily summarized
in this short paragraph!

This column focuses on one specific part of his thesis: verifying linearizability
in concurrent systems. It is a well-known fact that designing correct concurrent
algoroithms is incredibly di�cult and bugs are rampant. The standard technique
for proving that a concurrent data structure is correct is showing that it is lineariz-
able. Unfortunately, that too can be quite challenging! In this article, Siddhartha
Jayanti develops a new technique for proving linearizability using only “forward
reasoning” techniques: there is no need to reason about the future when analyz-
ing the data structure. This technique yields machine-verifiable proofs, and has
been applied to a variety of complex wait-free data structures, including snapshot
objects and union-find objects.

Overall, then, this column raises the exciting possibility of simple machine-
verified proofs for concurrent data structures, and a future containing more correct
concurrent data structures!

The Distributed Computing Column is particularly interested in contributions that summarize re-
cent exciting results, propose interesting new directions, or summarize important open problems
in areas of interest. If you would like to write such a column, please contact me.

Possibility Tracking:
A Simple Technique forMachine-verifying

Lock-free Data Structures

Siddhartha Jayanti
Google Research, USA

1 Introduction
The multicore revolution has ushered in an era of multiprocessor dominance in
computing, however, designing e�cient concurrent algorithms with iron-clad guar-
antees of correctness has remained notoriously hard. While a deterministic single-
process algorithm has exactly one possible run, due to asynchrony, even a t step
concurrent algorithm with just two processes has 2t possible runs depending on
how the steps of the processes interleave. When we consider algorithms with an
infinite horizon, even a deterministic concurrent algorithm has uncountably many
possible infinite runs. Designing algorithms that are correct in all of these execu-
tions is a grueling task, and programmers often fail to account for some of these
executions, leading to subtle and dangerous bugs, known as races. Races are per-
nicious, since they can easily be missed in testing but have harsh consequences
when deployed in practice. For example:

• Mars Rover: a priority inversion bug in its concurrent code crashed the
Pathfinder Rover days after its deployment on Mars and jeopardized the
entire multi-million dollar NASA space mission Jones [2013].

• Northeast Blackout of 2003: a race in the power grid’s energy manage-
ment system stalled the alarm system for an hour, by which time it was
too late to stop a cascading electrical outage that a↵ected an estimated 55
million people across eight states of the USA and the province of Ontario,
Canada Poulsen [2004].

• Therac-25: the software of the radiation therapy machine, Therac-25, suf-
fered from races that caused it to administer radiation doses that were over

0Author information: Google Research, Cambridge, MA, USA. Email: sjayanti@google.com

a hundred times as potent as the intended dose, which caused the deaths of
at least three people and several more injuries Leveson and Turner [1993];
Lim [1998].

Examples of errors in published concurrent data structures are also not left
wanting Colvin and Groves [2005]; Doherty [2003]. These illustrations show just
how fatal the consequences can be when multiprocessor code is incorrect, and
point to the critical need for concurrent algorithms to be furnished with rigorous,
machine-verified guarantees of correctness.

1.1 Which algorithms require rigorous, machine-verified guar-
antees of correctness?

Two foremost guiding principles in the design of software technology are modu-
larity and top-down design. Together, these principles state that larger applications
should be broken down into smaller well-specified components, i.e., methods, data
structures, and simpler algorithms, and that these modular components should be
developed independently and made e�cient so they can in-turn be called and used
in several high-level applications. A strength of this prevalent design strategy is
that each core modular component can be built and developed in just one place,
and the same well-built component can be used freely in a range of applications
today and even the unforeseen applications of tomorrow.

The flip-side of this advantage is a corresponding failure mode, which I term
error proliferation. Namely, if a core component, such as a data structure, has
an uncaught error, it runs the risk of being used in innumerable applications and
ultimately crashing critical systems. Even if the component was developed with a
low-risk application in mind, the principles of software design make it very easy
for the same component to later be integrated into a critical application. Thus,
all fundamental data structures and algorithms should be considered critical, and
rigorous proofs of correctness are indispensable. Since, concurrent data struc-
tures and algorithms are particularly hard to reason about, and important execu-
tion schedules and subtle races are often missed in pen-and-paper proofs about
them, machine-verified guarantees of correctness are critical for them.

In summary, emphasizing machine-certified correctness of low-level modular
components, such as data structures, enhances the reliability of several critical
high-level applications.

1.2 Concurrent data structures, linearizability, and future de-
pendence

In this column, I focus on machine-verifiable proofs of correctness for concurrent
data structures; particularly, on proving linearizability. Linearizability Herlihy
and Wing [1990] is the long-standing gold standard for concurrent data structure
correctness, and it states that data structure operations must appear to take place
atomically, i.e., instantaneously, at some point between their invocation and re-
turn, even in the face of adversarial asynchronous scheduling. The instant in time
at which an operation appears to take e↵ect is called its linearization point, and
the process is said to have linearized its operation after that point in time.

Linearizability is a powerful abstraction, since it allows for e�cient software
implementations which appear atomic even in the face of tremendous concurrency
without requiring global data structure locks—solutions include intricate imple-
mentations that use fine-grained locking and lightening-fast implementations that
are lock-free or even wait-free Herlihy [1991]. Linearizability also facilitates com-
posability: its horizontal composability property (known as locality), allows al-
gorithmists to prove individual implementations correct without worrying about
their interactions with other objects; its vertical composability property allows
implementors to replace atomic objects with linearizable implementations.

The most intuitive approach for proving linearizability is via forward reason-
ing methods, where the prover reasons about a concurrent data structure by re-
lating its behavior to that of an atomic reference object as time moves forward.
In particular, in a forward simulation proof Jonsson [1991], the prover keeps a
copy of an atomic reference object and performs an induction over the steps of
an arbitrary run of an algorithm using the implemented object, and shows that its
behavior is identical to that of the algorithm run with the atomic reference object
if the reference object performs operations at the linearization points of imple-
mented object. Forward simulation is easiest when each operation linearizes at a
particular line in the operation’s code, but this proof technique can work even if
an operation’s linearizes at di↵erent lines of code for di↵erent calls, or even if a
process’s operation can linearize at a step of another process executing a di↵erent
operation. However, forward simulation proofs are only possible when lineariza-
tion points can be determined only by looking at the past and present, i.e., for the
subclass of so called strongly linearizable objects Golab et al. [2011].

