
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch
%20juraj.hromkovic@inf.ethz.ch


Logo Environments in the Focus of Time

Jacqueline Staub
Department of Computer Science

ETH Zürich
jacqueline.staub@inf.ethz.ch

Abstract

Logo’s history dates back more than half a century; time enough for
several hundred environments to be developed which all rely on Papert’s
famous philosophy of learning. This article presents a selection of Logo
environments that shaped the domain of novice programming. Quite contrary
to the belief that Logo has gone extinct [19], this old language is currently
experiencing a new upswing with a growing number of students who make
their very first steps into the world of programming. At the end of our historic
overview, we present a contemporary Logo environment that is used by tens
of thousands of students every year and with which the old Logo legacy lives
on even today.

1 Background

Before 1967, high-level programming languages such as FORTRAN, ALGOL,
COBOL, and LISP were widely spread among professional programmers. These
languages were popular choices among experts and allowed for various interesting
applications once programmers got used to the syntactic and semantic details of
the respective language. Many of these languages were, however, known to have
an error-prone syntax that was di�cult to get used to. Lisp, for example, was both
popular for its expressiveness and notorious for its exuberant use of parentheses,
which posed a risk for compile-time errors due to mismatched parentheses. In
particular, novice programmers were prone to committing numerous errors which
signified a rather tough start into the world of programming.

Researchers at Bolt, Beranek, and Newman (BBN) including well-known
names such as Seymour Papert and Wally Feuerzeig came to the conclusion that
the programming languages used at the time were poorly suited for the needs of
beginners and that a solution to this problem could only lie in the development of

jacqueline.staub@inf.ethz.ch


a new programming language. They developed a special beginner-oriented pro-
gramming language called Logo with which it should even be possible to introduce
children to the world of programming, they claimed. This was a revolutionary
assertion considering the fact that computers of the time were nothing like what
they are today: a computer was a very large and expensive machine, and hardly
any individual could a↵ord one. The idea that computers could be an integral part
of a classroom was by no means common.

Between the late sixties and today, more than 300 Logo implementations
were implemented [11] and, together, they describe the story of how the world’s
first programming language for beginners came about and evolved over time.
An article by Solomon, Harvey, Kahn, Lieberman, Miller, Minsky, Papert, and
Silverman provides a broader view on the history of Logo [2]. The remainder of
this article presents a selection of environments that mark specific milestones in
the development of Logo. At the end of this article we present a Logo environment
that is actively used and which acts as a gateway to the world of Logo for tens of
thousands of students every year.

2 The Beginning

The first versions of Logo were all written in a time when personal computers had
not yet been invented. Instead, time-sharing systems were used, which meant that
each machine was intended to be used by multiple users simultaneously. John
McCarthy invented the first time-sharing system around 1962 at BBN [1].

Several years before, McCarthy had also designed the first version of Lisp
which had become one of the most-used languages at the time, especially for AI
purposes. So, when Feuerzeig and his team at BBN collaborated with Papert, they
thought of a language similar to Lisp (that is equally expressive), however, with
a lighter syntax (especially in terms of parentheses). The goal was to design a
language that is targeted at students of all ages, and even professionals.

One of the first Logo school projects took place at the Muzzey Junior High
School [5] where students learned to create their own word games by programming.
Listing 1 shows what such an activity might have looked like. Students were asked
to generate random sentences using word lists containing a number of adjectives,
verbs, and nouns that can be concatenated into sentences. It is important to notice
that turtle graphics was only introduced in the next version of Logo.



⌥ ⌅
1 TO NOUN
2 OUTPUT PICK [CATS DOGS MICE]
3 END
4
5 TO VERB
6 OUTPUT PICK [CHASE [PLAY WITH]]
7 END
8
9 TO ADJECTIVE

10 OUTPUT PICK [YOUNG OLD]
11 END
12
13 PRINT (SENTENCE ADJECTIVE NOUN VERB ADJECTIVE NOUN)⌃ ⇧

Listing 1: This program creates English sentences such as YOUNG DOGS CHASE
OLD CATS or YOUNG CATS PLAY WITH YOUNG MICE. The program uses
three lists which declare words belonging to either of the following three word
forms: (1) nouns, (2) verbs, (3) adjectives. The last line of code creates a sentence
that picks and concatenates words from these lists in a way that fits the structure of
English sentences. Note how this program uses the standard Logo syntax (e.g., for
procedure declarations), yet it does not produce graphical output. The first version
of Logo came without turtle graphics.

