
An Informal Visit to the Wonderful Land of

Consensus Numbers and Beyond

Michel Raynal

Institut Universitaire de France

IRISA, Université de Rennes, 35042 Rennes, France

Department of Computing, Hong Kong Polytechnic University

raynal@irisa.fr

Abstract

Since its introduction by M. Herlihy in 1991, consensus number has be-

come a central notion to capture and understand the agreement and synchro-

nization power of objects in the presence of asynchrony and any number of

process crashes. This notion has now become fundamental in shared mem-

ory systems, when one is interested in the design of universal constructions

for high level objects defined by a sequential specification.

The aim of this survey is to be a guided tour in the wonderful land of

consensus numbers. In addition to more ancient results, it also presents

recent results related to the existence of an infinity of objects –of increasing

synchronization/agreement power– at each level of the consensus hierarchy.

Keywords: Agreement, Asynchronous read/write system, Atomic opera-

tion, Concurrent object, Consensus, Consensus hierarchy, Crash failure, De-

terministic object, Distributed computability, Progress condition, Sequential

specification, k-Set agreement, Universal construction, Wait-freedom.

1 Introduction

Concurrent objects and asynchronous crash-prone read/write systems A
concurrent object is an object that can be accessed (possibly simultaneously) by
several processes. From both practical and theoretical point of views, a funda-
mental problem of concurrent programming consists in implementing high level
concurrent objects, where “high level” means that the object provides the pro-
cesses with a higher abstraction level than the atomic hardware-provided oper-

ations. While this notion of “high abstraction level” is well-known and well-
mastered since a long time in the context of (sequential and parallel) failure-free
systems [7], it is far from being trivial in failure-prone systems where it is still an
important research domain.

This paper considers systems made up of n sequential asynchronous processes
which, at the hardware level, communicate through memory locations (memory
words also called registers) which can be accessed by atomic operations [32, 34],
including the basic read and write operations. Moreover, it is assumed that, in any
run, any number of processes may crash (a crash is an unexpected halting).

On progress conditions Deadlock-freedom and starvation-freedom are well-
known progress conditions in failure-free asynchronous systems. As their im-
plementation is based on lock mechanisms, they are not suited to asynchronous
crash-prone systems. This is due to the fact that it is impossible to distinguish a
crashed process from a slow process, and consequently a process that acquires a
lock and crashes before releasing it can entail the blocking of the entire system.

Hence, new progress conditions for concurrent objects suited to crash-prone
asynchronous systems have been proposed. The strongest progress condition,
which is the one considered in this paper1, is wait-freedom [22] (abbreviated WF
in the following). Let O be the object that is built. This progress condition states
that each invocation of an operation on O issued by a process that does not crash
terminates, whatever the behavior of the other processes, which can be arbitrarily
rapid, slow, or even crashed2.

Universal object in failure-free systems Read/write registers are universal in
sequential computing, which (according to Church-Turing thesis) means that ev-
erything that can be mechanically computed, can be computed from read/write
registers (those are actually the cells of the tape of a Turing machine [50]). They
are also universal in failure-free parallel systems. This comes from the fact that
concurrent processes can cooperate thanks to mutual exclusion [16], which can be
realized (in failure-free systems) on top of read/write registers [27, 40, 47].

Universal construction in the presence of asynchrony and process crashes

The notion of a universal construction, for asynchronous crash-prone shared mem-
ory systems was introduced by M. Herlihy [22]. This notion addresses the con-
struction of high level objects (a) defined from a sequential specification and (b)

1Other progress conditions, such as non-blocking [28] or obstruction-freedom [23] have been
proposed for failure-prone systems. They are not considered in this article. The interested reader
will consult appropriate textbooks, such as [27, 40, 47].

2This progress condition can be seen as an extension suited to failure-prone systems of the
starvation-freedom progress condition defined for failure-free systems.

whose operations are total, i.e., any object operation returns a result (as an exam-
ple, a push() operation on an empty stack returns the default value ⊥).

A WF-compliant universal construction is an algorithm that, given the sequen-
tial specification of an object O (or a sequential implementation of it), provides
a concurrent implementation of O satisfying the wait-freedom progress condi-
tion for all its operations, despite asynchrony and any number of process crashes
(Fig. 1).

Sequential specification

universal construction
WF-compliant WF-compliant implementation

of an object Z of object Z

Figure 1: WF-compliant universal construction

It has been shown in [22, 33] that the design of a WF-compliant universal
construction is impossible in asynchronous read/write systems where any number
of processes may crash3.

In failure-prone asynchronous (read/write or message-passing) distributed sys-
tems, the computability issues have a different nature than in failure-free asyn-
chronous systems. As written in [25]: “In sequential systems, computability is

understood through the Church-Turing Thesis: anything that can be computed,

can be computed by a Turing Machine. In distributed systems, where computa-

tions require coordination among multiple participants, computability questions

have a different flavor. Here, too, there are many problems which are not com-

putable, but these limits to computability reflect the difficulty of making decisions

in the face of ambiguity, and have little to do with the inherent computational

power of individual participants.”

This means that asynchronous failure-prone systems need to be enriched with
additional objects whose computability power is strictly stronger than the one
of atomic read/write registers [41]4. The objects that, together any number of
read/write registers5, allow to build a WF-compliant universal construction are
said to be universal. As shown below the consensus object is universal.

3The first proof of such an impossibility was done in the context of asynchronous message-
passing systems where even a single process may crash [18].

4Given a computing model (for example the finite state automaton model or the Turing machine
model in sequential computing), the notion of computability power is on what can and what cannot
be computed in this model. Differently, given a computing model, the notion of computing power

refers to efficiency.
5It is show in [4] that any non-trivial object can implement atomic read/write registers in the

wait-free task model.

Remark 1 As atomic read/write registers can be built on top of asynchronous
message-passing n-process systems where up to t < n/2 processes may crash, the
results presented in this article apply in these systems as soon as a majority of
processes do not crash (see pages 75-169 of [42] for more details).

Remark 2 This article considers the classical shared memory distributed system
model in which the concurrent objects to be implemented are deterministic. The
case of non-deterministic objects is addressed in [38].

Remark 3 This article is no more than an informal introduction to the consen-
sus number notion. The reader will find more precise developments of associ-
ated concepts and notions (such as distributed task, long-lived task, computing

model, oblivious object, object binding mode, robustness, deterministic vs. non-

deterministic object, etc.) in articles listed at the end of this article.

Content of the paper This paper is made up of five sections. Section 2 presents
the consensus object and the associated consensus hierarchy notion (which allows
us to capture the computability power of computing objects)6. Section 3 shows
that there is an infinity of objects whose consensus number is 1, while their com-
putability power is strictly increasing7. Section 4 shows that for any x ≥ 2, there
is an infinity of objects whose consensus number is x, while their computability
power is strictly increasing8. Historically, the case x ≥ 2 was investigated before
the case x = 1 (respectively 2016 and 2018). The parlance “life beyond consen-
sus” was introduced in [2]. Section 5 concludes the paper.