There are innumerable examples of linearizable objects however, whose lin-
earization points are future-dependent. These implementations have the surprising
characteristic that every run can be linearized, but the linearization points of oper-
ations can depend on what happens in the future. Such linearizable algorithms are
traditionally thought of as notoriously hard to machine-verify, since the intuitive
forward simulation proof technique cannot be employed on them Jayanti et al.

[2024]. In particular, as the prover inducts over the run, he cannot know when the
linearization points occur (since they are future dependent), and therefore cannot
simulate the atomic reference object transitions at the time of the linearization
points.

Over the past few decades, researchers have furnished some of these future-
dependent algorithms with machine-verified proofs using techniques including
backward simulation Jonsson [1989], prophecy variables Abadi and Lamport [1991],
partial-order maintenance Khyzha et al. [2017], and aspect-oriented proofs Hen-
zinger et al. [2013]. However, each of these techniques is either well known for
being complex and unintuitive for algorithmists, or is incomplete and thus requires
ad hoc use. Backward simulation is di�cult for algorithmists since it requires rea-
soning backwards in time Vafeiadis [2008]. Prophecy variables require predicting
the future, and are often cited as being “di�cult to use in practice” Lamport and
Merz [2022]. Partial-order maintenance is known to be incomplete Oliveira Vale
et al. [2023]; Jayanti et al. [2024]. Finally, aspect-oriented proofs require new the-
ory to develop the aspects of each data type, and thus only a handful of data types
are known to be amenable to such proofs Henzinger et al. [2013]; Dodds et al.
[2015]; Öhman and Nanevski [2022]. In particular, a simple, sound and complete
technique for proving linearizability has eluded researchers until recently.

1.3 A simple, forward reasoning proof technique for lineariz-
ability

In the remainder of this column, I describe the possibility tracking (a.k.a. track-
ing) technique for proving the linearizability of concurrent data structures Jayanti
[2022]; Jayanti et al. [2024]. This technique was originally described in my doc-
toral dissertation Jayanti [2022] and subsequently published at this year’s ACM
Symposium on Principles of Programming Languages (ACM POPL) Jayanti et al.
[2024].

Possibility tracking is universal, sound, and complete. Universality means that
tracking can be applied to any data type; soundness means that a data structure
implementation can be proved correct by tracking only if it is linearizable, and
completeness means that any linearizable implementation can be proved so using
tracking. In addition, tracking is simple and intuitive for algorithmists, since it
relies only on forward reasoning, and has been used to produce machine-verified
proofs of linearizability for future-dependent and widely-used data structures.

The foundation of our idea lies in replacing the single atomic reference object
in the forward simulation technique with a set of such atomic reference objects.
In particular, we observe that a run of an algorithm exercising a linearizable ob-
ject may have several possible linearizations. Each of these linearizations may

correspond to a di↵erent set of linearization points. While forward simulation
maintains just a single atomic reference object, which corresponds to a single pos-
sible linearization (i.e., a single possible set of linearization points); our strategy
maintains an atomic reference object corresponding to every possible lineariza-
tion. Since each atomic reference object corresponds to a possible linearization,
we call the maintained reference objects possibilities. Our proof technique tracks
these possibilites over the length of a run, so we call it possibility tracking.

Tracking has been used to give machine-verified proofs of e�cient wait-free
data structures, including Jayanti’s single-writer single-scanner snapshot Jayanti
[2005] and the Jayanti-Tarjan union-find objects Jayanti and Tarjan [2016]; Jayanti
et al. [2019]; Jayanti and Tarjan [2021], which are used in Google’s open-source
graph-mining library to enable “parallel clustering algorithms which scale to graphs
with tens of billions of edges” Google-Graph-Mining-Team [2023], are the fastest
algorithms for computing connected components of large graphs on CPUs Dhuli-
pala et al. [2020] and GPUs Hong et al. [2020], and are employed in several other
applications in machine learning Yu et al. [2023]; Wang et al. [2020]; Tseng et al.
[2021], graph analysis Shi et al. [2023]; Dhulipala et al. [2020], and program
analysis Bloemen et al. [2016].

1.4 Overview
In the remainder of this column, I will describe the tracking method, demonstrate
its use in generating a machine-verified proof with a case study of the Herlihy-
Wing queue Herlihy and Wing [1987, 1990]—which is notorious in the verifi-
cation community for its nuanced, future-dependent linearization structure Jung
et al. [2019]—and end with some concluding remarks and directions of interest.

A note on proving strong linearizability A variant of our technique, known as
Partial Possibility Tracking, is a universal, sound, and complete proof technique
for strong linearizability. In fact, our machine-verified proof of the Jayanti-Tarjan
union-find objects shows that they are not just linearizable, but strongly lineariz-
able. While I will not say more about strong linearizability in this column, I refer
the interested reader to the following reference Jayanti et al. [2024].

2 The Possibility Tracking Proof Technique for Lin-
earizability

To explain how our method works, let T be any data type, and O be an imple-
mentation of type T for a set ⇧ of processes. To verify that O is linearizable, we

augment O with an auxiliary variable P, which helps track all possible lineariza-
tions of O. In this augmented implementation, which we shall refer to as O⇤, P
is a set of possibilities. Each possibility p 2 P is a pair (�, f). In particular, we
define O⇤ such that a possibility (�, f) is in P, if and only if, there is a lineariza-
tion of the run until now which corresponds to O’s state being �, and ⇡’s state
being f (⇡), for each process ⇡ 2 ⇧. That is, for each process ⇡ 2 ⇧, f (⇡) states
whether ⇡ has an ongoing operation on O and if it does, whether that operation has
linearized and if it has, what the associated response is. More specifically, f (⇡)
holds one of three types of values—(?,?,?), (op, arg,?), or (op, arg, res)—with
the following meaning. If f (⇡) = (?,?,?), ⇡ has no ongoing operation on the
implementation O. In the other two cases, ⇡ has an ongoing operation op on O
with argument arg, i.e., ⇡ invoked op⇡(arg), but the operation has not returned
yet. Furthermore, if f (⇡) = (op, arg,?), ⇡’s operation has not yet linearized and
if f (⇡) = (op, arg, res), ⇡’s operation has linearized (i.e., has taken e↵ect) with a
response of res (but the operation has not yet returned to the caller).

