THE EpucatioN CoLumMN

BY

JUrAJ HrRomkovié AND DENNIS Komm

ETH Ziirich, Switzerland and PH Graubiinden, Chur, Switzerland
juraj.hromkovic@inf.ethz.ch and dennis.komm@phgr.ch

https://inf.ethz.ch
https://phgr.ch
juraj.hromkovic@inf.ethz.ch
dennis.komm@phgr.ch

THE PROBLEM WITH DEBUGGING IN CURRENT
BLrLOCK-BASED PROGRAMMING ENVIRONMENTS

Juraj Hromkovi€ and Jacqueline Staub
Department of Computer Science, ETH Ziirich
Universititstrasse 6, 8092 Ziirich, Switzerland

{juraj.hromkovic, jacqueline.staub}@inf.ethz.ch

Abstract

Programming is a highly creative activity that cultivates problem-solving
skills, but also requires a high degree of precision. The Logo philosophy
empowers novice programmers to become successful problem solvers who
are capable of dealing with mistakes. The widespread emergence of block-
based programming languages has lead to an active prevention of certain
classes of errors while others still prevail. Rather than providing support,
most block-based interfaces, to some extent, abandon learners in the difficult
task of troubleshooting. We present a block-based programming environment
that supports autonomous troubleshooting. Programming competences are
not restricted to writing programs only. Correcting, modifying, and extending
the functionality of previously-written programs is equally important and
should not be neglected. Learning by productive failure is an unavoidable
part of education.

1 Why Debugging is Important

Programming is a creative activity that develops constructive problem-solving
skills and which finally has found its way into public school education. By pro-
gramming, students communicate with a machine and instruct it what to do. For
this purpose, they learn a programming language which essentially is a language
that the machine “understands” [20]]. Unlike humans, however, machines are not
able to interpret ambiguities or handle imprecise statements. As a consequence,
even the smallest flaws can cause a program to result in unexpected behavior or
fail entirely. Making mistakes is natural and troubleshooting is one of the most
crucial parts of a programmer’s skill set [[13].

Under the term debugging we understand a systematic process that is aimed
at finding the reason why a given program does not work as intended and fixing

the underlying cause [8]. Although the primary goal of debugging is simply to fix
bugs, we consider the path of reaching this goal equally important: while analyzing
novices’ debugging patterns, Perkins et al. [18] found that tinkering is a widespread
practice among novice debuggers. Generally, novices’ debugging process often
seems to lack systematicity [14] and especially locating errors is challenging for
inexperienced programmers [[13]]. Fostering debugging skills explicitly, on the other
hand, has shown to have a positive impact on learners’ conceptual understanding
of programming [2, 9].

The birth of the Logo programming language in 1967 marked the dawn of a
profound philosophy of debugging for educational purposes which we will subsume
under the term Logo philosophy [1,6]. Papert expressed a meta-cognitive vision
for programming education that emphasizes the need for learners to “rethink their
thinking and to learn about their own learning” [[16]]. Debugging is an essential
component of this philosophy as the following Mindstorms excerpt shows [17]:

What we see as a good program with a small bug, the child sees as
“wrong”, “bad”, “a mistake”. School teaches that errors are bad; the
last thing one wants to do is to pore over them, dwell on them, or think
about them. [...] The debugging philosophy suggests an opposite
attitude. Errors benefit us because they lead us to study what happened,
to understand what went wrong, and, through understanding, to fix
[the program]. Experience with computer programming leads children
more effectively than any other activity to “believe in” debugging.

Confronting students with problems and allowing them to fail is relevant far
beyond the scope of programming and computer science only. Van Lehn et al. [12]
provide strong evidence for delaying external support during instruction and letting
students learn by failure. This form of impasse-driven learning is associated
with concept understanding [22]]. While students are trying (and failing) to solve
unstructured problems, they build relevant mental models that can later be used
for more efficient direct instruction. This concept of productive failure has shown
clear learning benefits for students [7]].

Programming provides a good framework for students to learn by means of
the productive failure approach. Programs are sequences of commands that are
executed one after the other and thus the effect of a program can be anticipated and
planned. Programs are typically written with a clear expectation of what exactly
will happen during execution. Due to mistakes, however, reality and expectation
may diverge unexpectedly. Quite often, this outcome puzzles programmers and
leaves them with the challenging task of finding out where an error crept in.
Narrowing down the exact location of an error has proven to be especially hard for
novice programmers [13]].

