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Abstract

In this paper we examine the use of “mini” transactions. An implementation
of mini-transactions supports small sequences of memory accesses as atomic
transactions (perhaps 1–4 accesses). When building a shared memory data
structure using mini transactions, the programmer must either stay within
the limits of a single mini transaction, or split the operation across a series
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of mini transactions. Mini transactions therefore provide a greater degree
of atomicity than single-word compare and swap (CAS), but they do not
provide the full features of a general-purpose transactional memory (TM).
We illustrate how hashtables and skip lists can be built over the SpecTM
API for mini transactions. We discuss the advantages and disadvantages
of the SpecTM API over a general-purpose TM. To address some of these
limitations, we discuss techniques for integrating SpecTM with a general-
purpose STM.

1 Introduction

In this paper we examine the use of “mini” transactions to implement shared-
memory hashtables and skip lists. In this approach, an operation on a data struc-
ture is split across a series of short transactions, rather than using a single trans-
action encompassing the entire operation. There are several reasons for studying
the use of mini transactions:

First, practical implementations of hardware transactional memory
(HTM [17]) limit the size of transactions. Some proposals, such as AMD
ASF [5], provide a guarantee that a transaction that follows various programming
rules will be able to commit eventually if it accesses only 1–4 locations. Recent
HTM implementations do not provide such a guarantee [7, 22]. However,
irrespective of whether or not a guarantee is given, it is likely that shorter
transactions will be more likely to commit than longer ones.

The second reason for studying mini transactions is that, in recent work, we
showed that implementations of data structures using mini transactions can per-
form well [10]. We showed how parts of the implementation could be special-
ized in cases such as transactions that access a small fixed number of locations.
Our preliminary results suggested that data structures built using this system were
much faster and more scalable than those built using a general-purpose STM sys-
tem (we used one based on SwissTM [9] and the STM described by Spear et
al. [25]).

Finally, Attiya showed recently that, under various assumptions, a series of
short transactions can be more efficient than a single long transaction [1]. At-
tiya’s work derived lower bounds on the operations that need to be performed
by an STM implementation, given assumptions about the progress-properties and
safety-properties that the STM should satisfy.

In Section 2 we review the SpecTM API and describe, in outline, the imple-
mentation techniques that we use. We designed the SpecTM API to let us stream-
line much of a traditional STM system’s book-keeping—the result is an API that
is more cumbersome to use than a general-purpose STM, but which still provides
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// Transaction management operations
void Tx_Start(TX_RECORD *t);
void Tx_Abort(TX_RECORD *t);
bool Tx_Commit(TX_RECORD *t);
bool Tx_Validate(TX_RECORD *t);

// Data access operations
Ptr Tx_Read(TX_RECORD *t, Ptr *addr);
void Tx_Write(TX_RECORD *t, Ptr *addr, Ptr val);

Figure 1: A traditional STM interface (pseudo-code).

the key abstraction of multi-word atomic memory accesses.
In Sections 3–4 we illustrate the use of SpecTM in practice in implementing a

hashtable and a skip list. We take an informal approach in this paper. We aim to
illustrate the use of SpecTM through examples, but we do not attempt to quantify
exactly how much easier SpecTM is to use than single-word CAS, or exactly
how much more difficult SpecTM is to use than a general-purpose TM. Based on
these examples, we discuss the difficulties that we have encountered in using the
SpecTM API (Section 5).

In Section 6 we discuss how SpecTM can be integrated with general-purpose
TM. An advantage of such integration is that SpecTM can be used to accelerate
the common cases in a data structure’s implementation. General-purpose TM can
be used as a fall-back for cases whose performance is not critical, or for cases
which appear impractical to split into mini transactions. The main challenge is
integrating the conflict detection algorithms used in different TM systems—some
techniques from existing software-hardware hybrid TM systems can be applied.

2 Programming Models
Figure 1 sketches the kind of interface typically exposed by general-purpose STM
systems. There are operations to start transactions, abort transactions, and to com-
mit them. If Tx_Commit returns true then we say that the transaction has “suc-
ceeded”, and its effects appear to take place atomically at some point during its
execution. Otherwise, Tx_Commit returns false, we say that the transaction has
“failed”, and the transaction’s effects are not made visible to other threads. There
is a validation operation to detect whether or not a transaction has already experi-
enced a conflict. There are operations to read a memory location, and to update a
memory location with a new value. (For brevity we focus on an interface in which
all of the locations read and written contain pointers.)

Note that, throughout the paper, we study implementations that provide only
weak isolation [3], meaning that there is no conflict detection between transac-
tional and non-transactional memory accesses. This is sufficient to implement
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programming models that distinguish between transactional and non-transaction
locations (e.g., STM-Haskell [14]). Alternative programming models are often
proposed, such as ones that allow privatization idioms. Existing mechanisms
could be used to support such models over the basic systems we describe here
(Harris et al. survey many techniques [15]).

Although TM interfaces such as Figure 1 are widespread, they can be seen as
one option in a broader set of alternative abstractions for writing atomic operations
on shared memory. One possible characterization of these abstractions is in terms
of the following properties:

• Size—Are operations of unbounded size permitted, or is there a maximum
size? General-purpose TM is unbounded, as are multi-word compare-and-
swap operations (CASN). “Strong” LL/SC is unbounded. A CAS operation
has a bound of 1. Practical implementations of LL/SC have a bound of 1.
DCAS has a bound of 2.

• Dynamic access—Can the locations to access be selected dynamically: i.e.,
selecting the next location to access based on the values seen in previous
locations. Recent STM systems support dynamic accesses. CAS, DCAS,
and CASN, support only static accesses—that is, the entire set of locations
to access is supplied as a parameter to the operation. Shavit and Touitou’s
original STM supported only static accesses [24].

