THE EpucatioN CoLumMN

BY

JURAJ HROMKOVIE

Department of Computer Science
ETH Ziirich
Universititstrasse 6, 8092 Ziirich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch

An Elementary Approach Towards
Teaching Dynamic Programming

Hans-Joachim Bockenhauer
Department of Computer Science, ETH Ziirich
hjb@inf.ethz.ch

Tobias Kohn

University of Cambridge
tk5340cam. ac.uk

Dennis Komm
Piadagogische Hochschule Graubtinden, Chur
Department of Computer Science, ETH Zurich

dennis.komm@inf.ethz.ch

Giovanni Serafini
Department of Computer Science, ETH Ziirich

giovanni.serafini@inf.ethz.ch

Abstract

Dynamic programming has its firm place in the toolbox of a computer
scientist. Its educational value, however, goes far beyond the border
of our discipline. The example of dynamic programming illustrates
how such an important algorithm design principle, and more generally
algorithmic thinking skills, can be applied to solve problems in other
fields. We describe our experiences with an approach towards teaching
dynamic programming without a formal introduction to recursion,
which allowed us to successfully introduce it to first-semester students
of natural sciences with almost no background in computer science.

1 Introduction

For many non-majors in disciplines related to mathematics, natural sciences
and engineering, computer science is a mandatory part of the university

hjb@inf.ethz.ch
tk534@cam.ac.uk
dennis.komm@inf.ethz.ch
giovanni.serafini@inf.ethz.ch

curriculum. The objective of such a course is typically to introduce the
students to those aspects of algorithmic thinking that may be needed for
further studies and possibly for research in their fields. In addition to teaching
the basics of programming in a language such as Python or Matlab, we feel
it is a necessity to also convey a basic understanding of algorithmic design
principles, with particular focus on the efficiency of algorithms.

Efficiency of algorithms is one of the most fundamental pillars of computer
science. For many problems, a naive approach becomes quickly infeasible,
and stronger methods are needed — even though such stronger methods might
not always exist. Since our classes address non-majors, a discussion of these
principles is most fruitful when based on actual problems and examples, if
possible even taken from a field familiar to the students.

As an important algorithmic design principle, we teach dynamic program-
ming, which is the method of breaking down complex problems into smaller
problems, which are easier solved, and then lead to a solution to the original
complex problem. Typically, dynamic programming is strongly related to
recursion. However, due to our constraints, recursion is not formally covered
in the introductory programming classes. Accordingly, we were not able
to build a discussion of dynamic programming on this major programming
principle.

In this paper, we present our approach to include dynamic programming
into the introductory programming course for natural science students. After
covering the basics of both Python and Matlab [6], we discuss dynamic
programming in class, based on the alignment problem for DNA sequences.

1.1 Dynamic Programming and Recursion

Dynamic programming can serve as an example for a widely useful technique
that illustrates the power of clever algorithm design. In many standard text-
books providing an introduction to algorithm design, dynamic programming
is discussed after the principle of recursion and motivated by analyzing the
drawbacks of a recursive solution to certain problems such as computing the
Fibonacci numbers [14] or some scheduling problem [11]. The central task
in dynamic programming, namely building solutions for larger subproblems
from those for smaller ones, is often explicitly coined in terms of recursion [5].
For a detailed discussion of how to teach dynamic programming via recursion,
see also the paper by Forisek [g].

Inspired by the classical textbooks by Aho et al. [1] 2], we chose another,
more elementary approach, and centered our lecture around constructing and
filling out the dynamic programming table. We found that analyzing these
tables on the one hand enables an intuitive approach to analyze the time

complexity of an algorithm and on the other hand is well-suited for training
in a matrix-based programming language such as Matlab.

1.2 The DNA Alignment Problem

Since it offered the largest common ground for our students, we motivated
dynamic programming with examples from biology. Here, we describe one
such approach, which deals with the following scenario.