Daniel Bobrow implemented the first draft of Logo on one of BBN’s time-
sharing machines using Lisp as the host language. For simple word games, many
of Lisp’s built-in commands like FIRST and BUTFIRST (that is CAR and CDR)
proved useful and were directly o↵ered to the user through the Logo interface.
Indeed, while this first version of Logo was supposed to be a beginner-friendly
programming language for kids, it could also be used as a full-fledged Lisp dialect
which allowed everything a normal Lisp would allow as well. This was a necessary
requirement in order to design a language that could be used by the full spectrum
of users – from beginners to experts. Some later implementations stuck with the
choice to integrate an entire Lisp into their grammar, despite being hosted in other
languages. The discussion sometimes went so far as to suggest that all Logo
implementations which do not contain a full Lisp implementation are “only Logo
in name” [2]. Nowadays, such a statement is questionable since Lisp is certainly
not the only option for beginning programmers to continue with. Python has proven
to be a viable alternative to Lisp [3] and, with its turtle graphics extension, Python
allows for an elegant transition from Logo as well.

In contrast to more recent implementations of Logo that can usually be run
on many di↵erent machines and di↵erent operating systems, early versions were
produced for one specific system only. Machines like SDS 940, PDP-1, and PDP-
10 were available at BBN and were thus convenient platforms to be used in the
first three implementations of Logo. All these systems relied on a time-sharing
mechanism and could be accessed by children. For this, they used computer



terminals that were located at schools and which were connected to one of these
bigger machines at BBN.

3 Introducing the Turtle

In 1969, Solomon and Papert founded a new group at MIT (so-called Turtle Group)
that specifically focused on the development and continuation of the Logo idea.
They added the turtle as a new microworld to Logo. At the time, displays were still
rare and very expensive, and thus Papert and his colleagues strived for a “tangible”
experience. Inspired by William Grey Walter’s robots Elmer and Elsie [4], the
Turtle Group decided to build their own version of such a floor robot. Two floor
robots were crafted at MIT in the year 1970, both of which could be steered using
Logo.

Harold Abelson implemented the first display turtles as a virtual counterpart
of floor robots. In later implementations the support for physical floor robots was
completely omitted since most schools did not have any robots at hand. Only in
1987 was the potential of floor robots rediscovered thanks to a collaboration with
Lego in LEGO TC Logo for the Apple II.

Between 1973 and 1976, Perlman proposed an approach to make even preschool-
ers learn to program [6]. Still, one commonality between all these di↵erent ap-
proaches (robots, screen turtles, and tangible programming interfaces) was that
children interacted with a terminal that was linked to a central computing in-
stance located at MIT. The machine at the university would then execute all given
commands in a time-shared way.

4 A Shift Towards Microcomputers

With the advent of microcomputers around 1980, Logo experienced a rise in
popularity and coverage. Over the next 40 years, several hundred di↵erent Logo
implementations were invented. The first such implementation on a microcomputer
was Pascal Logo in the year 1977. Among others, Texas Instruments had started to
work on home computers which were considerably cheaper than the previously-
used mainframe computers that could usually only be a↵orded by larger companies
and universities. Cecil Howard Green, the founder of Texas Instruments, was
planning to create a new generation of home computers (the TI 99/4) that was also
supposed to be shipped to schools. For this purpose, he wanted Logo to be part of
the system.

The TI 99/4 was a machine that came with its own individual sprite chip
that would support the drawing functionality of turtle graphics. One significant



constraint it had, however, was its limited memory. In its default configuration, the
machine came with only 256 bytes of RAM which could be extended to at most
32kB using external expansion cards (which, however, led to a massive slowdown
of the system). The only high-level programming language that was supported by
the TI 99/4 was Pascal, which was therefore chosen as the host language for this
new Logo implementation.

Pascal Logo was not the only Logo implementation of its era that struggled with
memory constraints. The developers of Music Logo had to take drastic measures
to o↵er a music extension and they decided not to o↵er turtle graphics instead. The
topic of memory management was a topic in Logo long before other mainstream
languages started to o↵er automatic garbage collection. Logo pioneers around
the globe seemed to agree that malloc() and free() were not something young
programmers should have to bother with – even more so on systems with tightly
limited memory.