2 The Consensus Object

and the Consensus Hierarchy

2.1 Consensus

Consensus object As already indicated, the notion of a universal object with
respect to fault-tolerance was introduced by M. Herlihy [22]. An object type T

is universal if it is possible to wait-free implement any object (defined by a se-
quential specification) in the asynchronous read/write model, where any number
of processes may crash, enriched with any number of objects of type T . An al-
gorithm providing such an implementation is called a universal construction. It
is shown in [22] that consensus objects are universal. These objects, introduced

6The reference article is [22].
7The reference article is [14].
8The reference article is [2].

in [37], allow the processes to propose values and agree on one of them. More
precisely, such an object provides the processes with a single operation, denoted
propose(), that a process can invoke only once. This operation returns a value to
the invoking process. When pi invokes propose(vi) we say that it “proposes the
value vi”, and if v is the returned value we say that it “decides v”. The consensus
object is defined by the three following properties:

• Validity. The value decided by a process was proposed by a process.

• Agreement. No two processes decide different values.

• Termination. If a correct process invokes propose(), it decides a value.

Termination states that if a correct process invokes propose(), it decides a
value whatever the behavior of the other processes (wait-freedom progress condi-
tion). Validity connects the output to the inputs, while Agreement states that the
processes cannot decide differently. A sequence of consensus objects is used in
the following way in a universal construction. According to its current view of
the operations invoked on (and not yet applied to) the object O of type T that is
built, each process proposes to the next consensus instance a sequence of opera-
tions to be applied to O, and the winning sequence is actually applied. A helping
mechanism [8, 40] is used to ensure that all the operations on O (at least by the
processes that do not crash) are eventually applied to O.

k-Set agreement A k-set agreement object (in short k-SA) is a simple an natural
weakening of the consensus object [12]. It has the same Validity and Termination
properties, but a weaker Agreement property, namely:

• Agreement. At most k different values are decided.

Hence, consensus is 1-set agreement. It is shown in [6, 26, 45] that it is impossible
to implement k-set agreement on top of read/write registers, in the presence of
asynchrony and any number of process crashes.

2.2 From consensus objects to a universal construction

Many algorithms have been proposed, which build a wait-free implementation of
any object defined by a sequential specification (e.g. see [27, 40, 47]). This
section presents a WF-compliant consensus-based universal construction inspired
from the state machine replication paradigm (introduced in [31] in the context of
failure-free systems), the process crash-tolerant total order broadcast algorithm
presented in [9]9, and a helping mechanism implemented from atomic read/write
registers. The reader will find a proof of it in [40]. As already said, and to make
the presentation easier, it is assumed that the object O that is built is deterministic.

9Incidentally, the reader may notice that both the articles [9, 31] consider message-passing
systems.

Sequential specification of the object The object O is assumed to be defined
by a transition function δ(). Let s be the current state of O and op(in) be the
invocation of an operation op() on O, with input parameter in; δ(s, op(in)) outputs
a pair ⟨s′, r⟩ such that s′ is the state of O after the execution of op(in) on s, and r

is the result of op(in).

Local variables A process pi manages locally a copy of the object, denoted
statei, an array sni[1..n] where sni[j] denotes the sequence number of the last
operation on O issued by pj locally applied to statei. The local variables donei,
resi, propi, ki, and listi, are auxiliary variables whose meaning is clear from the
context; listi is a list of pairs of (operation, process identity); |listi| is its size, and
listi[r] is its r-th element; hence, listi[r].op is an object operation and listi[r].proc

the process that issued it.

when pi invokes op(in) do
(1) donei ← false; BOARD[i]← ⟨op(in), sni[i] + 1⟩;
(2) wait (donei); return(resi).

Underlying local task T : % background server task %
(3) while (true) do
(4) propi ← ϵ; % empty list %
(5) for j ∈ {1, . . . , n} do

(6) if (BOARD[j].sn > sni[j]) then
(7) append (BOARD[j].op, j) to propi

(8) end if
(9) end for;
(10) if (propi ! ϵ) then

(11) ki ← ki + 1;
(12) listi ← CONS[ki].propose(propi);
(13) for r = 1 to |listi| do

(14) ⟨statei, resi⟩ ← δ(statei, listi[r].op);
(15) let j = listi[r].proc; sni[j]← sni[j] + 1;
(16) if (i = j) then donei ← true end if

(17) end for
(18) end if
(19) end while.

Figure 2: A wait-free consensus-based universal construction (code for process
pi)

Shared Objects The shared memory contains the following objects.

• An array BOARD[1..n] of single-writer/multi-reader atomic registers. Each
entry is a pair such that the pair ⟨BOARD[j].op,BOARD[j].sn⟩ contains

the last operation issued by pj and its sequence number. Each read/write
register BOARD[j] is initialized to ⟨⊥, 0⟩.

• An unbounded array CONS[1..] of consensus objects.

Process behavior When a process pi invokes an operation op(in) on O, it reg-
isters this operation together with its associated sequence number in BOARD[i]
(line 1). Then, it waits until the operation has been executed, and returns its result
(line 2).

The array BOARD constitutes the helping mechanism used by the background
task of each process pi. This task is made up two parts, which are repeated forever.
First, pi build a proposal propi, which includes the last operations (at most one
per process) not yet applied to the object O, from its local point of view (lines 4-9
and predicate of line 6). Then, if the sequence propi is not empty, pi proposes
it to the next consensus instance CONS[ki] line 12). The resulting value listi is a
sequence of operations proposed by a process to this consensus instance. Process
pi then applies this sequence of operations to its local copy statei of O (line 14),
and updates accordingly its local array sni (line 15). If the operation that was
applied is its own operation, pi sets the Boolean donei to true (line 16), which will
terminate its current invocation (line 2).

Bounded wait-freedom versus unbounded wait-freedom Let us observe that
this construction ensures that the operations issued by the processes are wait-free,
but does not guarantee that they are bounded wait-free, namely, the number of
steps (accesses to the shared memory) executed before an operation terminates is
finite but not bounded. Consider a process pi that issues an operation op(), while
k1 is the value of ki. let and k2 = k1+α be such that op() is output by the consensus
instance CONS[k2]. The task T of pi must execute α times the lines 4-18 in order
to catch up the consensus instance CONS[k2] and return the result produced by
op(). It is easy to see that the quantity (k2 − k1) is always finite but cannot be
bounded.

A bounded construction is described in [22]. Instead of requiring each pro-
cess to manage a local copy of the object, O is kept in shared memory and is
represented by a list of cells including an operation, the resulting state, the result
produced by this operation, and a consensus object whose value is a pointer to the
next cell. The last cell defines the current value of the object.