• Inconsistency hidden—Does the programmer have to consider the possi-
bility of seeing a mutually inconsistent view of a set of locations? Alter-
natively, does the abstraction provide a property such as opacity [12] or
TMS1 [8] that precludes this? HTM designs typically hide inconsistency.
Many STM designs do, whereas others do not. The question does not arise
with many CAS, DCAS, and CASN abstractions which provide only a suc-
cess/failure response, rather than a snapshot of the locations accessed.

• Fallback required—Can the programmer use the abstraction without need-
ing to write alternative code using a different abstraction? Best-effort HTM
systems do not guarantee that any transaction will ever commit successfully
(even if the transaction is short and does not experience contention). Conse-
quently, an alternative code path is needed—e.g., based on locking, or based
on STM. Typical STM systems do not need a fallback code path.

Figure 2 compares the properties of various practical implementations of pro-
gramming abstractions along these axes. Concretely, for HTM, we consider a
best-effort system. Note that, the size in this table is listed as unbounded (because
the API does not prevent unbounded-size transactions from being written), but a
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Best-effort
CAS DCAS CASN STM HTM SpecTM

Size 1 2 n n n 4
Dynamic access n/a Static Static Dynamic Dynamic Dynamic

Inconsistency hidden n/a n/a n/a Usually Yes No
Fallback required No No No No Yes No

Figure 2: Comparison of typical implementations of different abstractions.

fallback is required because a best-effort implementation is not required to be able
to run any specific size of transaction successfully. Figure 2 also characterizes the
behavior of our SpecTM system for writing mini transactions.

Unlike general-purpose STM, SpecTM supports only a limited number of
memory accesses within a single transaction (4, in the current implementation).
Unlike CASN, it provides a dynamic interface.

Unlike many STM implementations, SpecTM exposes inconsistent views of
memory to the programmer. To prevent possible problems that could result
from execution with inconsistent reads, SpecTM includes functions that allow
the programmer to explicitly check for the inconsistencies if needed. Further-
more, some implementation strategies, such as write-locking on reads in short
read-write transactions, might guarantee consistency of reads for subsets of the
SpecTM API [10].

Unlike best-effort HTM, or bounded-sized HTM, a program using SpecTM
does not require a fallback path.

2.1 SpecTM
Our earlier paper expands on the rationale for designing SpecTM, and for provid-
ing this combination of features [10]. In outline, the overriding goal is to help
us build high-performance implementations on current multi-socket multi-core
shared-memory machines. Figure 3 shows the current SpecTM API:

Transactionally-managed locations are held in TmPtr structures. Section 2.2
discusses how different SpecTM implementations use different concrete repre-
sentations for a TmPtr. However, from the programmer’s viewpoint, a TmPtr
encapsulates a pointer-typed value.

The Tx_Single_* functions perform transactions that access a single loca-
tion: either read, write, or compare-and-swap. These accesses synchronize cor-
rectly with concurrent SpecTM transactions. Using a separate interface for these
operations allows the implementation to optimize this frequent special case (e.g.,
avoiding initializing a transaction record).

The Tx_RW_R* operations are used for transactions that read from a series
of locations, and then write new values to them all. Tx_RW_R1 starts a trans-
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// Single read/write/CAS transactions:
Ptr Tx_Single_Read(TmPtr *addr);
void Tx_Single_Write(TmPtr *addr, Ptr newVal);
Ptr Tx_Single_CAS(TmPtr *addr, Ptr oldVal, Ptr newVal);

// Read-write short transactions:
Ptr Tx_RW_R1(TX_RECORD *t, TmPtr *addr_1);
Ptr Tx_RW_R2(TX_RECORD *t, TmPtr *addr_2);
...
bool Tx_RW_1_Is_Valid(TX_RECORD *t);
bool Tx_RW_2_Is_Valid(TX_RECORD *t);
...
void Tx_RW_1_Commit(TX_RECORD *t, Ptr val1);
void Tx_RW_2_Commit(TX_RECORD *t,

Ptr val_1, Ptr val_2);
...
void Tx_RW_1_Abort(TX_RECORD *t);
void Tx_RW_2_Abort(TX_RECORD *t);
...
// Read-only short transactions:
Ptr Tx_RO_R1(TX_RECORD *t, TmPtr *addr_1);
Ptr Tx_RO_R2(TX_RECORD *t, TmPtr *addr_2);
...
bool Tx_RO_1_Is_Valid(TX_RECORD *t);
bool Tx_RO_2_Is_Valid(TX_RECORD *t);
...
void Tx_RO_1_Abort(TX_RECORD *t);
void Tx_RO_2_Abort(TX_RECORD *t);
...
// Commit combined read-only & read-write transactions:
bool Tx_RO_1_RW_1_Commit(TX_RECORD *t, Ptr val1);
bool Tx_RO_1_RW_2_Commit(TX_RECORD *t,

Ptr val_1, Ptr val_2);
...
// Upgrade a location from RO to RW:
bool Tx_Upgrade_RO_1_To_RW_2(TX_RECORD *t);
...

Figure 3: SpecTM API for short transactions (pseudo-code).

action, and performs its first read. Tx_RW_R2 performs its second read, and
so on. Using explicit sequence numbers on the operations avoids the need for
the SpecTM implementation to track the current size of the read-write set. The
Tx_RW_*_Is_Valid functions validate a transaction that has performed the speci-
fied number of reads. The Tx_RW_*_Commit functions commit such a transaction,
taking the new values to store at each of the locations accessed (e.g., taking 2 val-
ues in a 2-word transaction). This API forces all of a transaction’s writes to be
deferred until its commit point (allowing the implementation to be streamlined
because a read does not need to consult a log of preceding writes).