5 A Debate About Syntax

One of the most successful home computers around the eighties was the Apple II. It
contributed to the movement away from large and expensive mainframe computers
and towards smaller, more-a↵ordable home computers that were much more wide-
spread and accessible for the broad public. Seeing that the Apple II was used more
and more widely, two companies decided to implement their own version of Logo
for this computer: First, Terrapin Logo was implemented, later LCSI followed
with Apple Logo. Most later Logo versions are descendants of either of these two
implementations.

One of the main di↵erences between Terrapin Logo and LCSI Apple Logo
lies in their di↵erent understanding of the conditional statement if. Terrapin
decided for a verbose syntax of the form if-then-else (see Listing 2a) with
the argument that this notation would favor beginners who can relate the syntax
to spoken English. With this adaptation, however, conditionals become syntactic
special cases. LCSI decided not to adopt Terrapin’s syntax proposal and instead
went for a notation that follows the proceduralization approach known from Lisp
(that is, the approach tries to treat all linguistic elements like procedure calls).
Listing 2b shows the notation LCSI chose for conditionals. Note that the keywords
then and else have been replaced by two instruction lists, the first corresponding
to the then-case, the second to the else-case.

Following Lisp’s code-as-data concept, LCSI Apple Logo tried to describe the
conditional statement if as a procedure with three arguments: The first argument
evaluates to a Boolean, while the second and third arguments are interpreted as
instruction lists. An instruction list is a dedicated data structure for representing



⌥ ⌅
if true then fd 100 else bk 100⌃ ⇧

(a)

⌥ ⌅
if true [fd 100] [bk 100]⌃ ⇧

(b)

Listing 2: Terrapin Logo syntax on the left (a) and LCSI Apple Logo syntax on the
right (b).

code – in its raw form this data structure is not interpreted but just treated as a piece
of information (like any other data type). Using the special command run, it is
possible to parse the content of an instruction list and execute it. This corresponds
to Lisp’s code-as-data concept.

Using the duality between code and data, even control structures like repeat
can be treated as simple procedure calls. Listing 3 demonstrates how Logo’s
looping construct repeat can be implemented in Logo using recursion. Once
written, such a command can be used in exactly the same way as the traditional
repeat statement (e.g., myrepeat 4 [fd 100 rt 90]).

⌥ ⌅
1 to myrepeat :n :instructionlist
2 if :n>0 [
3 run :instructionlist
4 myrepeat :n-1 :instructionlist
5 ]
6 end⌃ ⇧

Listing 3: Using a dedicated data respresentation for code, it is possible to treat
even control structures like repeat as procedure calls. All it takes to implement
repeat in Logo is the availability of instruction lists, the command run, and
recursion.

Both Terrapin Logo and LCSI Apple Logo chose the same syntax for repeat,
while their choices for if di↵er. Both sides had arguments for their respective
decision: Terrapin argues that a simplified syntax would make the conditional
statement more accessible for novices, while LCSI argued that their syntax was
more uniform and thus especially useful for advanced programmers who wish to
implement their own Logo interpreter. Both choices are sensible, although they
aim at di↵erent user groups with di↵erent experience levels.

6 Object-Oriented Programming and Logo

As Logo grew older, new programming paradigms evolved around it, and so some
Logo versions specialized in some of these new directions. One such example
is ObjectLogo, a Logo implementation from the year 1986 which incorporated



the ideas and concepts from object-oriented programming into Logo [7]. The
implementation is designed to be an extension of LCSI Apple Logo and all pre-
vious teaching materials and common Logo notations could still be used. New
features related to object-oriented programming were meant for advanced Logo
programmers while beginners could still write the same programs as before, for
instance the program in Listing 4 which draws a triangle without making use of
object-oriented programming.

⌥ ⌅
fd 100 rt 90 fd 100 rt 135 fd 141⌃ ⇧
Listing 4: A simple Logo program to draw a right-angled triangle. This program
does not involve object-oriented features but it is still valid syntax in ObjectLogo.