2.3 The consensus hierarchy

Consensus numbers and consensus hierarchy The consensus number [22] as-
sociated with an object type T (denoted CN(T) in the following) is the greatest

positive integer n such that a consensus object can be built in an asynchronous
crash-prone n-process system from any number of atomic read/write registers and
any number of objects of type T . If there is no such finite n, the consensus number
of T is +∞. Hence, a type T such that CN(T) ≥ n is universal in a system of n (or
less) processes.

It appears that the consensus numbers define an infinite hierarchy (also called
”Herlihy’s hierarchy”) in which atomic read/write registers have consensus num-
ber 1, object types such as Test&Set, Fetch&Add, and Swap, have consensus
number 2, etc., until object types such as Compare&Swap, Linked Load/Store
Conditional (and a few others) that have consensus number +∞. In between,
read/write registers provided with m-assignment10 with m > 1 have consensus
number (2m − 2).

Notations The following notations are used in the rest of the article.

• For x ≥ 1, CN(x) denotes the set all the object types T whose such that
CN(T) = x.

• If an object type has a single operation op(), CN(op) denotes its consensus
number.

• If T1 and T2 are two object types such that CN(T1)< CN(T2), we also write
T1 < T2.

• If CN(T) = x and O is an object of type T , we say that O is an x-consensus
object (i.e., O allows consensus to be solved in an x-process system, but not
in an (x + 1)-process system).

• Let T be an object type. T < CN(x) means that CN(T) < x, and similarly
for T > CN(x).

• Let A < B denote the fact that object A can be built in an n-process system
where the processes communicate through read/write registers and objects
B, while object B cannot be built from object A and read/write registers.

An object family covering the whole consensus hierarchy The object named
k-sliding read/write register (in short RWk) was introduced in [35] (a similar ob-
ject was independently introduced in [17]). It is a natural generalization of an
atomic read/write register, which corresponds to the case k = 1). Let KREG be
such an object. It can be seen as a sequence of values, accessed by two atomic
operations denoted KREG.write() and KREG.read().

10Such an assignment updates atomically m read/write registers. It is sometimes written
X1, X2, · · · , Xm ← v1, · · · , vm where the Xi are the registers, and each vi the value assigned to
Xi.

The invocation of KREG.write(v) by a process adds the value v at the end
of the sequence KREG, while an invocation of KREG.read() returns the ordered
sequence of the last k written values (if only x < k values have been written, the
default value ⊥ replaces each of the (k − x) missing values).

Hence, conceptually, an RWk object is a sequence containing all the values
that have been written (in their atomicity-defined writing order), and whose each
read operation returns the k values that have been written just before it, according
to the atomicity order. As already indicated, it is easy to see that, for k = 1, RWk

is a classical atomic read/write register. For k = +∞, each read operation returns
the whole sequence of values written so far. Let us notice that RW∞ is nothing
else than a ledger object [42].

It is shown in [35] that the consensus number of RWk is k. Hence, from a
computability point of view we have

R/W registers = RW1 < RW2 < · · · < RWk < RWk+1 < · · · < RW∞.

2.4 A glance inside the consensus number land

Multiplicative power of consensus numbers The notion named multiplicative

power of consensus numbers was introduced in [29]. It considers system mod-
els made up of n processes prone to up to t crashes, and where the processes
communicate by accessing read/write atomic registers and x-consensus objects
(with x ≤ t < n). Let AS M(n, t, x) denote such a system model. While the BG
simulation [6] shows that the models AS M(n, t, 1) and AS M(t + 1, t, 1) are equiv-
alent from a (colorless task) computability power point of view, the work pre-
sented in [29] focuses on the pair (t, x) of the system model parameters. Its main
result is the following: the system models AS M(n1, t1, x1) and AS M(n2, t2, x2)
have the same computability power if and only if ⌊ t1

x1
⌋ = ⌊ t2

x2
⌋. This contribu-

tion, which complements and extends the BG simulation, shows that consensus
numbers have a multiplicative power with respect to failures, namely the system
models AS M(n, t′, x) and AS M(n, t, 1) are equivalent (for colorless decision tasks)
if and only if (t × x) ≤ t′ ≤ (t × x) + (x − 1).

Combining object types The consensus hierarchy considers that consensus must
be built from read/write registers and objects of a given type T only. Hence the
question “is it possible to combine objects with a small consensus number to ob-
tain a new object with a greater consensus number?” As an example, let us con-
sider thee two following object types T1 and T2, whose consensus number is 2
(see [17] for more developments).

• An object of type T1 can be read and accessed by the operation test&set(),
which returns its current value and sets it to 1 if it contained 0.

• An object of type T2 can be read and accessed by the operation fetch&add2(),
which returns the current value of the object, and increases it by 2.

Let us now consider an object type T12 which provides three operations:
read(), test&set(), and fetch&add2(). The algorithm described in Fig. 3 (due
to [17]) shows that a binary consensus object can be built from read/write regis-
ters and objects T12 in a crash-prone system of any number of processes. Binary
consensus means that only the values 0 and 1 can be proposed11. We consequently
have CN(T12) = +∞.

when pi invokes propose(v) do
(1) if (v = 0) then X.fetch&add2();
(2) if (X is odd) then return(1) else return(0) end if

(3) else x← X.test&set();
(4) if (x is odd) ∨ (x = 0) then return(1) else return(0) end if
(5) end if.

Figure 3: A wait-free binary consensus algorithm from object type T12 (code for
process pi)

The internal representation of the binary consensus object is an object X of
type T12, initialized to 0. According to the value it proposes (0 or 1), a process
executes the statements of lines 2-3 or the statements of lines 4-5. The value
returned by the consensus object is sealed by the first atomic operation that is
executed. It is 0 if the first operation on X is X.fetch&add2(), and 1 if first op-
eration on X is X.test&set(). The reader can check that, if the first operation on
X is fetch&add2(), X becomes and remains even forever. If it is test&set(), X

becomes and remains odd forever. In the first case, only 0 can be decided, while
in the second case, only 1 can be decided.

Relaxing object operations In [46] the authors consider many classical objects
(such as queues, stacks, sets) and relax the semantics of their operations in order
to see if these relaxations modify the consensus number of the relaxed object,
and consequently are more tolerant to the net effect of asynchrony and process
failures.

As an example let us consider the well-known type Q (queue) defined the three
following operations: enqueue(), which adds a value at the end of the queue,
dequeue(), which returns the oldest value of the queue and suppresses it from the
queue, and peek(), which returns the oldest value without modifying the content
of the queue. The following relaxed queue type, denoted Qa,b,c, was introduced

11This is not a problem as it is possible to build a multivalued consensus object from binary
consensus objects, see [40].

and investigated in [46]. Each possible (statically defined) triple of the type pa-
rameters a, b, and c gives rise to an instance of a relaxed queue type, defined the
three following atomic operations:

• enqueuea(v) inserts the value v at any one of the a positions at the end of
the queue12.