Scholars have tried different measures (e.g., pedagogical interventions via
didactic methods, carefully chosen analogies, and technological tools) to support
novices’ troubleshooting and error localization throughout the past 50 years. This
article highlights some technical debugging methods and contrasts them with
today’s common practice in block-based programming. We present a block-based
programming environment that is specifically designed for novices to acquire
debugging skills by handling logical errors. We intend to raise awareness and
hope to spark more active research in the domain of debugging and block-based
programming.

2 Two Different Perspectives on Debugging

Logo not only revolutionized the domain of programming education but it also
brought forth a variety of debugging mechanisms, strategies, and tools that were
devised with the intent of fostering novice programmers’ debugging skills. With
the dawn of block-based programming, debugging practices have shifted away
from the deliberate and active exposure to errors towards a more preventive form
of error handling. In this section, we present the key attributes of both of these
perspectives and hint at their respective implications on novice programmers.

2.1 Debugging in Accordance with the Logo Philosophy

The term “Logo” characterizes not only the name of a family of programming lan-
guages but also a philosophical interpretation of how learning is best achieved [1].
This philosophy is deeply anchored in the ideas of constructivist learning by Jean
Piaget (i.e., “learning by doing”) and the constructionist visions of Seymour Papert
(i.e., “learning by making’’). Within the context of these theories, programming
simply represents a tool for learning. The Logo philosophy is based on the ra-
tionale of making students iteratively construct, analyze, and refine their own
learning artifacts. While programming, students develop creative solutions to given
problems. They learn to formally describe the resulting algorithm as a program
whose execution they can delegate to a computer. Errors can creep in at any point
during this process and students must learn to deal with unexpected results.

2.1.1 The Logo-Way of Handling Errors

Programming errors can occur in virtually all conceivable situations and the un-
derlying causes are manifold. With the Logo philosophy (or closely connected
with it), numerous debugging mechanisms have been invented with the aim of
supporting novice programmers in error handling and developing their debugging

skills. Three of these ideas (creating observable models of computation, providing
advanced error diagnostics, and integrating process-related debugging mechanisms
directly into the language) will be presented separately.

e Introducing the Turtle: An Observable Model of Computation

Programmers need to express their ideas as sequences of commands that
are subsequently interpreted and executed. Exactly how this interpretation
and execution takes place, however, verges on pure magic for most novices.
Numerous models of computation exist and some of them have been created
specifically with the intent of helping novices peek inside this magic blackbox
of program execution [3]. One of the first such models was the Logo turtle
with which programmers can draw geometric shapes onto a screen. Thanks
to the turtle’s observable behavior, errors become obvious and programmers
learn to systematically test their programs.

e Developing Advanced Error Diagnostics for Novices

As many other programming languages, Logo knows at least three different
types of errors: (i) Structural syntax errors arise due to grammatical incon-
sistencies that can be detected by the parser. (ii) Structural semantic errors
are typically detected at runtime and lead to early termination of program
execution. (ii1) Logical semantic errors are neither detected by the parser
nor at runtime and their characterizing feature is an unexpected program
behavior. Several techniques allow novice programmers to cope with such
errors more easily, from custom error messages, to in-line error highlighting,
all the way to tailor-made debuggers.

e Extending the Language with Built-In Debugging Mechanisms

Logo originally came with its own debugging vocabulary that was directly
incorporated into the language. Via the pause command, for example, the
execution of Logo programs could be interrupted at any point in time. This
allows the existing program variables and intermediate results to be examined
using an interactive mode of programming. The trace command is useful
for tracing the program flow across multiple layers of abstraction. Several of
these functionalities add to the underlying concept of Read-Eval-Print-Loop
(REPL) that Logo inherited from Lisp.

In summary, the Logo philosophy is characterized by its wide range of different
debugging mechanisms that supports troubleshooting with novice programmers.
The focus of the Logo approach is on helping learners understand and make use of
the complex and abstract concepts of automatic information processing.