The same triangle can also be drawn using object-oriented programming. Ob-
jectLogo allows programmers to create multiple instances of the Turtle which all
have their own internal state and behavior. New actors can be instantiated using
the common make command and a special command something that is used to
create a new object (see Listing 5, lines 1 and 2), and each object has its own local
fields and methods which can be invoked using a special tell command. The
tell command takes two arguments: first, the name of an object whose state or
behavior shall be changed, and second an instruction list. The object reacts by
executing all instructions that were provided in the instruction list.

The example in Listing 5 shows how two agents (turtle1 and turtle2)
collaborate to draw the same triangle as shown in Listing 4. In line 3, the first
agent is told to draw the first two sides of a triangle. Then, turtle2 finishes
the drawing by connecting the last line. Note that turtle2 is aware of the other
agent’s position. The command setheading towards :turtle1 causes it to
face turtle1.

⌥ ⌅
1 make "turtle1 something
2 make "turtle2 something
3 tell :turtle1 [fd 100 rt 90 fd 100]
4 tell :turtle2 [setheading towards :turtle1 fd 141]⌃ ⇧

Listing 5: In ObjectLogo, multiple turtles can be instantiated and they can be
addressed individually. In this program, two turtles are used to draw a right-angled
triangle in collaboration. A first agent called turtle1 is used to draw the first two
sides of the triangle, another agent (named turtle2) is used to finish the work.

In contrast to non-object-oriented versions of Logo, ObjectLogo allows each
actor to have its own local methods that can be used to overload pre-existing
global commands. For instance, among three turtles each could have its own
local version of the command fd. One turtle may draw a thick line, another
one draws the line in red, while the last turtle draws a dotted line – all reacting



to the same command fd. Listing 6 shows how such an implementation would
look like. Three actors (turtle1, turtle2, and turtle3) have their own local
versions of fd. The keyword howto indicates the beginning of a local procedure
definition and corresponds to the global keyword to. In all three cases, a local
command fd is defined which internally relies on the global implementation of
the command fd (i.e., the keyword usual invokes the global version of fd).
Each actor has their own version of fd and will react di↵erently to the statement
tell :turtleX [fd 100].

⌥ ⌅
1 tell :turtle1 [howto fd :distance
2 setpw 5 usual.fd :distance
3 ]
4
5 tell :turtle2 [howto fd :distance
6 setpc red usual.fd :distance
7 ]
8
9 tell :turtle3 [howto fd :distance

10 repeat :distance/2 [
11 pd usual.fd 1
12 pu usual.fd 1
13 ]
14 ]⌃ ⇧

Listing 6: Local procedures can be used to overload global definitions. Di↵erent
objects can be specialized on demand and each will use its own local version of
procedure calls during execution.

ObjectLogo was an advanced implementation of Logo that aimed at teaching
modular design by using the object-oriented programming paradigm. The envi-
ronment allowed programmers to use several turtles which each have their own
local environment with encapsulated variables and methods. Di↵erent objects
could inherit features from one another and specialize them on demand. In ad-
dition to programming turtles, ObjectLogo also allowed most UI elements to be
programmed such as menus, windows, files, and dialogues. All those elements
were implemented as objects.

ObjectLogo was platform-dependent and could only be used on Macintosh
machines. It was updated until the year 2000 but is no longer maintained and
cannot be used on modern computers any longer.

7 Platform Independence and Standardization

By the late eighties, the computer world had stabilized around four common
operating systems: DOS, Windows, Mac, and Unix. The majority of all machines
ran one of these four systems and, yet, most Logo implementations were not



designed to be portable between di↵erent operating systems. The consequence was
a large variety of di↵erent Logo implementations, all crafted for di↵erent platforms
and all with slight di↵erences in terms of their internal implementation.

In 1988, Brian Harvey and his team at UC Berkley decided to develop a Logo
version that was supposed to be portable across all common operating systems
of the time. Their goal was to design a system that could be run among DOS,
Windows, Unix, and Mac [2], and to standardize the graphical output by scaling it
such that the graphics fit on all screens [8].