We initialize P to the singleton set {(�0, f0)}, where �0 is the initial state of O
and, for all ⇡ 2 ⇧, f0(⇡) = (?,?,?), to reflect that there are no ongoing operations
on O, initially. Whenever any process ⇡ executes a step, the set P is updated using
the following simple rules:

1. Update on operation invocation: If ⇡ calls a method on O to invoke an oper-
ation op(arg), each possibility (�, f) 2 P is updated from f (⇡) = (?,?,?)
to f (⇡) = (op, arg,?), to reflect that op(arg) is invoked, but has not yet
linearized.

Notationally, we denote this transformation to the set of possibilities by
Invoke(P, ⇡, op, arg).

2. Update on operation return: If ⇡ returns from a method by executing a ‘re-
turn r’ statement, for each possibility (�, f) 2 P, if f (⇡) = (op, arg,?) or
if f (⇡) = (op, arg, res) and res , r, then (�, f) is removed from P; on the
other hand, if f (⇡) = (op, arg, res) and res = r, then f (⇡) is updated to
(?,?,?). The removal in the former case ensures that those atomic config-
urations that do not reflect what happens in the actual execution are filtered
out. The update to (?,?,?) in the latter case reflects that ⇡ no longer has
an ongoing operation.

Notationally, we denote this transformation to the set of possibilities by
Filter(P, ⇡, r).

3. Update on any step: When ⇡ executes any step of a method, P is updated
to reflect the possibility that any subset of unlinearized ongoing operations
may now linearize in any order. Accordingly, suppose that (�, f) 2 P before

⇡ takes the step, k is any non-negative integer, ⇡1, ⇡2, . . . , ⇡k are distinct
processes, f (⇡1), f (⇡2), . . . , f (⇡k) = (op1, arg1,?), (op2, arg2,?),
. . . , (opk, argk,?). Furthermore, suppose that, by the specification of the
data type T of O, r1, r2, . . . , rk are the responses if the operations

op1(arg1), op2(arg2), . . . , opk(argk)

are applied in that order, starting from state �, and �0 is the state after all
operations are applied. Then, after the step, (�0, f 0) appears in P, where f 0

is the same as f except that

f 0(⇡1), f 0(⇡2), . . . , f 0(⇡k) = (op1, arg1, r1), (op2, arg2, r2), . . . , (opk, argk, rk) .

Notationally, we denote this transformation to the set of possibilities by
Evolve(P).

A key observation is that at any time t, the set P contains an atomic config-
uration (�, f) if and only if (�, f) is consistent with some legal linearization up
to time t. Intuitively, the “only-if” part of the observation is ensured by the sec-
ond rule which removes a possibility from P as soon as there is evidence that
the atomic configuration is not consistent with a legal linearization of the history.
The “if” part is ensured by the third rule which adds to P all possibilities that are
consistent with legal linearizations of the history.

Our main theorem is an immediate consequence of the above observation, and
it states that any algorithm run on implementation O⇤ satisfies the invariant P , ?
if and only if the implementation O is linearizable. Equivalently, since the gen-
erator algorithmA (see Figure 1) exercises an object implementation to produce
all of its possible behaviors by repeatedly making idle processes call arbitrary
operations, we see that O is linearizable if and only if P , ? is an invariant of
A(O⇤).

Each process ⇡ 2 ⇧ is assigned the program main⇡().

program main⇡()
a: while (true):
b: choose (op, arg) 2 {(o, a) | o 2 T .OP, a 2 T .ARGo}

and execute O.op⇡(arg)

Figure 1: Generator algorithm A(O) for a set of processes ⇧, which generates
all behaviors of an implemented object O of type T .

Theorem 2.1. Let O be an implementation of an object of type T initialized to
state �0 for a set of processes ⇧, O is linearizable if and only if P , ? is an
invariant ofA(O⇤).

The theorem gives rise to the possibility tracking verification technique: to
verify that an implementation O is linearizable, augment it with the auxiliary vari-
able P to derive O⇤ as described, and verify that P , ? is an invariant of A(O⇤).
If P , ? is an invariant of A(O⇤), then the theorem implies O is a linearizable
implementation of T and, conversely, if O is a linearizable implementation of T ,
then the theorem implies that P , ? is an invariant ofA(O⇤). Hence, the method
is sound and complete. Since the method applies regardless of the data type of the
implemented object, it is universal.

3 Case Study: proving the Herlihy-Wing queue
To demonstrate the proof process, I describe our case study of proving the Herlihy-
Wing queue Herlihy and Wing [1987, 1990]. I will present the queue implementa-
tion in the next subsection, and then explain how we obtained a machine-verified
proof of its correctness using possibility tracking.

I chose the Herlihy-Wing queue as the case study, since the algorithm is both
short and well known, yet it is notorious in the verification community for being
di�cult to prove because of its nuanced, future-dependent linearization structure
Jung et al. [2019].

Since the Herlihy-Wing queue is nuanced, it is intellectually challenging for a
prover to wrap his head around why the algorithm is linearizable. Developing intu-
ition for why the algorithm is linearizable is an inherent part of the proof process,
and no proof technique, including possibility tracking can help fully overcome
that. Once a prover has understood the intuition for why the queue is lineariz-
able however, possibility tracking makes it easy to translate the intuition into a
linearizability proof—even a machine-verified proof; all the prover needs to do is
to encode his understanding as a simple algorithmic invariant. That is what I hope
to demonstrate to the reader through this case study.

3.1 The Herlihy-Wing Queue Implementation
The Herlihy-Wing queue (see Figure 2) maintains an infinite array of slots, i.e.,
A[0, 1, 2, . . .], which are initially all empty, containing the value ?. The shared
counter X stores the value of the next empty slot in A, initially 0. To Enqueue an
element v⇡, process ⇡ atomically fetches and increments X (Line 1) to claim the
next available slot i⇡ for its enqueue, and simply places its element in the claimed
slot, thereby filling that slot with its element (Line 2) and returns ack (Line 3). To
Dequeue, process ⇡ reads the value `⇡ of the counter X (Line 4), which stores the
number of claimed slots, and loops through each index j⇡ of the array A from 0 to
l⇡ � 1, checking each slot A[j⇡] and grabbing the element in the slot if the slot is

non-empty (Line 5). If ⇡ successfully grabs an element, then it returns it (Line 6).
Otherwise, if it reaches the end of the loop, ⇡ simply tries again.

Note that a dequeue operation only ever returns with an element; that is, it
keeps running indefinitely if the queue is empty.