The Tx_RO_* operations manage read-only transactions, in a similar manner
to read-write transactions. A single transaction may mix the Tx_RO_* operations
for the locations that it only reads, and the Tx_RW_* operations for the locations
that it both reads and writes. The two sets of locations must be disjoint. A set
of commit functions with names such as Tx_RO_x_RW_y_Commit is provided to
commit these transactions: x refers to the number of locations read, and y to the
number of locations written. As with the Tx_RW_*_Commit functions, the values



86 86

86 86

BEATCS no 107 THE EATCS COLUMNS

78

to write are supplied to the commit operation.
Finally, if a transaction wishes to “upgrade” a location from read-only access

to read-write access, then the function Tx_Upgrade_RO_x_To_RW_y function in-
dicates that index x amongst the transaction’s existing reads has been upgraded
to form index y in its writes—x may be any of the locations read previously, and
y must be the next write index. Aside from locations that are upgraded, each
Tx_RW_R* call and Tx_RO_R* call must access a distinct address.

To illustrate the use of these operations, a double-compare single-swap opera-
tion can be implemented as follows:

bool DCSS(TmPtr *a1, TmPtr *a2,
Ptr o1, Ptr o2, Ptr n1) {

TX_RECORD t;
restart:
if (Tx_RO_R1(&t, a1) == o1 &&

Tx_RO_R2(&t, a2) == o2 &&
Tx_Upgrade_RO_1_To_RW_1(&t)) {

if (Tx_RO_2_RW_1_Commit(&t, n1)) return true;
} else if (Tx_RO_2_Is_Valid(&t)) return false;
goto restart;

}

The DCSS function reads from the two locations supplied (a1, a2). If the values
match those expected (o1, o2), then the first access is upgraded to a read-write
access, and the new value (n1) written during commit. The transaction is repeated
until either the commit succeeds, or a valid mismatch is seen.

2.2 SpecTM Implementations
We have built three variants of SpecTM. They each implement the interface in
Figure 3, but they differ in how a TmPtr is represented:

SpecTM-ORec. SpecTM-ORec follows the design of many general-purpose
STMs in using a table of “ownership records” (ORecs) to hold the meta-data used
by the STM system. A hash function maps heap addresses onto slots in a fixed-
sized table of ORecs. This approach allows the STM’s meta-data to be kept com-
pletely separate from the application’s data. A TmPtr contains simply an ordinary
pointer: the application’s data structures do not need to be modified. A downside
of this approach is that each transactional load will touch two cache lines: one
to load the data, and a second to load the meta-data. Figure 4(a) illustrates this
structure.

SpecTM-TVar. SpecTM-TVar follows the approach of STM-Haskell [14] by
limiting the pointers passed to the STM functions to be references to specific
“TVar” structures. Each TmPtr is a two-word TVar, holding a piece of STM meta-
data alongside the piece of application data that it manages. With care, this allows



87 87

87 87

The Bulletin of the EATCS

79

Application data Ownership record table

W1

W2

W3

W4

...

Version / Owner L

Version / Owner L

...

(a) SpecTM-ORec: Meta-data held in a table of
ownership records (ORecs), indexed by a hash function.

W1 Version / Owner L

W2 Version / Owner L

W3 Version / Owner L

W4 Version / Owner L

TVars, incorporating application data and STM meta-data

(b) SpecTM-TVar: Meta-data co-located
with application data in TVars.

W1

W2

W3

W4

Combining lock-bits with application data

L

L

L

L

(c) SpecTM-LB: One lock bit of meta-data
held in each data item.

Figure 4: Organization of STM meta-data in variants of SpecTM.

both words to be held on the same cache-line. However, it requires that an appli-
cation’s data structure be changed to accommodate the extra words. Figure 4(b)
illustrates this scheme.

SpecTM-LB. SpecTM-LB reduces the meta-data used by the STM down to a
single “lock bit” held in the same memory word as the application data that it
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controls1. A TmPtr is a single word, within which this lock bit is held as the LSB.
Figure 4(c) illustrates this structure. Using a single lock bit, in place of a TVar or
ORec, reduces the memory consumption of the system.

However, in order for an algorithm using SpecTM-LB to be correct, the pro-
grammer must be careful about the structure of the transactions that are used: (i) at
most one “normal” location can be accessed by Tx_RO_* operations, (ii) any num-
ber of locations can be accessed via Tx_RW_* operations, and (iii) any number of
additional read-only locations can be accessed by Tx_RO_* operations provided
that these locations satisfy a “non-repeated value” property (NRV).

In order to satisfy NRV, the program must ensure that any particular value
v is stored into a each location x at most once between the start and end of
any transaction. This might be satisfied if v contains a sequence number that is
incremented on each store to x (and is large enough to prevent wrapping), or if v
is a pointer to a dynamically allocated object that is placed in a data structure, and
then de-allocated using a mechanism such as those of Michael [21] and Herlihy et
al. [16]. (Forms of NRV property have been used to support multi-word atomic
snapshot algorithms, and to avoid A-B-A problems in lock-free algorithms. We
use the name NRV from Lev and Moir [19].)

Our earlier paper [10] examines the performance of these different implementa-
tions of SpecTM. For the data structures we have studied, SpecTM-LB performs
best, then SpecTM-TVar, then SpecTM-ORec. We believe this primarily reflects
the decreasing storage requirements, with SpecTM-LB requiring the least stor-
age, and requiring the fewest cache lines to be accessed. Conversely, SpecTM-LB
places the greatest burden on the programmer by requiring the programmer to
ensure that the NRV property is satisfied.