Figure 1: Example of a (silently fail- Figure 2: Example of a logical error
ing) runtime error in Scratch. The in Scratch. In a decagon (polygon
result of a division by zero is mathe- with 10 corners of equal angle), each
matically undefined. angle must be 360/10 degrees.

2.2 Debugging and Block-Based Programming

After more than three decades, Logo had to slowly hand over its undisputed
monopoly to the newer type of block-based programming languages; a class of
languages that allows programmers to write programs by snapping command
blocks in a graphical user interface. Using this feature, it is possible to prevent
syntactic errors almost entirely from happening [10].

Although many block-based interfaces still contain traits of the Logo turtle,
the approach of how block-based environments handle errors is different from the
original Logo philosophy. Although certain classes of errors can be eliminated
using a block-based interface, the issue of debugging is far from resolved: besides
syntactic errors there are two more classes of errors which must be considered,
independently of whether the chosen environment uses a block- or text-based inter-
face, namely (i) logical errors and (ii) runtime errors. Both of these error classes
are semantic in nature and cannot be handled considering only the syntactical
attributes of a programming language. and [2] show two examples of such
errors in Scratch. The example on the left results in a runtime error (i.e., division
by zero is mathematically undefined) while the example on the right turns out to
be logically incorrect.

One troubleshooting strategy used by many block-based environments consists
in using “failsoft commands” which essentially result in runtime errors to be treated
like logical errors. Rather than stopping execution, as is usually the case with
runtime errors, many block-based programming environments swallow runtime
errors and resume execution without informing the user. The concept of failsoft

commands became popular with the Scratch programming environment more than
ten years ago [10]. By now, it is common practice among many well-known and
broadly-used block-based programming platforms such as Snap, Code.org., and
even Blockly. We question the usefulness of failsoft commands. Error localization
is known to be one of the hardest parts of debugging. Intentionally hiding relevant
information from users thus seems contra-productive from a debugging point of
view.

3 Our Approach

Logo was originally designed to provide a broad variety of supporting features to
facilitate error handling. This can be observed in a plethora of different mechanisms
from syntax (e.g., Logo is particularly light on syntax with a bare minimum of
syntactic elements [21]) to the role of the turtle [[17] and the question of how to
best phrase compiler error messages for beginners to understand [5, [19].

The argument for introducing block-based programming was inherently moti-
vated by error handling, too. Syntax errors were claimed to distract novices from
algorithmic aspects and for certain age ranges handling a keyboard was considered
an additional challenge by itself. For those factors, block-based programming has
proven to be a useful tool. Still, block-based programming cannot help against all
errors and dedicated mechanisms for handling runtime errors and logical errors are
still required.

XLogoOnline is a tailor-made programming environment for novice program-
mers from kindergarten to grade 6. Students at the lower end of this age range
typically are not able to read and write yet and their formal education in mathe-
matics has only just begun. In order to still allow students to dive into the world
of algorithms and programming, XLLogoOnline provides a block-based program-
ming interface for students between kindergarten and grade 4. This interface was
extended with three forms of support for troubleshooting: (i) a small command
set was chosen not to admit any runtime errors, (ii) the environment includes the
possibility for physical program execution to reduce struggles with change of per-
spective, and (ii) an exercise collection tool was developed which verifies student
solutions and reports some logical errors. These three forms of troubleshooting
will be elaborated individually.

3.1 Runtime Errors not Possible

Young children between 6 and 8 years old can learn to program despite their
challenges in reading and writing and limited formal mathematics background.
XLogoOnline provides a block-based interface which allows students to navigate a

turtle on a rectangular grid. For this purpose, students are provided with six block
commands:

1. forward moves the turtle ahead. Each of these movements is unparameter-
ized and uses an internal unit distance of 100 pixels, i.e., one grid cell.

2. back moves the turtle backwards. Each of these movements is unparameter-
ized and uses an internal unit distance of 100 pixels, i.e., one grid cell.

3. left rotates the turtle 90 degrees to the left. The rotation angle is fixed and
aligns with the underlying rectangular grid.

4. right rotates the turtle 90 degrees to the right. The rotation angle is fixed and
aligns with the underlying rectangular grid.

5. setpencolor exchanges the pen with one of six possible colors. The selection
involves a drop-down menu.