• dequeueb() returns and removes one of the values at the b positions at the
end of the queue.

• peekc() returns (without removing it) one of the values at the b positions at
the end of the queue.

Whatever the operation, it returns a default value ⊥ if the queue is empty. when
the type parameter a, b, or c is equal to 0, the corresponding operation is not
supported. When it is ∞ it means that the corresponding operation can add, re-
move/return a value at any position. It is easy to see that the object type Q1,1,0

is the usual queue object (without peek() operation), whose consensus number is
2 [22]. Let us observe that the smaller the value of the parameter a ≥ 1, b ≥ 1,
or c ≥ 1, the stronger the constraint imposed by the corresponding operation.
Among many others, the following results are shown in [46].

• The consensus number of Q1,1,1 is∞, while the consensus number of Q∞,1,1
is 2. This come from the fact that enqueue∞() allows a value to be inserted
at any position, while enqueue1() imposes a very constrained order on value
insertions.

• The consensus number of Q1,1,2 is 2 (this follows from the relaxed operation
peek2()).

• For a > 0, the consensus number of Qa,0,1 is +∞.

The notion of power number of an object Obstruction-freedom is a progress
condition progress condition (hence a termination property) introduced in [23].
It was later extended to k-obstruction-freedom in [48] as follows (k = 1 gives
obstruction-freedom):

• Termination. If a set of at most k processes execute alone during a long
enough time and do not crash, each of them terminates its operation.

Hence, k-obstruction-freedom states that, during long enough period during which
the concurrency degree does not bypass k, the operations terminate. While wait-
freedom is independent of both the concurrency pattern and the failure pattern,
obstruction-freedom depend on them. More general asymmetric progress con-
ditions have been introduced in [30]. The computational structure of progress
conditions is investigated in [48].

12The position of an item (value) in a queue is the number of items that precede it plus 1.

The notion of the power number of an object type T (denoted PN(T)) was
introduced in [48]. It is the largest integer k such that it is possible to imple-
ment a k-obstruction-free consensus object for any number of processes, using
any number of atomic read/write registers, and any number of objects of type T

(the registers and the objects of type T being wait-free). If there is no such largest
integer k, PN(T) = +∞.

Hence, the power number of an object type T establishes a strong relation
linking k-obstruction-freedom and wait-freedom, when objects of type T are used.
Let us remind that CN(T) is the consensus number of the objects of type T . It is
shown in [48] that CN(T) = PN(T).

The notion of set agreement power As defined in [15], the set agreement
power of an object type T is the infinite sequence ⟨n1, ..., nk, nk+1, ...⟩, such that for
any ≥ 1, nk is the greatest number of processes for which it is possible to wait-free
solve k-set agreement with any number of objects of type T and read/write regis-
ters. As an example, for n ≥ 2, the set agreement power of the (n − 1)-consensus
object type is ⟨n1, ..., nk, nk+1, ...⟩, where for all k ≥ 1, nk = k(n − 1) [13].

It is shown in [10] that at each level ℓ ≥ 2 of the consensus hierarchy, there
are objects that, while they have the same set agreement power, are not equiva-
lent (i.e., at least one of them cannot implement the other). This result has been
extended to deterministic objects in [11].

From the process crash model to the crash-recovery model The consensus
hierarchy in a crash-recovery model has first been addressed in [5]. This model
assumes that a failure resets the local variables of a process to their initial values
(the local variables include the program counter of the process), and preserves the
state of the shared objects. It is shown in [5] that consensus remains sufficently
powerfull to implement (in this model) any sequentially defined concurrent object.

The notion of recoverable consensus has been introduced in [21]. Such a con-
sensus is defined by the classical Validity and Agreement properties of consensus
and the following Termination property: Each time a process invokes a recov-
erable consensus instance, it returns a decision or crashes. This means that if a
process invokes a recoverable consensus instance and, while executing it, crashes
a finite number of times, it decides. It is shown in [21] that the consensus number
of the Test&Set() operation (which is 2 in the crash failure model) is still 2 in
the crash-recovery model if failures are simulataneous, but drops to 1 if failures
are independent. As stated in [21], this captures the fact that, “when failures are
simultaneous, a process recovers with more information regarding the states of
other processes, than when failures are independent”.

3 Life in the “Consensus Number 1” Land

This section presents an infinite family of deterministic objects, denoted WRN3,
WRN4, ..., WRNk, WRNk+1, etc., such that

• none of them can be wait-free built from atomic read/write registers only,

• WRNk+1 can be wait-free built from WRNk but cannot build it, and

• none of these objects can wait-free implement a 2-consensus in an n-process
asynchronous crash-prone system.

It follows that this infinite countable family of objects are totally ordered by
their computability power, are stronger than read/write registers (whose consen-
sus number is 1), and are weaker than all the objects whose consensus number is
greater or equal to 2. The results presented in this section are due to E. Daian,
G.Losa, Y. Afek, and E. Gafni [14] and concern deterministic objects. The case
of non-deterministic objects, for which there are similar results, was addressed
in [38].

3.1 The family of “Write and Read Next” objects

The WRN object family (where WRN stands for Write and Read Next) is a generic
family, in which each instance of the genericity parameter k (k > 2) gives rise to a
specific object type denoted WRNk.

A WRNk object has a single atomic operation denoted wrnk(), which can be
invoked at most once by a process. From an conceptual point of view, this object
can be seen as an array A[0..k − 1] initialized to [⊥, · · · ,⊥]. A process pi invokes
wrnk(i, v) where i ∈ {0, · · · , k− 1} and v is a value to be stored in the WRN object.
The effect of the invocation of wrnk(i, v) is defined by the atomic execution of
Algorithm 1, where it is assumed that v ! ⊥. The ring structure ⟨i, (i+1), ..., (k−
1), 0, 1, ..., i⟩, and its use in the write of A[i] followed by the read of A[(i +
1) mod k] is the key providing the computability power of a WRNk object.

operation wrnk(i, v) is % i ∈ {1, · · · , k − 1}, v ! ⊥

(1) A[i]← v;
(2) return(A[(i + 1) mod k]).

Algorithm 1: The operation wrnk(i, v) (invoked by pi)

It is easy to see that the object WRNk is deterministic (namely, the value re-
turned by wrnk() and the new value of A depend on the previous value of A and
the input parameters of the wrnk() operation only).

3.2 Computability power of WRNk in a k-process system

This section shows that a WRNk object (k > 2) cannot be built from read/write
registers (and is consequently stronger than them), and cannot solve consensus
for two processes in a set of k processes. To this end it shows that, for any k > 2,
it is possible to solve (k, k − 1)-set consensus (i.e., (k − 1)-set consensus in a set
of k processes) from a WRNk object, and WRNk can be built from (k, k − 1)-set
consensus and atomic read/write registers. The result then follows from the fact
that (k − 1)-set consensus cannot be wait-free solved from read/write registers [6,
26, 45], and cannot solve consensus for two processes.