Base Objects:
• X is a read/F&Inc register initialized to 0.
• A[0, 1, 2, . . .] is an infinite array, where for each i 2 N, A[i] is initialized

to ?.

procedure O.Enqueue⇡(v⇡)
1: i⇡ F&Inc(X)
2: A[i⇡] v⇡
3: return ack

procedure O.Dequeue⇡()
4: `⇡ X
5: if `⇡ = 0 then goto 4 else j⇡ 0

x⇡ Swap(A[j⇡],?)
if x⇡ = ? then

if j⇡ = `⇡ � 1 then goto 4
else { j⇡ j⇡ + 1; goto 5}

6: return x⇡

Figure 2: Herlihy-Wing queue implementation Herlihy and Wing [1990]. Each
numbered line in this implementation O has at most one shared memory instruc-
tion, and is performed atomically. The operation F&Inc(var) is the atomic fetch-
and-increment operation, which returns the current value of var and increments
it by one. The operation S wap(var, new) is the atomic swap operation, which
returns the current value of var and updates its value to new.

Since each enqueue claims a unique slot, and the slots are claimed in order,
at first glance, it is tempting to think that the abstract state of the queue will be
a tuple of elements order as in the array A. However, this is not the case, since
there can be an arbitrary delay between the time an enqueue claims its slot on
Line 1 to the time that it actually fills the slot with its element at Line 2. In
particular, dequeuers that are looping through the array will go past slots that have
been claimed but have not yet been filled, so elements in slots with higher indices
can be grabbed before those in lower indices. Furthermore, since dequeuers can
be poised at various di↵erent parts of the array (i.e, can have di↵erent j values),
having looped past slots that had been claimed but not yet filled, the order in which
elements are dequeued depends heavily on the order in which processes take steps,
thus making the linearization of enqueues highly future-dependent. This future-
dependence makes the Herlihy-Wing queue notoriously di�cult to prove.

3.2 Proving the linearizability of the Herlihy-Wing queue
To show that the implementationO is linearizable via the possibility tracking tech-
nique, we must show that the statement IL ⌘ (P , ?) is an invariant of A(O⇤),
where O⇤ is the possibility tracker presented in Figure 3. We will prove IL’s in-
variance by induction over the length of an arbitrary run. IL holds in the initial
configuration by the tracker definition, so the base case is straightforward. IL’s
validity in subsequent configurations however, relies not only on its validity in the
current configuration, but also on the design of the algorithm, i.e., other invariants
of the algorithm that capture the states of the various program variables. Thus,
in order to go through with the induction, we must strengthen IL to a stronger
invariant I that meets two conditions: (a) I is inductive and (b) I implies IL.

For most proofs, identifying the strengthened inductive invariant I is the real
intellectual challenge. Once the correct I is identified, its actual proof by induc-
tion tends to be elementary. The statement of the inductive I for the Herlihy-Wing
queue is presented in Figure 4. Since IL is a conjunct of I, proving I’s invari-
ance immediately implies IL’s invariance, and thus that the Herlihy-Wing queue
is linearizable.

Understanding the Inductive Invariant

The invariant may appear long, but a closer examination reveals that almost all of
the conjuncts—all but IP—are fairly elementary. IT states that slots that are yet
to be claimed remain empty. IU states that di↵erent enqueuing processes claim
di↵erent slots in the array. I2 states that a claimed slot remains empty before the
process that claims it fills it. I2,3 states that an enqueuer’s claimed slot will have
an index between 0 and X. Finally, I5 states that the loop-index j⇡ will always lie
in the loop-interval [0, `⇡) and that the upper loop boundary `⇡ will never exceed
X.

Our core insight about the algorithm is IP, which identifies a set of possibili-
ties P that must be in the set of tracked possibilities P. The identification of this
subset P of “interesting” possibilities is thus the key to understanding why the
Herlihy-Wing queue is linearizable. To elucidate this core insight, I explain the
definition of P below. Before explaining P, I will explain some preliminaries.

A key insight about the linearization structure of the Herlihy-Wing queue is
that while Enqueue operations can linearize at several places in the interval of time
between when they grab their slot to when they fill it, a Dequeue operation can
always be thought of as linearizing at the moment that it successfully grabs the
element that it will return.

Helpful to defining the set of interesting possibilities P, is the function val,
which maps array indices in N to their corresponding values. Formally, given an

Base Objects:
• X is a read/F&Inc register initialized to 1.
• A[0, 1, 2, . . .] is an infinite read/write/Swap array, where each A[i] is ini-

tialized to ?.
• P initialized to {(�0, f0)} is a meta-configuration, where �0 is the empty

sequence, and f0 maps each process ⇡ 2 ⇧ to (?,?,?).

procedure O⇤.Enqueue⇡(v⇡)
P Invoke(P, ⇡,Enqueue, v⇡)

1: i⇡ F&Inc(X)
P Evolve(P)

2: A[i⇡] v⇡
P Evolve(P)

3: return ack
P Filter(P, ⇡, ack)

procedure O⇤.Dequeue⇡()
P Invoke(P, ⇡,Dequeue,?)

4: `⇡ X
P Evolve(P)

5: if `⇡ = 0 then goto 4 else j⇡ 0
x⇡ Swap(A[j⇡],?)
if x⇡ = ? then

if j⇡ = `⇡ � 1 then goto 4
else { j⇡ j⇡ + 1; goto 5}

P Evolve(P)
6: return x⇡

P Filter(P, ⇡, x⇡)

Figure 3: Tracker O⇤ for the queue implementation O for processes ⇧ presented
in Figure 2

index i, val(i) is defined as: the value of A[i] if A[i] is non-empty, the value of v⇡
if ⇡ has claimed index i, but is yet to fill it, and ? otherwise.

To understand the definition of P, we ask ourselves the question: What are the
possible states of the queue at any point in time? We break this question into two
parts: understanding which elements are in the queue, and understanding what
order they are in.

Firstly, it is clear that the elements in the queue must be of the form val(i)
for some indices i. Thus, the set of elements in the queue must be {val(i) | i 2
I, val(i) , ?} for some subset of indices I 2 [0, X). Since Enqueue operations
linearize by the time they fill their claimed slot, elements that have been placed in
the array but have not yet been grabbed must be in the queue, thus A[i] , ? =)
i 2 I. Elements corresponding to slots that have been claimed but not yet filled
may or may not be in the queue, since the corresponding Enqueue operation may
or may not have linearized.