6. repeat allows any sequence of commands to be executed repeatedly. Students
choose the number of repetitions by providing a positive integer parameter.
Arithmetic operations are disallowed.

None of these six commands has the possibility to throw an unexpected runtime
exception. This means that only logical errors can still occur and must be handled
by programmers.

3.2 Physical Program Execution

One of the known logical difficulties Logo novices initially struggle with is con-
nected to the concept of perspective. All of the four movement and rotation
commands mentioned in are interpreted from the perspective of the
turtle, rather than the perspective of the programmer. This means that programmers
have to imagine themselves in the position of the turtle in order to figure out
whether to turn to the left or to the right.

This change of perspective is sometimes hardly even noticed by students,
especially if the different perspectives align (as in[Figure 3). There are, however,
also cases which are notoriously hard for young programmers due to a clash of
perspective. [Figure 4| shows such a case where the ladybug’s perspective differs
from the reader’s perspective. A clash of perspective may result in confusion
between left and right.

In order to tackle this problem, we provide not only a virtual turtle but a physical
turtle in addition as shown in This approach was originally proposed
by Papert in the early days of Logo. Back then, the turtle was usually considered

Figure 3: The change in perspective Figure 4: The ladybug’s perspective
may not be noticed as much because deviates from that of the programmer.
the ladybug’s perspective is the same As a result, the required change of
as the programmer’s perspective at perspective entails additional cogni-
the beginning. tive effort.

a physical robot instead of a virtual agent on the screen. Physical robots have
the advantage that a change of perspective comes naturally by simply changing
one’s position relative to the robot. This is something many young novices do
unconsciously and which seems to improve their performance.

3.3 Exercise Collection with Automatic Verification

Programming is a precise form of communication; in order to instruct a computer to
do something for us, we need to express ourselves in a way that is unambiguous and
instructive enough for a mindless machine to “understand”. Novice programmers
must learn to deal with this required level of precision. One way of reaching
this goal involves providing novices with age-appropriate exercises that challenge
their conceptual understanding. We have developed an exercise collection with
predefined tasks (some examples are shown in[Figures 5|to[7). Student solutions to
these tasks are automatically verified for correctness and the result is reported back
the user.

Tasks differ in terms of what students are allowed to do in their solution. Some
tasks contain fields that students are not allowed to cross. Forbidden fields may
be marked visually sometimes (e.g., while other times, their status can
only be inferred from the exercise text (e.g., [Figure). In addition to forbidden
fields, walls can be used to separate neighboring fields which would otherwise be

H A+ @
@ A 3% 3
) w H O e¢ ¥ ¢e

Figure 5: Find the straw- Figure 6: Collect all blue =~ Figure 7: Collect 18
berry without passing shapes without crossing strawberries but without

over a forbidden field. over a red field. crossing a wall.
vew [W | @] & Jabe—— 4 o wax
% : |
©” ' |

Figure 8: Students who struggle with Figure 9: Error dialog that pops up
changing perspectives benefit from whenever one of the underlying rules
executing their programs on a physi- is violated.

cal robot.

connected. One such example is shown in[Figure 7| Not respecting one of these
conditions leads to an error dialog, as shown in [Figure 9

4 Summary and Conclusion

Not only programming itself but also dealing with errors needs to be learned. Block-
based programming environments offer one-sided support that focuses mainly on
the elimination of syntactic errors. There are several error classes (e.g., runtime
errors and logical errors) that are not affected by the use of blocks and that are
oftentimes not handled in block-based programming environments. Teaching
pupils how to approach problems and making them learn from failure is of utmost

importance for pupils’ cognitive development. Whether block- or text-based, it
is crucial that learners leave school not as passive consumers of technology but
that they learn to create their own solutions and deal with errors — one of the most
natural ways of doing so consists in teaching them how to program.

References

(1]
(2]

(3]

(4]

(5]

[6]

[7]

(8]

[9]

Harold Abelson. Logo for the Apple Il Peterborough, NH: BYTE/McGraw-Hill, 1980

C.-F. Chiu and H.-Y. Huang. Guided Debugging Practices of Game Based Program-
ming for Novice Programmers. International Journal of Information and Education
Technology, 5:343-347, 01 2015.