From a WRNk object to (k, k − 1)-set consensus Algorithm 2 realizes such a
construction. It uses an underlying object WRNk, accessed by k processes p0, ...,
pk−1 (where i is the index/identity of pi). A process pi first invokes WRNk.wrnk(i, vi)
where vi is the value it proposes (line 1). Hence, it writes the entry i of the under-
lying WRNk object and reads its next entry, namely (i + 1) mod k (Algorithm 1).
Then (line 2), if the value it obtains from WRNk is different from ⊥, it returns it.
Otherwise, it returns the value vi it proposed.

operation propose(i, vi) is % code for pi

(1) aux← WRNk.wrnk(i, vi);
(2) if (aux ! ⊥) then r ← aux else r ← vi end if;
(3) return(r).

Algorithm 2: The operation propose(i, vi) of (k, k−1)-set agreement in a k-process
system

Algorithm 2 is trivially wait-free. Let us also observe that, as the process
indices are in {0, · · · , (k − 1) and no two processes have the same index, any entry
of WRNk can be written by a single process. Moreover, due to the content of
WRNk and line 2, it follows that only proposed values can be returned.

Let us consider any process pj that decides. Such a process returns the value
written by p(j+1) mod k, or its own value v j if p(j+1) mod k crashed before deposit-
ing its proposed value in WRNk. As the invocations of WRNk.wrnk() are atomic
(i.e., they appear as if they have been executed one after the other in a real time-
compliant order), it follows that, the first process that invokes WRNk.wrnk() al-
ways returns its own value. Moreover, if all the processes decide, all the entries of
WRNk have been filled in, and the last process, say px, that executes WRNk.wrnk(),
returns the value written by p(x+1) mod k. Hence, the value proposed by px is not
decided, and consequently at most (k − 1) values are decided.

From (k, k − 1)-set consensus to a WRNk object This construction (not pre-
sented here, see [14]) starts from a solution to (k, k − 1)-set consensus, which is
first transformed into a (k, k−1)-strong set election object. This object is such that
if a process pi decides the value v j proposed by a process pj, then, if pj decides, it
decides also v j (implementations are described in [6, 20]). The construction of a
WRNk object from a (k, k − 1)-strong set election object uses additional snapshot
objects [1], the consensus number of which is 1.

What has been shown The previous discussion has shown that, in an asyn-
chronous k-process system, where any number of processes may crash, (k, k −
1)-set agreement and WRNk objects are computationally equivalent. Hence, as
the computability power of (k, k − 1)-set agreement is stronger than the one of
read/write registers and is weaker than the one of objects whose consensus num-
ber is 2, the same follows from WRNk objects in a k-process system.

3.3 When there are more than k processes

Where is the difficulty Let us now assume that there are n > k processes, p0,
..., pn−1, and WRNk objects, each being accessed by a specific set of k processes,
e.g., pi1 , ..., pik . There are two cases according to the fact, for each WRNk object,
the subset of k processes that access it is statically or dynamically defined. We
consider here the case where this set is statically defined. The reader interested in
the dynamic case will consult [14].

Whatever the case, the important issue that has to be solved comes from the
fact that the k entries 0, 1, ..., (k − 1) of the WRNk object, do not necessarily
correspond to the k indexes (belonging to the set {0, ..., n − 1}) of the k that access
the considered WRNk object. This means that addressing issues must be solved to
pair-wise associate the indexes of the k concerned processes with the k entries of
a WRNk object.

Index addressing in the static case Let comb(k, n) be the number of subsets of
k elements taken from a set of n > k elements. There are consequently comb(k, n)
possible WRNk objects, namely an object per subset of k different processes. Let
us order all these subsets from 1 to comb(k, n), obtaining the subsets sbs1, ...,
sbscomb(k,n). Moreover, let us order the process indexes in each subset sbsx, ac-
cording to their increasing values. Finally, for each x ∈ {1, ..., comb(k, n)}, let
fx(i), where i is a process index belonging to sbsx, the position of i (starting from
position 0) in the ordered subset sbsx. Hence fx(i) is an index in {0, ..., k − 1}, and
for any two different indexes i, j ∈ sbsx we have fx(i) ! fx(j).

(k, k − 1)-Set agreement in an n-process system A construction of a (k, k − 1)-
set agreement object in a system of n processes, is described in Algorithm 3.
This construction is a simple “index reduction”. Let sbsx be the set of processes
that invoke the considered WRNk(sbsx) object, which is consequently denoted
WRNk(sbsx). The index mapping function fx() is known by the processes in sbsx.

operation propose(i, vi) is % code for pi, i ∈ sbsx

(1) i′ ← fx(i);
(2) aux← WRNk(sbsx).wrn(i′, vi);
(3) if (aux ! ⊥) then r ← aux else r ← vi end if;
(4) return(r).

Algorithm 3: The operation propose(i, vi) of (k, k − 1)-set agreement in an n-
process system

3.4 Infinite hierarchy inside the “Consensus Number 1” land

The object family {WRNk}k≥3 defines an infinite hierarchy As already said, it
has been shown in [6, 26, 45]13 that it is not possible for n processes, n ≥ k ≥ 2, to
build (k, k − 1)-set agreement objects from atomic read/write registers. Moreover,
as just seen, (k, k − 1)-set agreement objects and WRNk objects are equivalent
(from a computability point of view) in an n-process system where n ≥ k ≥ 3. It
follows that WRNk objects cannot either be built from atomic read/write registers.

On another side, given n processes communicating through atomic read/write
registers and (k, k−1)-set agreement objects where k ≥ 3, it is not possible to solve
consensus for two processes [13, 24, 30]. Hence it follows that it is not possible
to solve consensus for two processes from WRNk objects when n ≥ k ≥ 3, and
consequently their consensus number is 1.

Finally, considering an n-process system, where n ≥ k+ x and x ≥ 1, (k+ x, k−

1+ x)-set agreement objects can be built from (k, k− 1)-set agreement objects and
read/write registers, while (k, k − 1)-set agreement objects cannot be built from
(k + x, k − 1 + x)-set agreement objects [13, 24]. It follows from the previous
observations that, in an n-process system where n ≥ k ≥ 3, WRNk+1 objects can
be built from WRNk objects, while WRNk objects cannot be built from WRNk+1

objects.
Let us remind that CN(2) denote any object whose consensus number is 2.

The meaning of the symbol “<” was introduced in Section 2.3. Piecing together
the previous observations we have:

R/W Register < · · · <WRNk+1 <WRNk < · · · <WRN3 < CN(2).

13These articles were foundational in introducing topology to capture the behavior of distributed
computations.