After choosing a possible subset of indices I, we get to the what order ↵ 2
Perm(I) the corresponding elements val(i)i2I occupy in the queue state. This is
where we make the most incisive insight. We observe that for a given permutation

↵, there is a possibility p with state p.� = val(↵1), . . . , val(↵|↵|) if ↵ is a Justi f ied
permutation. Here, we define the predicate Justi f ied(↵) to hold if and only if:
for every two indices ↵m,↵n 2 I that appear at the mth and nth position of the
permutation ↵, where m < n: either ↵m < ↵n—i.e., the indices are not inverted in
the permutation order—or if they are inverted and the former slot A[↵n] is filled,
then there must be a dequeing process ⇡ that has checked past the smaller index ↵n

(i.e., ↵n < j⇡) in its checking-loop whose upper index `⇡ exceeds the larger index
↵m. In mathematical notation:

Justi f ied(↵) , 8m, n 2 [1, |↵|] : (↵m < ↵n) _ (A[↵n] , ?
=)

9⇡ 2 ⇧ : pc⇡ = 5 ^ ↵n < j⇡ ^ ↵m < `⇡)

Finally, since I is the set of indices corresponding to Enqueue operations that
have linearized, we know that any pending enequeuers that have linearized are
exactly those whose claimed location’s indices appear in I. Likewise, since we
know that all Dequeue operations linearize at the last iteration of Line 5, we know
that a pending dequeuer ⇡ has linearized if and only if pc⇡ = 6. Putting all of
these insights together yields the definition of the set of interesting possibilities P,
as defined in Figure 4.

The invariant IP simply states that this set of interesting possibilities P is non-
empty and indeed contained in the set of possibilities P.

Machine-verified proof

With the strengthened invariant I in hand, the actual induction proof is quite me-
chanical, making it a perfect fit to be checked and certified by a machine. The
proof of the induction step has six cases, one for each line of the implementation,
and it comprehensively justifies why each of the invariant conjuncts holds after an
arbitrary process ⇡whose program counter currently points to a line l executes that
line of code. Our inductive proof of I is an invariant of A(O⇤) has been checked
by the TLA+ Proof System (TLAPS) Jayanti et al. [2023b].

4 Related Work
The Linearizability correctness condition for concurrent shared-memory data struc-
tures was introduced in a landmark paper by Herlihy and Wing in 1990 Herlihy
and Wing [1990]. In the ensuing three decades, a tremendous amount of research
has focused on proving linearizability, using various di↵erent methods, includ-
ing: refinements Lamport [1983], forward simulation Jonsson [1991], backward

I ⌘ IL ^ IP ^ IT ^ IU ^ I2 ^ I2,3 ^ I5

In this expression, the various conjuncts on the right hand side are defined below.

• IL ⌘ P , ?

• IP ⌘ P ✓ P ^ P , ?

• IT ⌘ 8i 2 N : i � X =) A[i] = ?

• IU ⌘ 8⇡, ⇡0 2 ⇧ : ⇡ , ⇡0 ^ pc⇡, pc⇡0 2 {2, 3} =) i⇡ , i⇡0

• I2 ⌘ 8⇡ 2 ⇧ : pc⇡ = 2 =) A[i⇡] = ?

• I2,3 ⌘ 8⇡ 2 ⇧ : pc⇡ 2 {2, 3} =) 0  i⇡ < X

• I5 ⌘ 8⇡ 2 ⇧ : pc⇡ = 5 =) 0  j⇡ < `⇡  X

• 8i 2 N : val(i) ,

8>>>>><
>>>>>:

A[i], if A[i] , ?
v⇡, if 9⇡ 2 ⇧ : pc⇡ = 2 ^ i⇡ = i
? otherwise

• Justi f ied(↵) ,
8m, n 2 [1, |↵|] : (↵m < ↵n) _ (A[↵n] , ?
=)

9⇡ 2 ⇧ : pc⇡ = 5 ^ ↵n < j⇡ ^ ↵m < `⇡)

• P ,

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

p

�������������������������������

9I ✓ [0, X),9↵ 2 Perm(I) :
8i 2 I : val(i) , ? ^
8i 2 [0, X), A[i] , ? =) i 2 I ^
Justi f ied(↵) ^
p.� = val(↵1), . . . , val(↵|↵|) ^
8⇡ 2 ⇧ :

pc⇡ 2 {1, 2, 3} =) p. f (⇡).op = Enqueue ^ p. f (⇡).arg = v⇡
pc⇡ 2 {4, 5, 6} =) p. f (⇡).op = Dequeue ^ p. f (⇡).arg = ?
pc⇡ = 3 _ (pc⇡ = 2 ^ i⇡ 2 I) =) p. f (⇡).res = ack ^
pc⇡ = 6 =) p. f (⇡).res = v⇡ ^
pc⇡ < {3, 6} =) p. f (⇡).res = ?

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

Figure 4: Invariant I of A(O⇤), where O⇤ is the implementation of the queue
tracker in Figure 3.

simulation Jonsson [1989], forward-backward simulation Lynch and Vaandrager
[1995], history and prophecy variables Owicki and Gries [1976]; Abadi and Lam-
port [1991], aspect-oriented proofs Henzinger et al. [2013], partial-order mainte-
nance Khyzha et al. [2017], and the use of several proof-logics such as interval
temporal logic Schellhorn et al. [2011], separation logic Jung et al. [2019], and
category theory based methods Oliveira Vale et al. [2023]. The various techniques
di↵er in range of applicability, mechanization, simplicity of use, scope for modu-
larity and several other quantitative and qualitative metrics. The full body of work
is too large to cover in a related work section like this one, but I make an attempt
to cover some central ideas here. Several of the well-established techniques are
mentioned in Dongol and Derrick’s survey paper Dongol and Derrick [2014].