In the next two sections we illustrate the use of SpecTM to implement a
hashtable and a skip list (Sections 3–4). These two designs are both correct with
all of the SpecTM implementations, including SpecTM-LB. Then, in Section 5
we discuss some of the limitations of programming using SpecTM. In Section 6
we discuss how some of these limitations can be overcome by integrating SpecTM
with an general-purpose STM system.

3 Hashtable
In this section we illustrate the use of SpecTM to build a hash table. For brevity,
we simplify the data structure to store only integer values and to provide search,
insert, and delete operations. We also omit memory-management code from

1Note that the SpecTM-LB implementation is called “version-free” or “value-based” in our
earlier paper [10].
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the pseudo-code—many conventional techniques are available, as discussed in our
earlier paper [10].

The overall approach is based on Fraser’s design [11]. We assume a fixed size
array of buckets, each of which is the head of a singly linked list of elements. One
value is stored in each element. The lists can be of unbounded size. Consequently,
depending on the loading of the hash table, we cannot rely on using a single
SpecTM transaction to traverse an entire list.

Figure 5 provides pseudo-code. The hash table is implemented as an array of
TmPtrs (line 3) that point to the sorted lists of nodes (line 5). Each node stores
a single integer value and the TmPtr to the next node in the list. The hash table
code internally uses an iterator that stores the address of the pointer to the current
node and the address of the current node during the iteration (line 9).

We structure each list using the “mark bit” technique [13]. With this tech-
nique, we reserve a bit within the “next” pointer of each node in the list, and
if this bit is set then the node itself is considered to have been deleted from the
lists. Comparing the SpecTM implementation of the hash table with Fraser’s orig-
inal lock-free design, the main benefit from using SpecTM is in the handling of
deletions. SpecTM lets us simplify deletion by using a 2-word transaction to
atomically (i) mark a node as deleted, and (ii) unlink the node from the list. This
atomicity avoids the need for concurrent traversals of the list to consider nodes
that have been marked as deleted, but not yet excised from the list. In more detail:

The main internal function of the hashtable is the function for searching for a
node with a specified value (line 14). The search function is invoked by all three
public hashtable functions. The arguments of the function are used to pass the
identifier of the node that is being searched for and the reference of the iterator
used to return the position of the node. The search first locates the bucket the
element belongs to and stores the address of the bucket list head into the iterator
(line 15). Next, it traverses the bucket list by following the forward pointers of
the nodes in the list (line 17). While traversing the list, the search does not need
to consider marked nodes (line 18). The search can only access a marked node
if it already held the reference to the node before the node was marked because
the node gets marked and removed in the same transaction. This means that it is
safe to just read through the marked pointers as they can only be marked by the
concurrent remove operation. The traversal of the list stops when either the end of
the list is reached or the element with the higher or equal value is found (line 19).

To check whether the hash table contains a particular value (line 25) it is
enough to search for the value (line 27). If the search stops before reaching the end
of the list and the element has the value that is being looked for then the function
returns true. Otherwise, the element is not in the hash table and it returns false.
There is no need to check whether the node returned by the search is marked or
not. If the node is marked and the lookup returns true it simply means that it is
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1 const int BUCKETS = 1024;
2 struct Hashtable {
3 TmPtr buckets[BUCKETS];
4 };
5 struct Node {
6 int id;
7 TmPtr next;
8 };
9 struct Iterator {

10 TmPtr *prev;
11 Ptr curr;
12 };
13
14 void Search(Hashtable *htable, int id, Iterator *it) {
15 it->prev = GetBucket(htable, id);
16 while(true) {
17 it->curr = Tx_Single_Read(it->prev);
18 it->curr = Unmark(it->curr);
19 if(it->curr == NULL || it->curr->id >= id) {
20 break;
21 }
22 it->prev = &(it->curr->next);
23 }
24 }
25 bool Contains(Hashtable *htable, int id) {
26 Iterator it;
27 Search(htable, id, &it);
28 return (it.curr != NULL && it.curr->id == id);
29 }
30 bool Add(Hashtable *htable, Node *node) {
31 Iterator it;
32 retry:
33 Search(htable, data->id, &it);
34 if(it.curr != NULL && it.curr->id == node->id) {
35 return false;
36 }
37 TmPtrWrite(&(node->next), it.curr);
38 if(Tx_Single_CAS(it.prev, it.curr, node) != it.curr) {
39 goto retry;
40 }
41 return true;
42 }
43 bool Remove(Hashtable *htable, int id) {
44 Iterator it;
45 TX_RECORD t;
46 retry:
47 Search(htable, id, &it);
48 if(it.curr == NULL || it.curr->id != id) {
49 return false;
50 }
51 retry_tx:
52 Ptr prevNext = Tx_RW_R1(&t, it.prev);
53 if(prevNext != it.curr) {
54 Tx_RW_1_Abort(&t);
55 goto retry;
56 }
57 TmPtr *nextPtr = &(it.curr->next);
58 Ptr nextVal = Tx_RW_R2(&t, nextPtr);
59 if(!Tx_RW_2_Is_Valid(&t)) {
60 goto retry_tx;{
61 }
62 Tx_RW_2_Commit(&t, nextVal, Mark(nextVal));
63 return true;
64 }

Figure 5: Hashtable algorithm using SpecTM.
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linearized before the concurrent remove operation.
To add a new element (line 30), a search is first performed for the node with

the same value as the element being added (line 33). If the node with the same
value is found (line 34), the new element is not added to the hash table. If the
element is not found, the iterator points at the successor of the new element. The
next pointer of the new node is updated (line 37) and the SpecTM compare-and-
swap transaction is executed to try to link the new element into the list (line 38).
If the compare-and-swap does not succeed the whole operation is retried. There
is no need to explicitly check whether the state of the nodes where the search
stopped has changed. If it has, the compare-and-swap will fail and the operation
will be restarted.