The object WRN2 Let p0 and p1 be two processes that access the object WRN2.
The value returned by process pi, i ∈ {0, 1} when it invokes wrn(i, vi) depends
on the fact it is or not the first process to invoke it. According to the atomic-
ity of WRN2, if pi is the first, its invocation wrn(i, vi) returns the value it pro-
poses, namely vi, otherwise it returns the value previously deposited in WRN2,
by the other process. Hence, WRN2 allows two processes to solve consensus,
i.e., CN(WNR2) = 2. From a consensus number hierarchy’s point of view, we
consequently have WRN3 <WRN2.

4 Life in Each “Consensus Number ≥ 2” Land

For each value of m ≥ 2, this section presents a countable infinite family of ob-
jects, denoted AEGm,2, AEGm,3, ..., AEGm,k, etc., such that, for k ≥ 2, we have

• the consensus number of AEGm,k is m,

• AEGm,k can be wait-free implemented from AEGm,k+1,

• AEGm,k+1 cannot be wait-free implemented from AEGm,k objects and atomic
read/write register in a system of = mk + m + k processes.

It follows that, at each level m ≥ 2 of the consensus hierarchy, there is an in-
finite countable family of objects that are totally ordered by their computability
power. All the results presented in this section are due to Y. Afek, F. Ellen, and E.
Gafni [2] (hence, the name “AEG” of these objects forged from the first letter of
their surnames).

4.1 The family of AEGm,k objects

Let m, k ≥ 2. The AEGm,k object seems partly inspired from the construction
of k-set agreement objects in an n-process system from j-set agreement objects
provided for free for any subset of m-processes. More precisely, an important
result in this context is the following theorem due to [13, 24]14.

Theorem 1. Let n > k and m > j be positive integers. It is possible to wait-

free build k-set agreement objects in a system of n processes from j-set agreement

objects accessed by m processes if and only if:
(

k ≥ j
)

∧
(

n j ≤ m k
)

∧
(

k ≥ min(j⌈ n
m
⌉, j⌊ n

m
⌋ + n − m⌊ n

m
⌋)
)

.

14This theorem was also instrumental in the design of an optimal k-set agreement algorithm
in synchronous crash-prone message-passing systems [36], and in the establishment of a strong
relation linking adaptive renaming and k-set agreement [20].

The AEG object family is a generic family, with two genericity parameter
n, k ≥ 2. Each value of m gives rise to a sub-family AEGm,k, in which each
instance of the parameter k ≥ 2 give rise to a specific object.

An AEGm,k object has a single atomic operation denoted aeg_write(), which
is invoked at most once by each process. From a conceptual point of view, this
object can be seen as an array with k entries, namely A[1..k], plus a counter. A pro-
cess invokes aeg_writem,k(v), where v is the value it wants to write in the AEGm,k

object. The first (mk+ k− 1) invocations of aeg_writem,k(v) return a value that has
been written in A, while all the following invocations return the default value ⊥.

More precisely, we have the following. Let us partition the sequence of the first
(mk + k − 1) invocations of aeg_writem,k() into k sub-sequences of m invocations
each, and a last sub-sequence of (k − 1) invocations (see Fig. 4). Given the j-th
invocation of aeg_writem,k(), Let CNT be an number of invocations aeg_writem,k()
previously executed (hence, CNT = j − 1).

• Considering the first sub-sequence of m invocations of aeg_write(), let a1 be
the input parameter of its first invocation. This value is written in A[1]. The
other (m− 1) invocations do not write. Moreover, all these m invocations of
this first sub-sequence return a1 Fig. 4).

• The same occurs for each sub-sequence of m invocations of aeg_write(),
For the x-th sub-sequence, 2 ≤ x ≤ k, let ax be the input parameter of
its first invocation. This value is written in A[x]. The remaining (m − 1)
invocations of this sub-sequence do not write, and all the m invocations of
this x-th sub-sequence return ax.

• Finally, For mk + 1 ≤ j ≤ mk + k − 1, the j-th invocation of aeg_write()
does not write and returns the value in A[mk + k − 1 −CNT], where CNT is
the number of invocations of aeg_write() previously executed.

a1 a1

mk + 1 ≤ j ≤ mk + k − 1

a1 ax a1ak−1ax ax

1 ≤ j ≤ m (x − 1)m + 1 ≤ j ≤ xm (k − 1)m + 1 ≤ j ≤ mk

2 ≤ x ≤ k − 1Case x = 1 Case x = k

a(k−1)m a(k−1)m

1 ≤ j ≤ mk + k − 1

Figure 4: Value returned by the j-th invocation of aeg_writem,k()

Algorithm 4 is a simple translation of the previous description of aeg_writem,k().
Let us remind that this operation is atomic. It is easy to see that an AEGm,k object
is deterministic.

operation aeg_writem,k(vi) is % code for pi

(1) if (CNT = mk + k − 1) then return(⊥) end if;
(2) if (CNT < mk)

(3) then x← ⌊CNT
m
⌋ + 1;

(4) if CNT = (x − 1)m then A[x]← v end if
(5) else x← km + k − (CNT + 1)
(6) end if;
(7) CNT ← CNT + 1;
(8) return(A[x]).

Algorithm 4: The operation aeg_writem,k(vi) invoked by pi

4.2 The consensus number of an AEGm,k object is m

Assuming m ≥ 2, let us consider the operation described in Algorithm 5, which
uses an underlying AEGm,k object denoted AEGm,k. It is easy to see that this algo-
rithm solves consensus in an m-process system, and consequently the consensus
number of AEGm,k is at least m.

operation proposem,k(vi) is % code for pi

(1) r ← AEGm,k.aeg_write(vi);
(2) return(r).

Algorithm 5: m-Process consensus on top of an AEGm,k object

In a very interesting way, replacing in Algorithm 5 the set of m processes by a
larger set of n = mk + k − 1 processes, we obtain the more general theorem.

Theorem 2. Let n = mk + k − 1 and m, k ≥ 2. A k-set agreement object can be

implemented from an AEGm,k object in an n-process system.

While it is simple to show that the consensus number of the AEGm,k object
is at least m, to show that it is exactly m is much more difficult, see [2] where is
proved the following theorem.

Theorem 3. Let m, k ≥ 2. There is no deterministic algorithm implementing

binary consensus from AEGm,k objects and read/write registers in an (m + 1)-
process system.

It follows from Algorithm 5 and Theorem 3 that the consensus number of
AEGm,k is m.

Theorem 4. Let n ≥ mk + k − 1 and m, k ≥ 2. An AEGm,k object cannot be

implemented from m-consensus objects and read/write registers in an n-process

system.

This theorem can be easily proved by contradiction. Consider n = mk + k −

1, let us assume the contrary, namely, an AEGm,k object can be built from m-
consensus objects in an n-process system. Using this AEGm,k object, It follows
from Theorem 2 that a k-set agreement object can be built in an (km+k−1)-process
system enriched with m-consensus objects. But, as mk+k−1

k
= m+1− 1

k
> 1

m
, which

contradicts Theorem 1.