A significant portion of linearizability proofs are simulation proofs. A simula-
tion proof incrementally relates the behavior of an implementation to the behavior
of an abstract specification: a forward simulation does so in the natural direction
of execution, while a backward simulation does so in the reverse direction. For-
ward simulation involves only forward reasoning and is thereby among the most
intuitive methods for proving linearizability. Traditionally, forward simulation
has been used to prove the linearizability of data structures with fixed lineariza-
tion points Abdulla et al. [2017]; Vafeiadis [2009]; Amit et al. [2007]. Schell-
horn et al. proved that backward simulation is a universal, sound, and complete
proof technique for linearizability verification Schellhorn et al. [2014], and gave a
mechanized proof in KIV Reif et al. [1998] of the correctness of the Herlihy-Wing
queue, which is notorious for its future-dependent linearization points. Backward
simulation, however, is not a silver bullet. Backward simulation proofs are fa-
mously complex and are generally unintuitive to algorithm designers since they
require reasoning about the execution of the algorithm in reverse Vafeiadis [2008];
Dongol and Derrick [2014]; Khyzha et al. [2017]. The simulation techniques
can also be combined in a forward-backward simulation Lynch and Vaandrager
[1995]; Colvin et al. proved the linearizability of Heller et al.’s concurrent list-
based set implementation using this technique Colvin et al. [2006]; Heller et al.
[2006]; their proof is verified by the PVS proof system.

Some recent works extend forward simulation like techniques to produce pen-
and-paper proofs of linearizability of more complex data structures through the
use of “commitment points”. In particular, Khyzha et al. give a proof technique
that maintains a partial order over operations, such that all total orders that respect
the partial order are valid linearizations Khyzha et al. [2017]. This maintenance
of a partial order allows them to be more tolerant to future-dependence than tra-
ditional forward simulation methods which maintain a single total order. In par-
ticular, as the future unfolds, the technique makes the partial order stricter at com-
mitment points to eliminate total orders that are no longer linearizable. Khyzha et
al. give pen-and-paper proofs for the Herlihy-Wing queue, time-stamped queue,

and an optimistic set. Bouajjani et al. similarly extend forward simulation tech-
niques to show some queues with fixed linearization points for dequeue and some
stack data structures can be proved using forward simulation like methods using
commitment points and partial orders Bouajjani et al. [2017]. These authors pro-
vide pen-and-paper proofs for the Herlihy-Wing queue and a time-stamped stack
data structure. Both these works extend the scope of forward reasoning methods
beyond data structures with fixed linearization points. However, the commitment
points method with a partial order is not complete Oliveira Vale et al. [2023];
Jayanti et al. [2024].

An alternative to simulation based proofs are proofs using history and prophecy
variables. History variables, a.k.a. auxiliary variables, remember the past Owicki
and Gries [1976], while prophecy variables foresee/predict the future Abadi and
Lamport [1991]. Lynch notes that arguments using history variables alone are akin
to forward simulation arguments, while those using prophecy variables alone are
akin to backward simulation arguments, and those using a combination of history
and prophecy variables are akin to forward-backward simulation arguments Lynch
and Vaandrager [1995]. Similarly to backward simulation, prophecy variables also
su↵er from being “di�cult to use in practice” Lamport and Merz [2022]. In the
context of our paper, the most related work that uses these variables is the Ph.D.
thesis of Vafeiadis Vafeiadis [2008]. In particular, he presents a technique that
annotates algorithms with single assignment variables, and stores linearization in-
formation into the single-assignment variables with the aid of prophecy variables
to help in resolve future-dependent linearization points. He uses the technique to
obtain machine-verified proofs of a stack, list, RDCSS (restricted double-compare
single-swap Harris et al. [2002]), and MCAS (multiword compare-and-swap).
This technique however, is restricted to a class of lock-free algorithms that lin-
earize at CAS operations and another class of read-only methods.

Introduced by Henzinger et al. in 2013, aspect-oriented proofs are non-simulation
based techniques that exploit the semantics of particular data types in order to re-
duce proofs of linearizability to proofs of simpler properties called aspects Hen-
zinger et al. [2013]. The technique is inherently non-universal however, requiring
new theory to be developed about the aspects that need to be proved about each
data type. Henzinger et al.’s original paper develops the theory for queues, and
Chakraborty et al. produced a machine-verified proof of the Herlihy-Wing queue
using this method Chakraborty et al. [2015]. The technique was later extended for
stacks by Dodds et al. [2015]. Recently, the technique has been extended to snap-
shot objects by Öhman et al. who have also used it to prove several of Jayanti’s
snapshot algorithms Jayanti [2005]; Öhman and Nanevski [2022].

Researchers have also explored several specific-purpose program logics for
proving linearizability Vafeiadis et al. [2006]; Schellhorn et al. [2011]; Jung et al.
[2019]; Oliveira Vale et al. [2023]. Jung et al., in particular, have machine-verified

the linearizability of the Herlihy-Wing queue using the Iris framework for sepa-
ration logic in Coq Jung et al. [2018]. None of these techniques are known to be
complete.

In context, our tracking technique is, to our knowledge, the only forward rea-
soning method to achieve universality, soundness, and completeness.

5 Conclusion and Remarks
In this ongoing era of the multicore revolution, concurrent algorithms are playing
a pivotal role in critical systems. The human mind struggles to tackle the com-
plexities of asynchrony, so traditional pen-and-paper proofs—which often gloss
over cases or try to capture the high-level at the cost of missing fine details—are
often insu�cient to fully convince ourselves that key concurrent algorithms are
race-free. The lack of rigorous correctness guarantees of concurrent code have
often contributed to the failures of consequential systems, such as the Mars Rover
failure, the Northeast Blackout of 2003, and the Therac-2 tragedies. All of this ev-
idence points to the importance of machine-verifying concurrent data structures,
the key building blocks of concurrent and parallel algorithms.

While a simple, universal, and complete technique for proving the correctness
of concurrent data structures has eluded researchers for decades, recent work has
broken this barrier. In this column, I explained the possibility tracking technique
for proving the linearizability of concurrent data structures, and have demon-
strated the technique’s e�cacy by presenting the machine-verified proof of the
notriously challenging Herlihy-Wing queue. The technique has also been used
to machine-verify e�cient and widely used data structures, including Jayanti’s
single-writer single-scanner snapshot object, and the Jayanti-Tarjan union-find ob-
jects. Collectively, these verified algorithms are noted for their complexity, speed,
and wide-spread use.

My principle motivation in writing this column is to share my excitement
for machine-verification and attaining reliable guarantees of correctness for dis-
tributed algorithms. I look forward to machine-verifiying many more algorithms
myself, but am also hoping to see machine-verification of algorithms become
more mainstream across the distributed computing community.