To remove a node with a particular value (line 43), a search is first performed
to find the node to remove (line 47). If the node is not in the hash table, the remove
returns false immediately, indicating that the operation could not be performed.
If the element is found, a SpecTM transaction is executed to unlink the node that
is being removed and to mark it atomically (lines 51–62). The transaction first
re-reads the pointer to the node to remove (line 52) and checks whether it has
changed. If it has (line 53), that means that the state of the nodes has changed
since the search and the whole operation is restarted (line 55). Otherwise, the
transaction reads the next pointer of the node that is being removed (line 58). If
the transaction aborts at this point (line 59) the SpecTM transaction is restarted
(line 60). If the read is successful, then the transaction can commit the new values
of the previous and removed nodes’ next pointers (line 62).

4 Skip List
The pseudo-code of the skip list algorithm is shown in Figure 6. Each skip list
node stores an integer value, and an array of forward pointers. The array holds
one pointer for each level of the skip list the node belongs to (line 2). The skip
list is represented by a head node that points to the first node in each level of the
list (line 7). To iterate along the list, a window of pointers for all skip list levels is
used (line 10).

Similarly to the hashtable, we structure skip list using the “mark bit” tech-
nique, as in Fraser’s lock-free skip list [11]. When a node is removed from
the list, “mark bits” at all levels of the node are set, indicating that the node is
deleted. Comparing the SpecTM implementation of the skip list with Fraser’s
original lock-free design, the main benefit from using SpecTM is in the handling
of deletions. SpecTM lets us simplify deletion by using a transaction to atomi-
cally (i) mark a node as deleted, and (ii) unlink it from the list. Similarly to the
hashtable, this atomicity avoids the need for concurrent traversals of the list to
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1 const int MAX_LEVEL = 32;
2 struct Tower {
3 int id;
4 TmPtr next[MAX_LEVEL]
5 int lvl;
6 };
7 struct Skiplist {
8 Tower head;
9 };

10 struct Iterator {
11 Tower *prev[MAX_LEVEL];
12 Tower *next[MAX_LEVEL];
13 };
14
15 Tower *Skiplist::Search(int id, Iterator *it, int lvl) {
16 Tower *curr, *prev = &head;
17 while(--lvl >= 0) {
18 while(true) {
19 curr = Tx_Single_Read(&(prev->next[lvl]));
20 curr = Unmark(curr);
21 if(curr == NULL || curr->id >= id)
22 break;
23 prev = curr;
24 }
25 it->prev[lvl] = prev;
26 it->next[lvl] = curr;
27 }
28 return curr;
29 }
30 bool Skiplist::Add(Tower *data) {
31 Iterator it;
32 bool restartFlag;
33 restart:
34 int headLvl = PtrToInt(Tx_Single_Read(&head.lvl));
35 Tower *curr = Search(data->id, &it, headLvl);
36 if(curr != NULL && curr->id == id)
37 return false;
38 data->lvl = GetRandomLevel();
39 if(data->lvl == 1)
40 restartFlag = !AddLevelOne(data, &it))
41 else
42 restartFlag = !AddLevelN(data, &it);
43 if(restartFlag)
44 goto restart;
45 return true;
46 }
47 bool Skiplist::AddLevelOne(Tower *data, Iterator *it) {
48 TmPtrWrite(&(data->next[0]), it->next[0]);
49 return Tx_Single_CAS(&iter->prev[0]->next[0],
50 it->next[0], data) == it->next[0];
51 }
52 bool Skiplist::AddLevelN(Tower *data, Iterator *it) {
53 bool ret;
54 STM_START_TX(); // Using general-purpose STM
55 int headLvl = STM_READ_INT(&(head.lvl));
56 if(data->level > headLvl) {
57 STM_WRITE_INT(&(head.lvl), data->level);
58 for(int lvl = headLvl;lvl < data->level;lvl++) {
59 it->prev[lvl] = head;
60 it->next[lvl] = NULL;
61 }
62 }
63 for(int lvl = 0;lvl < data->level;lvl++) {
64 Ptr nxt = STM_READ_PTR(&win->prev[lvl]->next[lvl]);
65 if(nxt != it->next[lvl]) {
66 ret = false;
67 STM_ABORT_TX();
68 }
69 STM_WRITE_PTR(&(it->prev[lvl]->next[lvl]), data);
70 TmPtrWrite(&(data->next[lvl]), win->next[lvl]);
71 }
72 ret = true;
73 STM_END_TX();
74 return ret;
75 }

Figure 6: Skiplist implementation using SpecTM.
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consider nodes that have been marked as deleted, but not yet excised from the
list. The skip list algorithm is further simplified as the atomicity of insert and re-
move operations eliminates races between a concurrent insertion and removal of
the same node: atomicity allows a node to be inserted/deleted at all levels as a sin-
gle atomic action. In contrast, Fraser’s lock-free skip list is further complicated by
handling partially-inserted/partially-deleted nodes, and ensuring correctness when
multiple operations are in progress on the same node at the same time. In more
detail:

The function for searching the skip list (line 15) traverses the nodes by reading
their forward pointers (line 19). It starts at the highest level in the skip list, moving
successively lower whenever the level would skip over the integer being sought.
The search function ignores deleted notes (line 20). The search terminates once it
reaches the bottom level.

Adding a new node (line 30) starts with a search for the value being inserted
(line 35). The skip list does not permit duplicate elements, so false is returned
if the value is found (line 36) Otherwise, the search returns an iterator that can
be used for the insertion. The level of the new node is generated randomly, with
the probability of node being assigned a level l equal to 1

2l . The node is then
inserted atomically into all of the lists up to this level. The nodes with level one are
inserted using a short specialized transaction (lines 40) and the nodes with higher
levels are inserted using an ordinary transaction (line 42). If the insertion does
not succeed due to the concurrent changes to the skip list, the whole operation is
restarted (line 44). Otherwise, the insert succeeds and true is returned to indicate
its success.