One of the most basic tasks in computational biology is to measure the
similarity of biological molecules such as DNA or proteins, e.g., for the purpose
of measuring the evolutionary distance between two given individuals or for
handling error-prone data. DNA molecules are formed by long chains of
four different small building blocks, the so-called nucleotides. The genetic
information carried by a DNA molecule is fully determined by the sequence
of these nucleotides; thus, it is convenient to encode a DNA molecule by a
string over a four-letter alphabet {A,C, G, T}, where the letters stand for the
four nucleotides Adenin, Cytosin, Guanin, and Thymin, respectively. This
reduces the task of comparing molecules to the much easier task of comparing
long strings. For a deeper insight into the biological background and the area
of string algorithms, we refer to the textbooks by Gusfield [9] or Béckenhauer
and Bongartz [3] 4].

In our lectures, we discuss only one very basic string comparison task. It
is easy to argue, while only using simple arguments, that a straightforward
brute-force approach towards solving this problem is infeasible. Consequently,
this example provides a rather impressive opportunity to point out the power
of dynamic programming by again using rather simple and straightforward
arguments. One of the main points raised is to compare exponential and
polynomial time complexity.

1.3 Classroom Experience

We taught the following material at various occasions, the largest being a
first-semester course of students of biology, pharmacology, environmental
sciences, health sciences and technology, agriculture, geology, and nutritional
sciences. The class typically lasts 90 minutes and takes place at one of the
largest halls at our university, with the audience usually consisting of several
hundred students. The chosen teaching method is direct instruction, enriched
by carefully planned questions that are expected to increase participation
and initiate discussion.

Other occasions at which the material was presented include a course on
computational biology at a community college, and various high school classes.

Although age and prior knowledge of the students may differ across the
groups, the didactic approach, the content as well as the learning objectives
are generally the same.

1.4 Didactical Aspects

Since computer science is yet just one among several concurring optional
subjects at high school in our country, we are not allowed to assume any
pertinent prior knowledge in concepts and methods of programming. A survey
in the first week of the lecture confirms that the majority of the students
is used to office applications and social media, but lacks even a minimal
scientific background in computer science when entering university.

When presenting this teaching unit on dynamic programming, our students
are assumed to already understand the basics of programming in Matlab,
including variables, conditional execution, and simple loops, but no recursion.
Furthermore, they have themselves designed simple algorithms of around ten
lines of code, and carried out some hands-on analyses of their algorithms with
respect to both correctness and running time.

In general terms, the teaching unit aims at introducing the students to the
notion of an algorithm design technique as a generalized method to approach
the solution of a given problem. We expect the students to become aware
that algorithm design techniques are special instances of problem solving
strategies [15], and that dynamic programming is only one among several
such paradigms [11]. Accordingly, we want our students to first search for
adequate design techniques when facing new computational problems in their
field of study or research subject.

The specific goals of our teaching materials and our lecture are the follow-
ing. 1. Analyzing the time complexity of algorithms, explaining the drawbacks
of brute-force strategies and the need for clever algorithm design. 2. Intro-
ducing dynamic programming as an example of a clever algorithm design
technique. 3. Modeling real-world problems, e.g., from biological applications,
as computer science tasks. 4. Training programming skills, especially dealing
with (multidimensional) arrays in Matlab or Python.

2 Designing the Algorithm

In the following, we describe the setting and our approach towards teaching
dynamic programming in an elementary way.

2.1 Modeling: The DNA Alignment Problem

We motivate the task as described above while usually giving a little more
context and, e.g., background information on how the DNA is obtained, etc.
At first, of course, we have to think of an accurate way to express how similar
two given strings are; in particular, simply taking the Hamming distance of
two strings, say, ACGTACGTACGTACGT and CGTACGTACGTACGTA, suggests that
they are not similar at all, although this probably does not reflect reality.
This is a good opportunity to talk about interdisciplinary approaches and
the process of modeling a biological problem in terms of computer science.
The two most important events that can happen to a DNA sequence are
point mutations, leading to the change of a single letter of the corresponding
string, and insertions or deletions of short subsequences. One of the most
straightforward, yet very meaningful approaches to define a distance measure
based on these two events is to consider the so-called edit distance, which is
due to Levenshtein [12], and which can be explained easily to students, even
without any background in computer science. Here, we allow the operation
of inserting spaces into the two strings in order to align them; every inserted
space yields a penalty of 1. Furthermore, whenever two different letters are at
the same position, this is called a mismatch, which also results in a penalty
of 1. The sum of all the penalties yields the cost of the given alignment, and
the cost of a best (i.e., cheapest) such alignment is called the edit distance of
the two strings.