Due to the inherent complexity of concurrent algorithms, I believe that ma-
chine verification can play an even wider role in providing robust, trusted guar-
antees. My collaborators and I are extending the possibility tracking technique
to incorporate other variants of linearizability, such as strict linearizability Aguil-
era and Frølund [2003], durable linearizability Izraelevitz et al. [2016], and re-
coverable linearizability Berryhill et al. [2015]; Jayanti et al. [2023a]. We are
also designing techniques to verify liveness properties, such as lock- and wait-

freedom, and properties of mutual exclusion locks, such as starvation-freedom
and first-come-first-served fairness. Finally, we are developing techniques to pro-
duce machine-verified proofs of time complexity guarantees of multiprocess al-
gorithms.

While linearizability and its variants have become the gold standard for data
structure correctness, there are several algorithms both in the literature and in
applications that satisfy weaker consistency guarantees, such as sequential and
causal consistency. To my knowledge, universal and complete techniques for
these data structures are still wanting, and it would be great to see progress on
these important directions.

Acknowledgements
I would like to thank my collaborators on the possibility tracking verification
work, particularly, Prasad Jayanti and Ugur Yavuz.

References
M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical

Computer Science, 82(2):253–284, 1991. ISSN 0304-3975.

P. A. Abdulla, F. Haziza, L. Holík, B. Jonsson, and A. Rezine. An integrated
specification and verification technique for highly concurrent data structures.
International Journal on Software Tools for Technology Transfer, 19(5):549–
563, Oct 2017. ISSN 1433-2787.

M. K. Aguilera and S. Frølund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, Hewlett-Packard Labs, 2003.

D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison under
abstraction for verifying linearizability. In W. Damm and H. Hermanns, edi-
tors, Computer Aided Verification, 19th International Conference, CAV 2007,
Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture Notes
in Computer Science, pages 477–490. Springer, 2007.

R. Berryhill, W. M. Golab, and M. Tripunitara. Robust shared objects for non-
volatile main memory. In E. Anceaume, C. Cachin, and M. G. Potop-Butucaru,
editors, 19th International Conference on Principles of Distributed Systems,
OPODIS 2015, December 14-17, 2015, Rennes, France, volume 46 of LIPIcs,
pages 20:1–20:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

V. Bloemen, A. Laarman, and J. van de Pol. Multi-core on-the-fly SCC decom-
position. In Proceedings of the 21st ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’16, page to appear, 2016.

A. Bouajjani, M. Emmi, C. Enea, and S. O. Mutluergil. Proving linearizability
using forward simulations. In Computer Aided Verification: 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II 30, pages 542–563. Springer, 2017.

S. Chakraborty, T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented
linearizability proofs. Logical Methods in Computer Science, Volume 11, Issue
1, Apr. 2015.

R. Colvin and L. Groves. Formal verification of an array-based nonblocking
queue. In 10th International Conference on Engineering of Complex Computer
Systems (ICECCS 2005), 16-20 June 2005, Shanghai, China, pages 507–516.
IEEE Computer Society, 2005.

R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification of a lazy
concurrent list-based set algorithm. In T. Ball and R. B. Jones, editors, Com-
puter Aided Verification, 18th International Conference, CAV 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes
in Computer Science, pages 475–488. Springer, 2006.

L. Dhulipala, C. Hong, and J. Shun. ConnectIt: A framework for static and incre-
mental parallel graph connectivity algorithms, 2020.

M. Dodds, A. Haas, and C. M. Kirsch. A scalable, correct time-stamped stack.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’15, page 233–246, New York,
NY, USA, 2015. Association for Computing Machinery.

S. Doherty. Modelling and verifying non-blocking algorithms that use dynami-
cally allocated memory. In Victoria University of Wellington, 2003.

B. Dongol and J. Derrick. Verifying linearizability: A comparative survey. CoRR,
abs/1410.6268, 2014.

W. M. Golab, L. Higham, and P. Woelfel. Linearizable implementations do not
su�ce for randomized distributed computation. In L. Fortnow and S. P. Vadhan,
editors, Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 373–382. ACM, 2011.

Google-Graph-Mining-Team. Google graph-mining. https://github.com/
google/graph-mining, 2023.

T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap
operation. In Proceedings of the 16th International Conference on Distributed
Computing, DISC ’02, pages 265–279, London, UK, UK, 2002. Springer-
Verlag.

S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit. A
lazy concurrent list-based set algorithm. In J. H. Anderson, G. Prencipe, and
R. Wattenhofer, editors, Principles of Distributed Systems, pages 3–16, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented linearizability
proofs. In P. R. D’Argenio and H. Melgratti, editors, CONCUR 2013 – Con-
currency Theory, pages 242–256, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):
124–149, January 1991. ISSN 0164-0925.

M. Herlihy and J. M. Wing. Axioms for concurrent objects. In Conference Record
of the Fourteenth Annual ACM Symposium on Principles of Programming Lan-
guages, Munich, Germany, January 21-23, 1987, pages 13–26. ACM Press,
1987.

M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.
ISSN 0164-0925.

C. Hong, L. Dhulipala, and J. Shun. Exploring the design space of static and in-
cremental graph connectivity algorithms on GPUs. Proceedings of the ACM In-
ternational Conference on Parallel Architectures and Compilation Techniques,
September 2020.

J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent memory
objects under a full-system-crash failure model. In C. Gavoille and D. Ilcinkas,
editors, Distributed Computing - 30th International Symposium, DISC 2016,
Paris, France, September 27-29, 2016. Proceedings, volume 9888 of Lecture
Notes in Computer Science, pages 313–327. Springer, 2016.

P. Jayanti. An optimal multi-writer snapshot algorithm. In H. N. Gabow and
R. Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory

https://github.com/google/graph-mining
https://github.com/google/graph-mining

of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 723–732. ACM,
2005.

P. Jayanti, S. Jayanti, and S. Jayanti. Durable algorithms for writable LL/SC and
CAS with dynamic joining. In R. Oshman, editor, 37th International Sympo-
sium on Distributed Computing (DISC 2023), volume 281 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 25:1–25:20, Dagstuhl, Ger-
many, 2023a. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

P. Jayanti, S. Jayanti, U. Y. Yavuz, and L. Hernandez Videa. Artifact for "A
Universal, Sound, and Complete Forward Reasoning Technique for Machine-
Verified Proofs of Linearizability", POPL 2024, Oct. 2023b.

P. Jayanti, S. Jayanti, U. Yavuz, and L. Hernandez. A universal, sound, and com-
plete forward reasoning technique for machine-verified proofs of linearizability.
Proc. ACM Program. Lang., 8(POPL), jan 2024. doi: 10.1145/3632924. URL
https://doi.org/10.1145/3632924.