Removals proceed in a similar manner to insertions. The node is first located
using the search function. A single transaction is used to atomically mark the node
at all levels, and to remove it from all of the lists it belongs too. Removal of nodes
at level one is performed using a short specialized transaction, and the removal of
nodes with higher levels is performed using ordinary transactions.

These insertion and removal operations typify the way we use SpecTM. The
common cases are expressed using SpecTM transactions, and less frequent cases
are expressed with more general, but slower, ordinary transactions. If develop-
ers see the need to further improve performance, they can further specialize the
implementations.

5 Limitations of SpecTM
Broadly speaking, there are two difficulties when using SpecTM. First, there is
the difficulty of writing an operation using short transactions, as opposed to us-
ing transactions of arbitrary length. This is an algorithmic problem, and we do
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not yet understand the trade-offs very well. Aspects of this problem might be
interesting to consider from a theoretical viewpoint, as well as in terms of ease-
of-programming.

Second, there is the difficulty of expressing short transactions correctly using
the SpecTM API: even if an algorithm has been decomposed correctly into a series
of short transactions, there is a risk that the more complex SpecTM API will admit
new kinds of error when writing mini transactions. The main difficulties we have
encountered are:

Sequencing. SpecTM requires operations to be invoked in the correct
sequence—e.g., Tx_RW_R1 should be called before Tx_RW_R2, and the
Tx_RW_*_Commit function that is called should match the number of data ac-
cesses that have been made. To detect sequencing bugs we need only track the
size of the transaction’s read-set and write-set, to ensure that the addresses in dif-
ferent elements in the sets are disjoint, and to check that an “upgrade” operation
is performed at most once on any location.

Note that the Tx_RO_*_Abort functions exist solely to enable this form of
sequencing check. These functions are empty in non-debug builds. However,
when debugging, they delimit the boundaries between SpecTM transactions and
their implementation resets the statistics maintained for sequence checks.

We have not yet built a tool for checking the use of the SpecTM API statically.
However, a number of aspects of the design of SpecTM should help here. First,
the correctness of a series of calls to the SpecTM API depends primarily on the
names of the function being called, and on the set of functions that have previously
been called. This means that a simple intra-procedural forwards data-flow analysis
should be sufficient for tracking most usage. Note that this tool would not check
the disjointness between the items in the read-set and write-set.

Validation. A more difficult aspect of the SpecTM API is the requirement to
include calls to the Tx_*_Is_Valid functions whenever it is necessary to ensure
that a transaction has seen a consistent view of memory. This dangers of working
with inconsistent data have been reported in many earlier STM systems [15]. In
part, these dangers led to the proposal for opacity as a correctness criteria for
transactional memory. Approaches taken in earlier systems have included implicit
validation as part of every transactional read [15], timestamp-based mechanisms
to eliminate some of these validation steps [23, 27], along with static analyses to
identify “safe” regions during which validation can be deferred [26]. For instance,
if a thread performs a series of independent reads then validation may be deferred
to the end of the sequence.

When programming using SpecTM, we rely on the programmer placing vali-
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dation calls where necessary. Unfortunately, characterizing precisely what “where
necessary” means is not straightforward. There are two broad options:

• First, we could place a very strong requirement on the part of the program-
mer, and permit all Tx_RW_* and Tx_RO_* operations to return any value.
Validation must return false if the values returned by these operations do
not represent a consistent view of memory.

This definition allows a debug build to return “spurious” values which,
in the absence of validation, are likely to lead to crashes—for instance,
pointer-typed operations could probabilistically return addresses that are not
mapped to valid memory. This definition is reminiscent of “catch fire” se-
mantics for programs with data races (as in, for instance, the C/C++ mem-
ory model [4]). An advantage of this approach is that it provides a clear
definition to the programmer of the behavior of invalid programs, and it
makes it likely that crashes in debugging implementations of SpecTM will
identify missing validation operations.

Even with this definition, a programmer using SpecTM can still optimize
the placement of validation calls. For instance, a single validation call may
be used after a series of unrelated memory reads. Validation must be per-
formed before de-referencing a pointer read from within a transaction, or
before access an address computed from a value read.

• Second, we could define the semantics of Tx_RW_* and Tx_RO_* more
strongly, and constrain exactly what they should do in the presence of
invalidity—for instance, we might require that a value that was present in
the location at some time in the past is returned, or we might require that a
value present during the current transaction is returned.

This second style of definition may allow the programmer to use slightly
fewer validation operations, and hence obtain some performance improve-
ment.

A disadvantage of this approach is that the requirements on programmers
are less clear, and it seems more difficult to build checking tools. The crux
of the problem is distinguishing between cases in which validation has been
missed accidentally, from cases where validation has been omitted delib-
erately to exploit a particularly subtle optimization. It is unclear how to
distinguish these cases without a specification of the intended higher-level
behavior of the program.

There are many plausible definitions for the behavior of reads in invalid
transactions—in contrast, the extreme approaches of “catch fire” and “opac-
ity” are both relatively straightforward.
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We currently take the “catch fire” approach, and have transactions in debug builds
probabilistically appear invalid spuriously. We are not currently aware of any
optimization opportunities that we are missing through this approach.