Consider, e.g., the two strings s = GACGATTATG and ¢ = GATCGAATAG over
{A,C,G,T}. There are different ways to align them, e.g.,

GA-CGATTATG GAC-GATTATG d GACGAT----TA-TG
Y Y an Y
GATCGAATA-G GATCGAATAG- - =-GATCGAATAG--

where we marked positions that cause penalties by a gray background. The
three alignments result in penalties of 3, 5, and 10, respectively. Here, the
first alignment yields the best result of the three; the resulting cost is 3, and
it is easy to see that there is no better way of aligning s and ¢ with respect
to this distance measure. As a result, s and ¢ have edit distance 3.

2.2 A Brute-Force Approach

In what follows, the task is to find a best alignment for given s and ¢. After
explaining the problem like this in class, we start by analyzing the simplest
approach possible, namely to try out all possibilities and pick a best among
them. It is easy to explain, on an intuitive level, why this means trying
out exponentially many possibilities: Note that an alignment of two strings

is unambiguously defined by the positions where gaps are inserted into the
two strings. Counting the number of alignments that have to be considered
thus means counting the number of possibilities to insert the gaps. Suppose
both strings have the same number n of letters, i.e., s = s155...5, and
t =tity...ty, for s;,t; € {A,C,G, T} with 1 <4 < n. For the resulting string,
every position ¢ can be aligned as

which leads to 3" different alignments. Of course, this only gives a very loose
lower bound on the total number of possible alignments; there are many other
possibilities to align s and t. Without any formal introduction to running
time analysis or polynomial-time complexities, we can argue that n is usually
a string of some thousands of characters and therefore it is not possible to
find a best alignment by this brute-force approach; hence, we need to come
up with something more clever.

2.3 The Dynamic Programming Idea

This is the point where we introduce the concept of dynamic programming
as an indispensable part of the algorithmic toolbox. The general idea of
computing the solution to a given instance from the solutions for smaller
(sub-)instances is intuitively very plausible and easy to understand even with
very little previous knowledge. Nevertheless, finding the right set of smaller
instances to solve is not trivial in this case and nicely illustrates the work of
an algorithm designer.

In the case of the alignment problem with respect to the edit distance,
this creative work was first done by Needleman and Wunsch [13]. The idea is
to compute the edit distance for all pairs of prefixes of the two given strings,
including the empty prefix. This might be surprising at first glance since it
seems to require much extra work. Why is it necessary to compute a quadratic
number of optimal alignments instead of only one? From the point of view
of an experienced computer scientist, this question is easiest investigated
in terms of a recursive procedure. We reduce the task of computing the
alignment of two given strings to the task of computing it recursively for
three different prefix pairs of strictly smaller total length.

This basic idea behind the algorithm can be illustrated as follows. Again,
let us consider two strings s and ¢t with n letters each. Now consider the
last letters s, and t,. There are three options to align those: (1) we insert a
space beneath s, inducing a penalty of 1; (2) we insert a space above t,, again

leading to an additional cost of 1; or (3) we write s,, above t,, which causes
no penalty if s, = t,,, and a penalty of 1 otherwise. Observe that there is
always an optimal alignment in which there are no two spaces beneath each
other; thus, this option is ignored.

As an example, consider the two strings s = ATG and ¢ = TAG, and in
particular the third position. The three possibilities are

AT | @ ATG | = AT | @
TAG | = ™ | g " TA | G

The penalties are 1, 1, and 0, respectively. Hence, the value of an optimal
alignment for s and ¢ can be computed recursively from the three alignments
for the remaining string pairs after cutting off the last column of the alignment,
i.e., from the penalties for aligning AT and TAG, aligning ATG and TA, and
aligning AT and TA, respectively.