4.3 An infinite hierarchy

inside each “Consensus Number m” land, m ≥ 1

AEGm,k can be implemented from AEGm,k+1 Algorithm 6 presents a simple
construction of an AEGm,k object from an AEGm,k+1, from which it follows that
(while they have the same consensus number, namely m) AEGm,k+1 objects are
at least as powerful as AEGm,k objects. This implementation is based on a spe-
cific initialization of the internal read/write registers implementing the underlying
AEGm,k+1 object. It is assumed that the value proposed by a process is a positive
integer.

internal ad hoc initialization of the underlying AEGm,k+1 object:
CNT ← m; A[1]← 0.

operation aeg_writem,k(v) is % code for any pi

(1) aux← AEGm,k+1.aeg_writem,k+1(v + 1);
(2) if (aux > 0) then r ← aux − 1 else r ← ⊥ end if;
(3) return(r).

Algorithm 6: AEGm,k object from AEGm,k+1 object

This algorithm consists in a simple “elimination” of the first entry of the un-
derlying array A[1..k + 1] implementing the AEGm,k+1 object.

AEGm,k+1 with respect to AEGm,k The following theorem is proved in [2],
which states that an AEGm,k+1 object is stronger than an AEGm,k object.

Theorem 5. Let m, k ≥ 2. An AEGm,k+1 object cannot be implemented from

AEGm,k objects and read/write registers in an (mk + m + k)-process system.

An infinite hierarchy inside each “consensus number m” land, m ≥ 2 It
follows from the previous discussion that, at each level m ≥ 2 of the consensus
hierarchy, that, we have

CN(m − 1) < AEGm,2 · · · < AEGm,k < · · · < AEGm,k+1 < · · · < CN(m + 1).

5 Conclusion

The article constitutes a short visit to the notion of consensus number, which is a
central notion as soon as one is interested in universal wait-free constructions of
objects defined by a sequential specification. The reader interested in more devel-
opments can consult [41] for asynchronous crash-prone shared memory systems,
and [43] for asynchronous crash-prone message-passing systems.

The following intriguing issue remains open: “is 1 a special number?” More
precisely, the family of objects WRNk was introduced to show there is life in the
land of consensus number 1, while the family of objects AEGm,k was introduced
to show there is life in each level m ≥ 2 of the consensus hierarchy. The question
is then “is there a single object family –instead of two– that show there is life at
all the levels of the consensus hierarchy?”

Distributed universality is a fascinating topic. A more general notion of a
k-universal construction was introduced in [19]. Such a construction considers
the simultaneous construction of k objects (instead of only one), each defined by a
specific type, and ensures that at least one of these objects progresses forever. This
construction relies on k-SC objects (defined in [3]) instead of consensus objects.
A still more general notion of (k, ℓ)-universal construction was proposed in [44]
where 1 ≤ ℓ ≤ k, considers the case where, not at least one but at least ℓ objects
progress forever, where ℓ is any predefined constant in [1..k].

It follows from the results exposed in this introductory survey that, neither the
notion of consensus number, nor the notion of set agreement power, characterizes
the exact computability power of all the deterministic (and non-deterministic [38])
objects. On a close topic, the reader interested in the evolution of synchronization
in the past fifty years can consult [39]. The interested reader will also find in [49]
a study on the computability power of anonymous registers15.

Acknowledgments

The author wants to thank the authors of all the papers cited in the reference list
(and even a few others!). Without them this short introductory survey would not
exist. A special thanks to J. Losa for a very interesting email exchange on topics
related to this paper and more general ideas on fault-tolerant distributed computing
models.

This work was partially supported by the French ANR project DESCARTES

15Among other results, it is shown in [49] that, while the consensus number of an anonymous
read/write bit is 1, this object is computationally weaker than a non-anonymous bit and weaker
than an anonymous read/write register, whose consensus numbers are also 1.

devoted to distributed software engineering (ANR-16-CE40-0023-03) and the De-
partment of Computing of Hong Kong Polytechnic University.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic snapshots

of shared memory. Journal of the ACM, 40(4):873-890 (1993)

[2] Afek Y., Ellen F., and Gafni E., Deterministic objects: life beyond consensus. Proc.

35th ACM Symposium on Principles of Distributed Computing (PODC’16), ACM

Press, pp. 97-106 (2016)

[3] Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous

consensus problem. Distributed Computing, 22(3):185-195 (2010)

[4] Bazzi R. A., Neiger G., and Peterson G. L., On the use of registers in achieving

wait-free consensus. Distributed Computing, 10(3):117-127 (1997)

[5] Berryhill R., Golab W., and Tripunitara M., Robust shared objects for non-volatile

main memory. Proc. 19th Int’l Conference on Principles of Distributed Systems

(OPODIS’15), LIPICs, Volume 46, pp. 20:1âĂŞ20:17 (2015)

[6] Borowsky E. and Gafni E., Generalized FLP impossibility results for t-resilient

asynchronous computations. Proc. 25th ACM Symposium on Theory of Distributed

Computing (STOC’93), ACM Press, pp. 91-100 (1993)

[7] Brinch Hansen, P., The origin of concurrent programming. Springer, 534 pages,

ISBN 0-387-95401-5 (2002)

[8] Censor-Hillel K., Petrank E., and Timnat S., Help! Proc. 34th Symposium on Prin-

ciples of Distributed Computing (PODC’15), ACM Press, pp. 241-250 (2015)

[9] Chandra T.D. and Toueg S., Unreliable failure detectors for reliable distributed sys-

tems. Journal of the ACM, 43(2):225-267 (1996)

[10] Chan D. Y. C., Hadzilacos V., and Toueg S., Life beyond set agreement. Proc. 36th

ACM Symposium on Principles of Distributed Computing (PODC’17), ACM Press,

pp. 345-354 (2017)

[11] Chan D. Y. C., Hadzilacos V., and Toueg S., On the classification of determinis-

tic objects via set agreement power. Proc. 37th ACM Symposium on Principles of

Distributed Computing (PODC’18), ACM Press, pp. 71-80 (2018)

[12] Chaudhuri S., More choices allow more faults: set consensus problems in totally

asynchronous systems. Information and Computation, 105:132-158 (1993)

[13] Chaudhuri S. and Reiners P., Understanding the set consensus partial order using the

Borowsky-Gafni simulation. Proc. 10th Int’l Workshop on Distributed Algorithms,

Springer LNCS 1151, pp. 362-379 (1996)

[14] Daian E., Losa G., Afek Y., and Gafni E., A wealth of sub-consensus deterministic

objects. Proc. 32nd International Symposium on Distributed Computing (DISC’18),

LIPICS 121, Article 17, 17 pages (2018)

[15] Delporte-Gallet C., Fauconnier H., Gafni E., and Kuznetsov P., Set consensus collec-

tions are decidable. Proc. 20th Int’l Conference on Principles of Distributed Com-

puting (OPODIS’16), LIPICS Vol. 70, Article 7, 17 pages (2016)