Non-repeating values (NRV). The final difficulty we highlight with SpecTM
is the NRV property required of some locations in transactions in SpecTM-LB.
In effect, NRV is shifting the responsibility of managing version numbers from
the STM system to the programmer using the STM. A direct way to support NRV
would be for each value to include a version number field that is incremented upon
every write. This is typical of most STM algorithms, and SpecTM-LB’s support
for general NRV locations can be seen as a mechanism to exploit other forms of
non-re-use, rather than just using a version number.

We do not currently have a good way to test that a program’s use of memory
satisfies NRV. The approaches that we have considered seem prohibitively costly,
even for use in debugging builds. For instance, one could adapt the transactional
write operations to maintain a history log for each location, and arrange that each
SpecTM-LB transaction checks for re-use of values in these logs for the locations
that it has read from. The cost of logging and checking is likely to be very high.

It might be possible to adapt this approach to perform checking
probabilistically—either in terms of whether or not to log an update, or in terms
of whether or not to perform checks at commit-time. It is not yet clear if these re-
duced checks would be sufficient to catch re-use. Equally, it is not clear if even the
full checking regime would catch re-use bugs—it relies on spotting an occurrence
of re-use, and so will not be useful for detecting problems that occur rarely. A fur-
ther alternative would be to log additional information about the synchronization
between threads, and to use this to spot “near miss” occasions of re-use, where a
program contains a re-use bug, but where this is not witnessed by a SpecTM-LB
transaction in a given run.

6 Integration with General-Purpose TM
From a pragmatic viewpoint, the main way in which we address the limitations in
Section 5 is to enable inter-operation between transactions written with SpecTM
and transactions written through a general-purpose TM interface. This reduces
the amount of code that must be written using SpecTM: the programmer can
use SpecTM to optimize performance-critical transactions, and use the general-
purpose interface for code that is more complex.

Integration between SpecTM and a general-purpose TM can be implemented
either by having both TM systems manage disjoint sets of memory locations, or
by designing mechanisms to allow the two types of transaction to access the same
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data correctly. In the former case, transactions written with SpecTM and with the
general-purpose STM can be composed in a manner similar to two-phase commit:
both transactions are first prepared for commit and, only after the prepare is suc-
cessful, they are committed together. If one of the transactions aborts, then the
other transaction gets aborted as well. In this manner the composite transaction
is also atomic. With this approach, the general-purpose transaction can benefit
from optimized implementations of data structures with SpecTM, but the data
structures cannot be implemented with a mix of specialized and general-purpose
transactions. The latter approach enables the programmer to have the specialized
and general-purpose transaction access the same data concurrently. For instance,
one could use a general-purpose transaction to re-size a hash table, while using
SpecTM transactions for the common cases of data accesses. We focus on the
latter form of inter-operability as it is more general and more interesting when
implementing concurrent data structures.

In SpecTM we use two kinds of specialization to attempt to streamline the
implementation: (i) the SpecTM API requires more work on the part of the soft-
ware using STM, in an attempt to reduce the work needed within the SpecTM
implementation, (ii) the representation of TmPtr structures in SpecTM-TVar and
SpecTM-LB attempts to reduce the space occupied by the TM meta-data.

The different TmPtr representations introduce different constraints on integra-
tion between SpecTM and a general-purpose STM. Concretely, we use a general-
purpose STM we refer to as “BaseTM”. This uses similar techniques to Swis-
sTM [9] and the STM described by Spear et al. [25].

SpecTM-ORec. Our SpecTM-ORec implementation uses the same protocol for
managing the ORecs as the BaseTM system. No additional work is required,
either on the SpecTM-ORec transactions, or on the BaseTM transactions.

SpecTM-TVar. SpecTM-TVar changes the way in which transactional data is
represented. This prevents BaseTM from being used directly on the same data:
the SpecTM transactions would be using ORecs held alongside the data in trans-
actional variables in TmPtr structures (Figure 4(b)), whereas the BaseTM trans-
actions would be using ORecs held in the usual ORec table (Figure 4(a)).

There are two main approaches for integrating SpecTM-TVar with general-
purpose transactions.

Hybrid-TM-style. The first approach is to build on earlier techniques for hy-
brid HTM/STM systems [18, 6]. In Hybrid-TM models, the HTM is used to
provide good performance, while an STM serves as a backup to handle situations
where the HTM could not execute the transaction successfully. This approach
may reduce the pressure on HTM implementations to provide features such as
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long-running transactions, or conditional blocking.
Unfortunately, many Hybrid-TM techniques are not good fits for SpecTM. The

problem is that the SpecTM-TVar transactions would be required to monitor the
BaseTM transactions for conflicts (because the BaseTM transactions are unaware
of the TVars being used by SpecTM-TVar). This additional monitoring would
harm the performance of SpecTM transactions.

One hybrid technique that is practical to use is Lev et al.’s Phased TM system
(PhTM, [20]). Instead of requiring hardware transactions to check for conflicts
with concurrent software transactions, PhTM prevents HW and SW transactions
from executing concurrently. The PhTM system maintains a counter of currently-
executing SW transactions. Every HW transaction checks this counter, and if
non-zero, the HW transaction aborts itself. Since the counter is also read inside
the HW transaction, any subsequent modifications to this counter also trigger an
abort. This approach reduces overheads for HW transactions, but it results in
increased aborts (as discussed by Baugh et al. [2]): an overflow of even a single
HW transaction aborts all other concurrently executing HW transactions.

Haskell-STM-style. An alternative to a phased-TM system is to adapt the
BaseTM interface to use TVars. Unlike SpecTM, these general-purpose trans-
actions can access an unbounded number of locations, and they do not need to
provide sequence numbers on their accesses, or to distinguish read-only locations
from read-write locations. However, as with SpecTM-TVar, all of a transaction’s
data accesses must be to locations with associated TVars. With this interface, the
meta-data used by the STM system is the same as the meta-data used by SpecTM-
TVar.