However, the main idea behind the dynamic programming approach is to
perform this recursive computation not via recursive function calls, but by
using a bottom-up approach of filling a table of penalty values. Since the
actual computation is only concerned with filling this table, we can explain
the algorithm without explicitly mentioning the concept of recursion. Cutting
off the last column of any possible alignment of the given strings s and ¢
can be motivated as follows. Assume we had a possibility to compute the
alignments for the three smaller instances; then we could also solve our actual
task. In this case, the only difficulty that is left is to find some sufficiently
easy small cases to start with, which will be the alignments of some string
with the empty string. In the following, we describe the procedure in more
detail.

2.4 Computing the Penalty Table

The common approach is to use a table P (for “penalties”) in order to both
illustrate and implement this idea. To be more general, we allow that s and
t have different lengths; say, s = sy...s,, and t = t;...t,. In this case, P
has a size of (m + 1) x (n+ 1), and the cell (¢, 7) of P with 0 <i <m and
0 < 7 < n contains the smallest penalty for aligning the first i letters of s
with the first j letters of ¢; we denote this value by P(i, j).

The special cases of the first row and column (with index 0) need to be
explained carefully. These represent aligning some prefix of one of the two
strings with the empty string e that contains zero letters. Aligning any prefix
of s or t with ¢ results in

S§182...5; - - -
-- - tity. .. t;

t C C T G t C C T G t C C T G
s 0 1 2 3 4 s 0 1 2 3 4 s 0 1 2 3 4
ol O 1 2 3 4 ol O 1 2 3 4 ol O 1 2 3 4
1
iy
A1 lfl*l A 1| 1 1 A 1] 1 1 2 3 4
| +1
[0
c 2| 2 C 2 2*]*1 c 2| 2 1 1 2 3
T 3| 3 T 3 3 T 3| 3 2 2 1 2
T 4| 4 T 4| 4 T 4| 4 3 3 2 2
G 5| O G 5| 9 G 5| 9 4 4 3 2

(a) (b) (©)

Figure 1: Filling out the penalty matrix

with penalties ¢ and 7, respectively. The concept of empty strings is in general
unknown to the target audience and might appear a little confusing to the
students at first glance. However, from this example, where it provides a very
easy and elegant way to define the base cases for our bottom-up dynamic
programming approach, the students can usually be easily convinced that
empty strings are a very helpful concept.

We now demonstrate how to fill out P cell by cell using the two strings
s = ACTTG and t = CCTG as an example. We start with the first row and
column, which get a penalty equal to the length of the string that is aligned
with ¢; see|Figure la. Next, we fill out cell (1, 1), which contains the minimum
penalty to align the two first letters of s and ¢. As described above, there are
three possibilities for the last column of this alignment; again, see

1. In this last column, we can insert a space beneath the first letter s; of
s, i.e., into t. This way, we obtain a penalty of 1, the first letter of s is
written down, but no letter of . This leaves us with the subproblem of
aligning the empty prefix € of s with the prefix #; of ¢, yielding

and the penalty to align € with ¢; = C can already be found in P in cell
(0,1), i.e., one row above the cell we are about to fill out. We already
know that this penalty is 1, and thus we get a total penalty of 2 in this
case.

2. Conversely, we can insert a space into s in the last column of the

alignment, which yields
A =
e | C

This again causes a penalty of 1 plus an additional penalty of 1 to align
sy with €, which is already written down in (1,0). Hence, we get a
penalty of 2 also in this case.

3. Finally, we can create a mismatch, i.e., we let the last column of the
alignment contain the letters s; = A and t; = C, resulting in

e | A
| C

This mismatch also causes a penalty of 1, and it leaves us with the
subproblem of aligning € with e, which causes no penalty, as can be
looked up in cell (0,0). The total penalty in this case is therefore 1.

In all three cases, the penalty for the candidate solution can be easily
computed from the already known penalty values in the table. The smallest
cost to align s; and 1, (i.e., the value in (1,1)) is then given by the minimum
of the three values just described, i.e.,

P(1,1) = min{P(0,1) + 1, P(1,0) + 1, P(0,0) + 1} = 1.
This procedure can then be repeated for computing the remaining cells

in the table. Let us consider the cell (2,1) of P, i.e., aligning the first two
letters of s with the first one of ¢. We again have three cases; see [Figure 1b.