Berkley Logo was designed as a console application, a window with only one
interface for the programmer to interact with (see Figure 1). This interface was a
text-based interface similar to a typical command-line interpreter. Even though the
application only contained one window, it still had more than one functionality this
window could be used for. Specifically, the console window in Berkley Logo was
used for three di↵erent purposes:

1. Procedure invocations: Firstly, the window can be used to execute built-
in or user-defined procedures. The user is provided with an interactive
programming experience in a so-called REPL (i.e., read–eval–print loop); an
environment that allows programmers to piecewise execute code snippets.
Each command may change the program state, which can be observed and
inspected by the programmer. Unlike the LISP and Python REPL, however,
Logo’s REPL does not print results to arithmetic calculations such as 1+2,
but instead the outcome of such an arithmetic expression has to be printed
explicitly using the print command.

2. Procedure definitions: New procedures can be defined using the common
Logo notation to ... end. Once the keyword to has been detected,
the environment enables multi-line input which can be closed again upon
entering the end keyword. Lines which have already been executed cannot be
revoked but an existing procedure can be edited and corrected. All versions
of previously-executed procedures and procedure declarations remain visible
by scrolling back through the history of previous activity.

3. Output/history/error messages: Finally, the window can be used as an output
mechanism and as a history of previous activities. Besides the text related to
procedure invocation, declaration, and their respective output, the window
can also be used to issue error messages in case the input was not correct.

For turtle graphics applications, the window is split in two parts as shown in
Figure 2. While the bottom part of the window is the same as before, the top part is
used to illustrate the corresponding graphical output. The top part shows a canvas
with a turtle. All movement and rotation commands leave a visible e↵ect and can



Figure 1: Berkley Logo with a the same pure-text example as previously shown in
Listing 1. For this use case, they provide a single-window interface similar to a
typical command-line interpreter.

be observed on this screen, just as in all other implementations that make use of
turtle graphics.

Berkley Logo is one of the oldest Logo versions that is still running today and
works on modern computers. It has influenced multiple environments between the
nineties and today. One main point that has been improved in more recent versions
is the graphical user interface, as we will see in the next section.

8 Advanced Graphical User Interfaces

In the eighties, graphical user interfaces slowly started to evolve and during the
nineties this progress continued. Step by step, the previously used command-line
interfaces, as known in DOS, were replaced by graphical ones. Windows played an
important role in this process. While MS-DOS was still widely used in the eighties,
Windows started to move away from DOS with the introduction of Windows 3.0 –
a system that came with an advanced graphical user interface which appealed the
population. Windows 95 was the first Windows version that had MS-DOS fully
integrated into the system (in contrast to the previous standalone DOS systems
which could be booted without a graphical user interface). Microsoft swiftly moved
away from DOS and towards a more graphical interface which made the computer
more accessible to the wider public.

In 1993, a new Logo version called MSWLogo (Microsoft Windows Logo) was
published specifically for Microsoft Windows. This Logo version used Berkley



Figure 2: Berkley Logo with a simple turtle graphics example. For the purpose of
displaying visual output, the screen is split in two parts.

Logo as its core, but the designers enhanced it with a couple of additional features –
first and foremost an improved user interface (see Figures 3 and 4). Instead of just
one command-line window, MSWLogo provided three windows for three di↵erent
functionalities: (i) a canvas (used for graphical output), (ii) an editor (used for
displaying procedure declarations), and (iii), an input line with included history.

Debugging features were previously hidden features a programmer would only
know of if she or he carefully read the user manual. In MSWLogo, debugging
features such as pause and trace were added as visual buttons on the user
interface. This simple adaptation made programmers more aware of debugging
support which could help during troubleshooting.

MSWLogo was widely used among Windows users but it could not be used
with any operating systems other than Windows. Two successors (XLogo and
XLogo4Schools) were developed with the ambition to solve this problem. Both
Logo environments were platform independent and both of them were widely used
in programming courses across Switzerland some years ago.