Whether or not this approach is practical will depend on the setting. It seems
most palatable when writing new data structures using transactions: it requires
the representation of the data to be able to be adapted to include TVars, and so it
would be inappropriate for existing data structures, or those which are sometimes
used inside transactions and sometimes used outside.

SpecTM-LB. SpecTM-LB uses only a single lock bit within each of the loca-
tions managed by the STM. The problem now is not that SpecTM’s meta-data is
in a different place to BaseTM’s, but that the actual format of the meta-data is
different. Again, two approaches are possible:

Phased-TM. As with SpecTM-TVar, we can use the techniques of Lev et al. to
ensure that SpecTM-LB and BaseTM transactions do not run concurrently [20].
An advantage of this approach is that the only overhead on SpecTM-LB transac-
tions is to ensure that execution is in a “SpecTM phase”. A disadvantage is that, if
even a single thread wishes to use general-purpose transactions, then all SpecTM-
LB transactions must be prevented from running, irrespective of the data that they
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are accessing.
Locked-by-Software. The intuition behind Phased-TM is that two different TM

systems can co-exist without shared conflict detection mechanisms so long as they
are separate in time. An alternative form of STM integration for SpecTM-LB is to
keep the locations managed by SpecTM separate in space from those managed by
BaseTM. That is, both kinds of STM can co-exist, so long as they are accessing
disjoint sets of locations.

If lock bits can be reserved in all transactional data, then these can be used
to control the separation between SpecTM-LB and BaseTM. If the bit is set then
either (i) the location is currently part of a current SpecTM transaction’s write set,
or (ii) the location is currently owned for writing by BaseTM. If the bit is clear,
then the location is available for reading by either kind of transaction.

This approach avoids intruding on the fast path of SpecTM-LB transactions
that run and commit without conflict—all of the locations that they encounter will
have the lock bit clear, and all of the additional work to integrate with BaseTM
will be on the existing slow-path for when the lock bit is set. Conversely, BaseTM
must ensure that it has ownership of all of the locations it is accessing by setting
the lock bit before accessing them.

The main complexity with this use of the lock bit is how to arrange for BaseTM
to release the lock bit in order to allow SpecTM-LB transactions to acquire it. Our
current design is:

• BaseTM eagerly acquires the lock bit when executing a transaction.

• BaseTM releases the lock bit only when requested by a SpecTM-LB trans-
action that wishes to access the same location.

• If a SpecTM-LB transaction finds that the lock bit is held by a BaseTM
transaction, then the thread running the SpecTM-LB transaction executes
a “dummy” BaseTM transaction on the location. The dummy transaction
synchronizes with other BaseTM transactions (ensuring no other writers
are present) before releasing the lock bit back to SpecTM-LB’s use.

This approach avoids repeated updates to the lock bit when a location is accessed
by a series of BaseTM transactions.

7 Discussion
In this paper we have discussed the design of the SpecTM interface, illustrated
its use in constructing shared memory data structures, and discussed some of
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the shortcomings of SpecTM, along with techniques for integrating the different
forms of SpecTM with general-purpose STM systems.

The limitations in Section 5 all reflect additional requirements that are placed
on the programmer when using the SpecTM API rather than when using a tradi-
tional TM API. We believe that two of these limitations are relatively straightfor-
ward for the programmer to handle: The problem of sequencing the invocation of
SpecTM operations correctly is straightforward to check dynamically, and appears
relatively amenable to static analysis. The problem of calling validation functions
correctly follows the existing problem of correctly sandboxing programs using
TM systems without opacity in languages such as C/C++. In addition, in each of
these two cases, it seems likely that straightforward testing tools could check that
a program is constructed correctly, or that a compiler could target the SpecTM
API correctly for programs whose workloads are suitable.

However, it is unclear if the additional performance benefits of exploiting the
non-repeating value property (NRV) are sufficient for the additional complexity
in using SpecTM-LB. This is the one setting in which we do not have a good
checking tool (static or dynamic), and in which there seems to be a great risk of
programmers making accidental errors in their use of SpecTM. In future work we
would like to study this problem more closely—e.g., is it possible to provide a
sufficiently expressive set of “NRV-safe” abstractions that guarantee that the NRV
property will be satisfied, and is it possible to develop checking techniques that
are sufficiently lightweight to be used in practice?

References
[1] Hagit Attiya. Invited paper: The inherent complexity of transactional memory and

what to do about it. In Distributed Computing and Networking, volume 6522 of
Lecture Notes in Computer Science, pages 1–11. 2011.

[2] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware memory protec-
tion to build a high-performance, strongly atomic hybrid transactional memory. In
ISCA ’08: Proc. 35th Annual International Symposium on Computer Architecture,
pages 115–126, June 2008.

[3] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Subtleties of transac-
tional memory atomicity semantics. Computer Architecture Letters, 5(2), November
2006.

[4] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency memory
model. In PLDI ’08: Proc. 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 68–78, June 2008.

[5] Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Mar-
tin Pohlack, Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick



101 101

101 101

The Bulletin of the EATCS

93

Marlier, and Etienne Riviere. Evaluation of AMD’s advanced synchronization facil-
ity within a complete transactional memory stack. In EuroSys ’10: Proc. 5th ACM
European Conference on Computer Systems, April 2010.

[6] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Dan Nussbaum. Hybrid transactional memory. In ASPLOS ’06: Proc. 12th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 336–346, October 2006.

[7] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience with
a commercial hardware transactional memory implementation. In ASPLOS ’09:
Proc. 14th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 157–168, March 2009.

[8] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards for-
mally specifying and verifying transactional memory. Formal Aspects of Computing,
pages 1–31, 2012.
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