1. Inserting a space into ¢ in the last alignment column gives

and the penalty to align s; and ¢; can be found in cell (1,1).

2. Inserting a space into s in the last column yields

and the penalty to align s;se with € can be found in cell (2,0).

3. Aligning the two last letters, i.e., sy and t;, with each other gives

9

A | C
e | C

and the penalty to align s; with ¢ is written in cell (1,0).

Since the last option does not cause a mismatch, we obtain
P(2,1) =min{P(1,1)+ 1, P(2,0)+ 1, P(1,0)} =1,

and we observe that we look at the same relative cells as before, namely
that one row above, that one column to the left, and the one above left.
Generalizing this strategy, we get

P(Z7.7) :mln{P(Z—l’j)—Fl,P(Z,j—1)+1,P(Z—1,j—1)—|—le},

where p;; is 1 if and only if a mismatch is created in the last option, and 0
otherwise. The cell (m,n) finally contains the cost of a best alignment of s
and t, i.e., the edit distance of the two input strings.

At this point, especially in smaller classes, we ask the students to try to
fill out the rest of the table for themselves, which takes around five to ten
minutes. The complete table is shown in [Figure 1c¢l This way, they quickly
discover themselves that the work carried out is rather repetitive. It becomes
obvious that a computer can be easily told to do this instead.

3 Implementation of the Algorithm

Now that the high-level description of the algorithm is produced, we can start
with the practical part.

3.1 Implementation in Matlab

Another nice thing about reducing the problem to filling out a table is that it
can be implemented rather easily in Matlab. One of the reasons is that Matlab
handles 2-dimensional arrays without much syntactical overhead. We can
essentially follow the above high-level description and translate the algorithm
into code right away.

As noted above, the students know at this point conditional execution and
loops; not much more is needed. The only unfortunate inconvenience is that,

in Matlab, vector indices start with 1 instead of 0. [Algorithm 1| shows our
implementation, which initializes the input strings s and ¢ and the penalty

1. s = ’ACTTG’; 5 P = zeros(m+1,n+1);
2. t = ’CCTIG’; 6. for j=1:n+1
3. m = length(s); 7. P(1,j) = j-1;
4. n = length(t); 8. end

9. for i=1:m+1

10. P(i,1) = i-1;

11. end
12. for i=2:m+1 b For every row
13. for j=2:n+1 % and every column
14. if s(i-1) == t(j-1)
15. pij=0; % No mismatch
16. else
17. pij=1; % Mismatch
18. end
19. x = [P(i-1,j)+1, P(i,j-1)+1, P(i-1,j-1)+pijl;
20. [smin,imin] = min(x); % Compute minimum
21. P(i,j) = smin; % and store it in penalty matrix
22.
23. end
24. end

Algorithm 1: Computing the penalty matrix P

matrix P in lines 1 to 11, and fills out the latter in lines 12 to 24. This block
follows exactly our description. In lines 14 to 18, we compute whether a
match or mismatch happens if the two letters are written beneath each other;

the minimum of the three values is computed in lines 19 to 20, and stored in
P in line 21.

3.2 Backtracing

After the implementation shown in is understood, we can discuss
in class that the output of the algorithm indeed gives the smallest cost to
align the two input strings, but does not tell us what the actual alignment
looks like. In this context, it is very comfortable that Matlab’s minimum
function returns a two-component vector, namely the minimum and the index
from which the minimum stems. We save these two values as smin and imin

in line 20 of [Algorithm 1, but only use the first one so far.

For every entry of P, we now just compare the minimum of three values,

which correspond to three adjacent cells. At least one of those gives the
minimum, and in turn corresponds to one of the three options we have already

described.

1. Inserting a space into ¢; this corresponds to the cell in the row above
and the first entry of the vector x in line 19 of [Algorithm T.