9 A Contemporary Form of Logo Learning

Logo may be old but it still has not lost its political value and scientific appeal.
In 2016, the development of XLogoOnline started as the main contribution of a
master thesis at ETH Zurich [10] and by now it is actively used in Swiss schools
by thousands of pupils every year. XLogoOnline is the last Logo version in the
genealogy presented in this article and it builds on top of most Logo versions that



Figure 3: MSWLogo uses three windows: (i) canvas on the top left, (ii) editor on
the top right, and (iii) input line and history

Figure 4: Turtle graphics commands are drawn into the canvas, while new proce-
dure declarations are written into the editor.



were presented before.
Four attributes characterize the environment’s most important features:

• Focus on K–6: Originally, Logo was designed as a language that suits both
the needs of beginners and experts. That is why many early versions included
highly advanced features from the Lisp universe. But in the end, Logo was
established mostly as a language for novices and it could not gain the same
popularity among experts. In the development of XLogoOnline, a special
focus was put on the age range from kindergarten to grade six (age 6 to 12
years). The programming environment is designed for teaching the basic
concepts that are part of a spiral curriculum that is widely used in Swiss
schools [13, 14, 15].

• Platform independence: Having software that is not bound to one platform
but that can be used from many di↵erent devices and operating systems
was already considered an important feature thirty years ago. The same
feature is still relevant and can be considered especially important in the
context of schools. IT administrators at Swiss schools invest an average of
2.5 hours per computer and school year in the installation and maintenance
of software [12]. The easier it is to maintain software, the more time a
teacher can spend on the preparation of lessons instead. For this reason,
XLogoOnline was designed as a web application that uses JavaScript as its
host language. In addition to portability between platforms, the choice of
web technologies also allows for simple deployment without the requirement
of installing or maintaining software on the client side.

• Proactive error handling: Learning to cope with errors is one of the most
crucial aspects of a young programmer’s experience. Bugs cannot be pre-
vented, and every programmer eventually needs to be able to identify, locate,
and fix programming mistakes by her- or himself. From the beginning,
Logo had built-in error detection mechanisms [2]. These tools are how-
ever comparatively crude considering the great progress the professional
community has made in terms of automated error diagnosis and debugging
support throughout the last decades. XLogoOnline provides a variety of
modern troubleshooting tools including compile-time checks for structural
errors [16] and a reverse debugger [17].

• Support for physical and virtual turtles: Although the first versions of Logo
usually came with integrated support for both physical floor turtles and
virtual screen turtles, most environments in the eighties and nineties did not
include support for floor robots any longer since schools “did not typically
have any floor turtles they could connect with” [2]. Nowadays, physical



robots have regained popularity and many Swiss schools bought physical
floor robots for educational purposes. We have decided to provide potential
connections to several floor robots (e.g., BlueBot and Root) such that each
programmer has the option to choose between the screen turtle or a floor
robot to accomplish their tasks.

XLogoOnline is a small part of a long and extensive history of how program-
ming has found its way into general education. History has shown that the same
idea can be realized in many di↵erent ways – during the past two decades, several al-
ternatives to Logo programming were proposed and traditional turtle geometry has
been overshadowed by new application domains such as digital storytelling using
Scratch [20]. Contrary to the belief that Logo is dead [19], however, XLogoOnline
proves that Papert’s legacy still lives on and that Logo is finally experiencing a new
upswing.

10 Conclusion

Logo is not only a famous programming language but also a philosophy of educa-
tion and, for its inventor, it represented a critique against the traditions of the US
school system during the seventies and eighties [18]. The background of this story
is that, at that time, technology consumption in US schools started ramping up
and computer-aided instruction gained widespread acceptance. During this phase,
computers were installed in many classrooms around the country. However, they
were rarely used for constructive activities such as programming. Papert opposed
this practise and proposed computers be used as a tool for creative problem solving
instead of drill-and-practice routines. That is, rather than putting students merely
into the role of technology consumers, Papert envisioned them to become creative
inventors of technology. Seeing the path computer-aided instruction had taken, Pa-
pert considered Logo an “anti-schooling project,” which in many ways contradicted
the common trend that the school system seemed to be adopting at the time [18].

Within the last fifty years, education has changed and constructivist ideas finally
found their way into general education. Across the globe, more and more countries
decided to introduce computer science into their public school curricula and finally
Logo has a chance to be re-introduced in a large scale after it had believed to be
extinct [19]. While programming environments have evolved and new approaches
have been brought up in the meantime, there is still an active Logo community
and thanks to new programming environments, Papert’s legacy lives on and finally
reaches a new upswing in central-Europe.