S. Jayanti, R. E. Tarjan, and E. Boix-Adserà. Randomized concurrent set union
and generalized wake-up. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC ’19, page 187–196, New York,
NY, USA, 2019. Association for Computing Machinery.

S. V. Jayanti. Simple, Fast, Scalable, and Reliable Multiprocessor Algorithms.
PhD thesis, Massachusetts Institute of Technology (MIT), Department of Elec-
trical Engineering and Computer Science, November 2022. Code available at:
https://github.com/visveswara/machine-certified-linearizability.

S. V. Jayanti and R. E. Tarjan. A randomized concurrent algorithm for disjoint
set union. In Proceedings of the 2016 ACM Symposium on Principles of Dis-
tributed Computing, PODC ’16, pages 75–82, New York, NY, USA, 2016.
ACM.

S. V. Jayanti and R. E. Tarjan. Concurrent disjoint set union. Distributed Comput.,
34(6):413–436, 2021.

M. Jones. What really happened to the software on the Mars
Pathfinder spacecraft? https://www.rapitasystems.com/blog/
what-really-happened-software-mars-pathfinder-spacecraft,
July 2013.

B. Jonsson. On decomposing and refining specifications of distributed systems. In
J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Stepwise Refine-
ment of Distributed Systems, Models, Formalisms, Correctness, REX Workshop,

https://doi.org/10.1145/3632924
https://www.rapitasystems.com/blog/what-really-happened-software-mars-pathfinder-spacecraft
https://www.rapitasystems.com/blog/what-really-happened-software-mars-pathfinder-spacecraft

Mook, The Netherlands, May 29 - June 2, 1989, Proceedings, volume 430 of
Lecture Notes in Computer Science, pages 361–385. Springer, 1989.

B. Jonsson. Simulations between specifications of distributed systems. In J. C. M.
Baeten and J. F. Groote, editors, CONCUR ’91, 2nd International Conference
on Concurrency Theory, Amsterdam, The Netherlands, August 26-29, 1991,
Proceedings, volume 527 of Lecture Notes in Computer Science, pages 346–
360. Springer, 1991.

R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer. Iris
from the ground up: A modular foundation for higher-order concurrent separa-
tion logic. Journal of Functional Programming, 28:e20, 2018.

R. Jung, R. Lepigre, G. Parthasarathy, M. Rapoport, A. Timany, D. Dreyer, and
B. Jacobs. The future is ours: Prophecy variables in separation logic. Proc.
ACM Program. Lang., 4(POPL), Dec. 2019.

A. Khyzha, M. Dodds, A. Gotsman, and M. Parkinson. Proving linearizability
using partial orders. In Programming Languages and Systems: 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-
den, April 22–29, 2017, Proceedings 26, pages 639–667. Springer, 2017.

L. Lamport. Specifying concurrent program modules. ACM Trans. Program.
Lang. Syst., 5(2):190–222, 1983.

L. Lamport and S. Merz. Prophecy made simple. ACM Trans. Program. Lang.
Syst., 44(2):6:1–6:27, 2022.

N. Leveson and C. Turner. An investigation of the Therac-25 accidents. Computer,
1993.

J. Lim. An engineering disaster: Therac-25, 1998.

N. A. Lynch and F. W. Vaandrager. Forward and backward simulations: I. untimed
systems. Inf. Comput., 121(2):214–233, 1995.

J. Öhman and A. Nanevski. Visibility reasoning for concurrent snapshot algo-
rithms. Proc. ACM Program. Lang., 6(POPL), Jan. 2022.

A. Oliveira Vale, Z. Shao, and Y. Chen. A compositional theory of linearizability.
Proc. ACM Program. Lang., 7(POPL), Jan. 2023.

S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I.
Acta Informatica, 6:319–340, 1976.

K. Poulsen. Software bug contributed to blackout. SecurityFocus, 2004.

W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifications and
interactive proofs with KIV. Automated Deduction—A Basis for Applications:
Volume II: Systems and Implementation Techniques, pages 13–39, 1998.

G. Schellhorn, B. Tofan, G. Ernst, and W. Reif. Interleaved programs and rely-
guarantee reasoning with ITL. In C. Combi, M. Leucker, and F. Wolter, editors,
Eighteenth International Symposium on Temporal Representation and Reason-
ing, TIME 2011, Lübeck , Germany, September 12-14, 2011, pages 99–106.
IEEE, 2011.

G. Schellhorn, J. Derrick, and H. Wehrheim. A sound and complete proof tech-
nique for linearizability of concurrent data structures. ACM Trans. Comput.
Logic, 15(4), September 2014.

J. Shi, L. Dhulipala, and J. Shun. Parallel algorithms for hierarchical nucleus
decomposition, 2023.

T. Tseng, L. Dhulipala, and J. Shun. Parallel index-based structural graph clus-
tering and its approximation. In G. Li, Z. Li, S. Idreos, and D. Srivastava, edi-
tors, SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, pages 1851–1864. ACM, 2021. doi: 10.1145/
3448016.3457278. URL https://doi.org/10.1145/3448016.3457278.

V. Vafeiadis. Modular fine-grained concurrency verification. Technical Re-
port UCAM-CL-TR-726, University of Cambridge, Computer Laboratory, July
2008.

V. Vafeiadis. Shape-value abstraction for verifying linearizability. In N. D. Jones
and M. Müller-Olm, editors, Verification, Model Checking, and Abstract Inter-
pretation, 10th International Conference, VMCAI 2009, Savannah, GA, USA,
January 18-20, 2009. Proceedings, volume 5403 of Lecture Notes in Computer
Science, pages 335–348. Springer, 2009.

V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-
concurrent linearisable objects. In Proceedings of the Eleventh ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’06,
page 129–136, New York, NY, USA, 2006. Association for Computing Ma-
chinery.

Y. Wang, Y. Gu, and J. Shun. Theoretically-e�cient and practical parallel DB-
SCAN. In D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q. Ngo,
editors, Proceedings of the 2020 International Conference on Management of

https://doi.org/10.1145/3448016.3457278

Data, SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020, pages 2555–2571. ACM, 2020. doi: 10.1145/3318464.
3380582. URL https://doi.org/10.1145/3318464.3380582.

S. Yu, J. Engels, Y. Huang, and J. Shun. Pecann: Parallel e�cient clustering with
graph-based approximate nearest neighbor search, 2023.

https://doi.org/10.1145/3318464.3380582