[16] Dijkstra E .W., Solution of a problem in concurrent programming control. Commu-

nications of the ACM, 8(9):569 (1965)

[17] Ellen F., Gelashvili G., Shavit N. and Zhu L., A complexity-based hierarchy for

multiprocessor synchronization (Extended abstract). Proc. 35th ACM Symposium on

Principles of Distributed Computing (PODC’16), ACM Press, pp. 289-298 (2016)

[18] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus

with one faulty process. Journal of the ACM, 32(2):374-382 (1985)

[19] Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int’l Conference

on Concurrency Theory (CONCUR’11), Springer LNCS 6901, pp. 17-27 (2011)

[20] Gafni E., Mostéfaoui, Raynal M., and Travers C., From adaptive renaming to set

agreement. Theoretical Computer Science, 410:1328-1335 (2009)

[21] Golab W., The recoverable consensus hierarchy (Brief announcement). Proc. 38th

ACM Symposium on Principles of Distributed Computing (PODC’19), ACM Press,

pp. 212-215 (2019). Full version: Recoverable consensus in shared memory,

ArXiv:1804.10597v2 (2018)

[22] Herlihy M. P., Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems, 13(1):124- 149, (1991)

[23] Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization:

double-ended queues as an example. Proc. 23th Int’l IEEE Conference on Dis-

tributed Computing Systems (ICDCS’03), IEEE Press, pp. 522-529 (2003)

[24] Herlihy M.P. and Rajsbaum R., Algebraic spans. Mathematical Structures in Com-

puter Science, 10(4):549-573 (2000)

[25] Herlihy M., Rajsbaum S., and Raynal M., Power and limits of distributed computing

shared memory models. Theoretical Computer Science, 509:3-24 (2013)

[26] Herlihy M.P. and Shavit N., The topological structure of asynchronous computabil-

ity. Journal of the ACM, 46(6):858-923 (1999)

[27] Herlihy M. and Shavit N., The art of multiprocessor programming. Morgan Kauf-

mann, 508 pages, ISBN 978-0-12-370591-4 (2008)

[28] Herlihy M.P. and Wing J.M., Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems, 12(3):463-

492 (1990)

[29] Imbs D. and Raynal M., The multiplicative power of consensus numbers. Proc. 29th

ACM Symposium on Principles of Distributed Computing (PODC’10), ACM Press,

pp. 26-35 (2010)

[30] Imbs D., Raynal M., and Taubenfeld G., On asymmetric progress conditions. Proc.

29th ACM Symposium on Principles of Distributed Computing (PODC’10), ACM

Press, pp. 55-64 (2010)

[31] Lamport L., Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558-565 (1978)

[32] Lamport L., On interprocess communication, Part I: basic formalism. Distributed

Computing, 1(2):77-85 (1986)

[33] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable

asynchronous processes. Advances in Computing Research, 4:163-183, JAI Press

(1987)

[34] Misra J., Axioms for memory access in asynchronous hardware systems. ACM

Transactions on Programming Languages and Systems, 8(1):142-153 (1986)

[35] Mostéfaoui A., Perrin M., and Raynal M., A simple object that spans the whole

consensus hierarchy. Parallel Processing Letters, Vol. 28(2), 9 pages (2018)

[36] Mostéfaoui A. Raynal M., and Travers C., Narrowing power vs efficiency in syn-

chronous set agreement: relationship, algorithms and lower bound. Theoretical

Computer Science 411:58-69 (2010

[37] Pease M., Shostak R., and Lamport L., Reaching agreement in the presence of faults.

Journal of the ACM, 27:228-234 (1980)

[38] Rachman O., Anomalies in the wait-free hierachy. Proc. 8th Int’l Workshop on on

Distributed Algorithms (WDAG’94, Now DISC Symposium), Springer, LNCS 857,

pp. 156-163 (1994)

[39] Rajsbaum S. and Raynal M., Mastering concurrent computing through sequential

thinking: a half-century evolution. To appear in Communications of the ACM (2019)

[40] Raynal M., Concurrent programming: algorithms, principles and foundations.

Springer, 515 pages, ISBN 978-3-642-32026-2 (2013)

[41] Raynal M., Distributed universal constructions: a guided tour. Electronic Bulletin of

EATCS (European Association of Theoretical Computer Science), 121:65-96 (2017)

[42] Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic ap-

proach. Springer, 492 pages, ISBN: 978-3-319-94140-0 (2018)

[43] Raynal M., The Notion of universality in crash-prone asynchronous message-

passing systems: a tutorial. Proc. 38th Int’l Symposium on Reliable Distributed

Systems (SRDS 2019), IEEE Press, 17 pages (2019)

[44] Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica,

76(2):502-535 (2016)

[45] Saks M. and Zaharoglou F., Wait-free k-set agreement is impossible: the topology

of public knowledge. SIAM Journal on Computing, 29(5):1449-1483 (2000)

[46] Shavit N. and Taubenfeld G., The computability of relaxed data structures: queues

and stacks as examples. Distributed Computing, 29(5):395-407 (2016)

[47] Taubenfeld G., Synchronization algorithms and concurrent programming. 423

pages, Pearson Education/Prentice Hall, ISBN 0-131-97259-6 (2006)

[48] Taubenfeld G., The computational structure of progress conditions. Proc. 24th Int’l

Symposium on Distributed Computing (DISC’10), Springer LNCS 6343, pp. 221-

235 (2010)

[49] Taubenfeld G., The set agreement power is not a precise characterization for oblivi-

ous deterministic anonymous objects. Proc. 26th Int’l Colloquium on Structural In-

formation and Communication Complexity (SIROCCO’19), Springer LNCS 11639,

pp. 290-304 (2019)

[50] Turing A. M., On computable numbers with an application to the Entschei-

dungsproblem. Proc. of the London Mathematical Society, 42:230-265 (1936)

	Introduction
	Gathering with extremely restricted visibility
	Model and problems
	Algorithm
	Lower bounds
	Gathering problem
	Convergence problem

	Breaking symmetry
	Fault tolerance
	Future works

	Learning to gather
	State of the art
	Model
	Q-learning
	Setting
	Rewards
	Learning process
	Problem

	Results
	Results for 10 agents
	Scalability and comparison with a hardcoded algorithm

	Future works

	Introduction (1)
	The Consensus Object and the Consensus Hierarchy
	Consensus
	From consensus objects to a universal construction
	The consensus hierarchy
	A glance inside the consensus number land

	Life in the ``Consensus Number 1'' Land
	The family of ``Write and Read Next'' objects
	Computability power of WRNk in a k-process system
	When there are more than k processes
	Infinite hierarchy inside the ``Consensus Number 1'' land

	Life in Each ``Consensus Number 2'' Land
	The family of AEGm,k objects
	The consensus number of an AEGm,k object is m
	An infinite hierarchy inside each ``Consensus Number m'' land, m 1

	Conclusion