References

[1] John McCarthy, S. Boilen, E. Fredkin, and J. C. R. Licklider. A time-sharing
debugging system for a small computer. In Proceedings of the May 21-23, 1963,

Spring Joint Computer Conference, pages 51–57, 1963.
[2] Cynthia Solomon, Brian Harvey, Ken Kahn, Henry Lieberman, Mark L. Miller, Mar-

garet Minsky, Artemis Papert, and Brian Silverman. History of Logo. Proceedings

of the ACM on Programming Languages, 4(HOPL):1–66, 2020.
[3] Juraj Hromkovič, Tobias Kohn, Dennis Komm, and Giovanni Serafini. Combining

the power of Python with the simplicity of Logo for a sustainable computer science
education. International Conference on Informatics in Schools: Situation, Evolution,

and Perspectives (ISSEP 2006), LNCS 9973, pages 155–166, Springer 2016.
[4] Peter F. Bladin. W. Grey Walter, Pioneer in the electroencephalogram, robotics,

cybernetics, artificial intelligence. Journal of Clinical Neuroscience, 13(2):170–177,
2006.

[5] Seymour Papert. Mindstorms: Computers, children, and powerful ideas. NY: Basic

Books, 1980.
[6] Radia Perlman. Tortis (Toddler’s own recursive turtle interpreter system). 1974.
[7] Gary L. Drescher. Object-oriented Logo. In Artificial Intelligence and Education,

volume 1, pages 153–165, 1987.
[8] University of California. Berkley Logo user manual, 2020a. https://people.
eecs.berkeley.edu/~bh/usermanual.

[9] Brian Harvey. Berkley Logo user manual. University of California Berkley, 1993.
[10] Jacqueline Staub. XLogoOnline – A web-based programming IDE for Logo. Mas-

ter’s thesis, ETH Zürich, 2016.
[11] Pavel Boytchev. Logo tree project, 2007.
[12] SFIB Schweizerische Fachstelle für Informationstechnologien im Bildungswesen.

ICT und Bildung in der Schweiz, 2004. https://archiv.educa.ch/sites/
default/files/20121003/ictund_bildung_2004.pdf.

[13] Juraj Hromkovič, Dennis Komm, Regula Lacher, and Jacqueline Staub. Teaching
with Logo philosophy. In Encyclopedia of Education and Information Technologies.
2019.

[14] Juraj Hromkovič. Einführung in die Programmierung mit LOGO, volume 206.
Springer, 2010.

[15] Juraj Hromkovič. Einfach Informatik 5/6: Programmieren. Primarstufe. Klett und
Balmer, 2018.

[16] Martina Forster, Urs Hauser, Giovanni Serafini, and Jacqueline Staub. Autonomous
recovery from programming errors made by primary school children. In Interna-

tional Conference on Informatics in Schools: Situation, Evolution, and Perspectives

(ISSEP 2018), LNCS 11169, pages 17–29. Springer 2018.

https://people.eecs.berkeley.edu/~bh/usermanual
https://people.eecs.berkeley.edu/~bh/usermanual
https://archiv.educa.ch/sites/default/files/20121003/ictund_bildung_2004.pdf
https://archiv.educa.ch/sites/default/files/20121003/ictund_bildung_2004.pdf


[17] Renato Menta, Serena Pedrocchi, Jacqueline Staub, and Dominic Weibel. Imple-
menting a reverse debugger for Logo. In In International Conference on Informatics

in Schools: Situation, Evolution, and Perspectives (ISSEP 2019), LNCS 11913,
pages 107–119. Springer 2019.

[18] Angelos Agalianos, Geo↵Whitty, and Richard Noss. The social shaping of Logo.
Social Studies of Science, 36(2):241–267, 2006.

[19] Michael Tempel. The Turtle is dead: Rethinking Logo in the age of Kid Pix. 1995.

[20] Quinn Burke and Yasmin B. Kafai. The writers’ workshop for youth programmers:
Digital storytelling with scratch in middle school classrooms. Proceedings of the

43rd ACM Technical Symposium on Computer Science Education (SIGCSE 2021),
433–438, 2012


	Background
	The Beginning
	Introducing the Turtle
	A Shift Towards Microcomputers
	A Debate About Syntax
	Object-Oriented Programming and Logo
	Platform Independence and Standardization
	Advanced Graphical User Interfaces
	A Contemporary Form of Logo Learning
	Conclusion