2. Inserting a space into s, which corresponds to the column to the left
and thus the second entry of x.

3. Writing the two letters underneath each other, which corresponds to
the third entry of x.

We now save which of the three values actually is the minimum; of course,
this is not necessarily unique, and ties are broken in favor of the smaller index.
This is the index of the entry of x with minimum value; we have stored this
value as imin in line 20 of and we now additionally save it in
the corresponding cell of a matrix B (for “backtracing”). Hence, we add the
line

22. B(i,j) = imin;

to [Algorithm I. B has the same size as P, and it stores one possible optimal
alignment in the following way: The cell (7, j) of B contains a 1 if and only
if a space was inserted into t, a 2 if and only if a space was inserted into
s, and a 0 if and only if both letters were written underneath each other,
with respect to this particular alignment. Again, the first row and column
need to be handled in a special manner. In the first column, all entries are 1
since there is no column to the left, and spaces can only be inserted into ¢;
likewise, all entries in the first row are 2. The cell in the upper-left corner is
assigned value 0. The backtracing matrix for our sample strings s = ACTTG
and t = CCTG is shown in [Figure 2a, where arrows indicate how the numbers
are interpreted. In this example, the algorithm computes the alignment

ACTTG
-CCTG,

which indeed contains one space and one mismatch and thus has a penalty of
2 as computed in [Figure 1d

Furthermore, we create a 2-dimensional vector result, whose first row
corresponds to the aligned string s and whose second row corresponds to the
aligned string ¢, by marking spaces with “~” We fill result from the right to

the left as shown in [Algorithm 2} We start in cell (m, n) of B; recall that this
is cell (m+1,n+1) in Matlab, thus the variables i and j are initialized as m+1

0
T 100,000 |- -
1

naive

50,000 |- -

dynamic programming

Comparisons

| | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Length of input strings

(a) (b)
Figure 2: The backtracing matrix and comparison of time complexities

and n+1, respectively. If we find a 1 in this cell, we write the last letter of s
in the first line of result and a space in the second line of result, since this
means that a space was inserted into t. Likewise, if there is a 2, we write a
space in the first row and the last letter of t in the second row of result.
Last, if there is a 0, we write the last letters of s and t at the first and
second row of result, respectively. According to the entry, we continue in
the indicated cell and repeat the procedure until we arrive at cell (0,0). Once
we reach this cell, result contains a representation of an optimal alignment
of s and t (preceded by some empty cells).

4 Analysis of the Time Complexity

The correctness of the algorithm of Needleman and Wunsch follows from our
discussion at the beginning. We do not formally prove it in class. Analyzing
the time complexity of the algorithm is again straightforward, since its main
work is to fill out the tables P and B of size (m+1) x (n+1) each. Computing
the value of any cell only involves a constant number of comparisons and
elementary arithmetic operations, and we therefore get a running time in
O(m-n) for this part. Computing the actual alignment as shown in[Algorithm 2]
can be done in time O(max{m, n}). Note that we are not using the O-notation
in our lecture since the students are not familiar with it. Instead, we just
count the comparisons and assignments in the Matlab code. It follows that
dynamic programming for the alignment problem induces an exponential
improvement over the brute-force approach discussed at the beginning. It

1. result = cell(2,m+n);
2. 1 = m+1;

3. J = n+l;

4. pos = m+n;

13. while (i > 1 || j > 1)
14. if B(i,j) == 1

15. result{1l,pos} = s(i-1);
16. result{2,pos} = ’-7;

17. i=1i-1;

18. else if B(i,j) == 2

19. result{1l,pos} = ’-;

20. result{2,pos} = t(j-1);
21. j=3-1;

22. else

23. result{l,pos} = s(i-1);
24. result{2,pos} = t(j-1);
25. i=1i-1;

26. j=3-1;

27. end

28. end

29. pos = pos-—1;

30. end

5. B = zeros(m+1,n+1);
6.

7. for j=1:n+1

8. back(1,j) = 2;

9. end

10. for i=1:m+1

11. back(i,1) = 1;

12. end

% While we are not in cell (1,1)
% Step from above

% Continue in row above
% Step from left

% Continue in column to the left
% Diagonal step

% Continue in row above
% and column to the left

Algorithm 2: Computing the alignment using the backtracing matrix B

is therefore a good candidate to discuss polynomial versus exponential time.
To illustrate the impact of the difference, we usually show a graph as in

Fiéure 2b.