B. du Boulay, T. O’Shea, and J. Monk. The Black Box Inside the Glass Box:
Presenting Computing Concepts to Novices. International Journal of Man-Machine
Studies, 14(3):237-249, 1981.

S. Fitzgerald, G. Lewandowski, R. McCauley, L. Murphy, B. Simon, L. Thomas, and
C. Zander. Debugging: Finding, Fixing and Flailing, a Multi-Institutional Study of
Novice Debuggers. Computer Science Education, 18(2):93-116, 2008.

M. Forster, U. Hauser, G. Serafini, and J. Staub. Autonomous Recovery from
Programming Errors Made by Primary School Children. In International Conference
on Informatics in Schools: Situation, Evolution, and Perspectives, pages 17-29.
Springer, 2018.

Juraj Hromkovic, Dennis Komm, Regula Lacher, and Jacqueline Staub. Teaching
with LOGO philosophy. In Encyclopedia of Education and Information Technologies,
Springer, 2019.

M. Kapur and K. Bielaczyc. Designing for Productive Failure. In Journal of the
Learning Sciences, 21:45-83, 12 2012.

C. Kim, J. Yuan, L. Vasconcelos, M. Shin, and R. Hill. Debugging During Block-
Based Programming. Instructional Science, 46, 10 2018.

M. J. Lee and A. J. Ko. Comparing the Effectiveness of Online Learning Approaches
on CS1 Learning Outcomes. In Proceedings of the Eleventh Annual International Con-
ference on International Computing Education Research, ICER 15, page 237-246,
New York, NY, USA, 2015. Association for Computing Machinery.

J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, and M. Resnick. Scratch: a
Sneak Preview [Education]. In Proceedings. Second International Conference on

Creating, Connecting and Collaborating through Computing, 2004., pages 104—109.
IEEE, 2004.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The Scratch Pro-
gramming Language and Environment. ACM Transactions on Computing Education
(TOCE), 10(4):1-15, 2010.

K. VanLehn, Toward a theory of impasse-driven learning. In Learning issues for
intelligent tutoring systems pages 19-41. Springer, New York, NY, 1988.

R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas, and
C. Zander. Debugging: a Review of the Literature from an Educational Perspective.
Computer Science Education, 18(2):67-92, 2008.

T. Michaeli and R. Romeike. Improving Debugging Skills in the Classroom: The
Effects of Teaching a Systematic Debugging Process. In Proceedings of the 14th
Workshop in Primary and Secondary Computing Education, WiPSCE’19, New York,
NY, USA, 2019. Association for Computing Machinery.

N. Nusen and A. Sipitakiat. Robo-Blocks: a Tangible Programming System with
Debugging for Children. In Proceedings of the 19th international conference on
computers in education. Chiang Mai, pages 1-5, 2011.

S. Papert. Teaching Children Thinking (LOGO Memo). Massachusetts Institute of
Technology, USA, 1971.

S. A. Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic books,
2020.

D. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons. Conditions of
Learning in Novice Programmers. Journal of Educational Computing Research, 2:37
—55, 1986.

C. Solomon, B. Harvey, K. Kahn, H. Lieberman, M. L. Miller, M. Minsky, A. Papert,
and B. Silverman. History of Logo. Proc. ACM Program. Lang., 4(HOPL), June
2020.

J. Staub, M. Barnett, and N. Trachsler. Programmierunterricht vom Kindergarten
bis zur Matura in einem Spiralcurriculum. Informatik Spektrum, 42(2):102 — 111,
2019-04.

Jacqueline Staub Programming in K—6: Understanding Errors and Supporting
Autonomous Learning. ETH Zurich, Thesis, 2021.

C.-Z. Yen, P.-H. Wu, and C.-F. Lin. Analysis of Experts’ and Novices’ Thinking
Process in Program Debugging. In K. C. Li, F. L. Wang, K. S. Yuen, S. K. S. Cheung,
and R. Kwan, editors, Engaging Learners Through Emerging Technologies, pages
122-134, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

	Why Debugging is Important
	Two Different Perspectives on Debugging
	Debugging in Accordance with the Logo Philosophy
	The Logo-Way of Handling Errors

	Debugging and Block-Based Programming

	Our Approach
	Runtime Errors not Possible
	Physical Program Execution
	Exercise Collection with Automatic Verification

	Summary and Conclusion