5 Exercises and Extensions

The presented alignment algorithm is very robust in the sense that it can
be used to solve also many variants of the basic problem. In the lecture, we
discuss two of these extensions if time permits. Implementing these extensions
in Matlab can serve as a good exercise for the students.

First, the algorithm can be easily adapted to more complex distance
functions, for example choosing different penalties for different mismatching
pairs of letters. This is very helpful, e.g., when comparing protein sequences
which are comprised of 20 different amino acids some of which are chemically
more similar than others.

Second, the results of the alignment algorithm are biologically meaningful
only in the case when both strings are of approximately the same size. Consider
the strings s = TAAGGT und ¢ = AGTTTATAGCCTGGT. An optimal alignment
according to the edit distance measure is

~---TA-A----GGT
AGTTTATAGCCTGGT

with a penalty of 9. However, from a biological point of view, the following
alignment is better motivated, although it induces a penalty of 10, because
the smaller string is aligned to a compact region of the longer string:

-———TA-AGG-T---
AGTTTATAGCCTGGT

To adapt the algorithm such that it finds the second alignment rather
than the first one, we have to make sure that gap symbols at the beginning
and the end of the shorter string do not cause any penalty. This can be done
(if, without loss of generality, s is the shorter string) by initializing the first
row of P with all zeros, and taking as a result not necessarily the value in the
lower-right corner cell of the table, but the minimum value in the last row.

6 Conclusion

In this paper, we described our approach towards teaching dynamic pro-
gramming in an elementary way to students without a strong background in
computer science. Our general goal is to teach algorithmic thinking as early
as possible [10], and the described way allows the students to realize one of
the most essential principles of algorithm design without much syntactical
overhead and especially without a formal introduction to recursion.

The presented alignment algorithm is of large practical importance as it
lies at the heart of all implementations that are actually used for sequence
comparisons in biology (although a lot of heuristic rules are added in practice
to reduce the running time from quadratic to linear while keeping the error
small). Especially for our students from biology and related sciences, it is
highly motivating to see how algorithmic thinking can help to solve basic
problems from their field.

Implementing this algorithm is also well-suited with respect to the goal

of teaching Matlab programming since handling the dynamic programming
table fits very well into Matlab’s easy syntax for matrices.

References

1]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1983.

Hans-Joachim Bockenhauer and Dirk Bongartz. Algorithmische Grundlagen
der Bioinformatik. Vieweg+Teubner, 2003.

Hans-Joachim Bockenhauer and Dirk Bongartz. Algorithmic Aspects of Bioin-
formatics. Springer, 2007.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, 3rd edition. MIT Press, 2009.

Markus Dahinden, Lukas Féssler, Dennis Komm, and David Sichau. Ein-
fiihrung in die Programmierung mit Python und Matlab. Begleitunterlagen
zum Onlinekurs und zur Vorlesung, 2015.

Benedict Du Boulay. Some difficulties of learning to program. Journal of
Educational Computing Research, 2:57-73, 1986.

Michal Forisek. Towards a better way to teach dynamic programming.
Olympiads in Informatics, 9:45-55, 2015.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, 1997.

Juraj Hromkovic¢, Tobias Kohn, Dennis Komm, and Giovanni Serafini: Algo-
rithmic thinking from the start. Bulletin of the EATCS 121, The Education
Column, 2017.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2006.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, in-
sertions, and reversals. In: Doklady Akademii Nauk SSSR 163(4):845-848,
1965.

Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48(3):443-53, 1970.

Thomas Ottmann and Peter Widmayer. Algorithmen und Datenstrukturen,
5th edition. Spektrum Akademischer Verlag, 2012.

Jeanne E. Ormrod. Human Learning 5th edition. Pearson/Merrill Prentice
Hall, 2008.

	Why Everyone Should Learn to Program
	Computer Language as a Medium
	Reason 1: Programming to Earn
	Reason 2: Programming to Think
	Reason 3: Programming to Learn
	Mendelsohn et al.'s Interpretation
	Miller's Interpretation
	Resnick's Interpretation
	Wenger's Interpretation
	Guzdial's Interpretation

	Programming to Learn What?
	Do Not Neglect Learning to Program
	Conclusions

