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1 Dynamic Networks Overview

In this article, we provide a brief overview of recent advances on the topic of
solving consensus in dynamic networks of distributed computing systems. A more
detailed version of our exposition will appear in [33]], where details and all of the
proofs as well as additional results can be found.

Dynamic networks arise when participants communicate by exchanging mes-
sages that may potentially get lost. We tend to think of these participants as small
computing devices, which are aptly called “processes”, however, this is not the
point: The core issues investigated are those of local uncertainty due to incom-
plete information, which arise in every distributed environment, irrespective of
the exact nature of the “processes”. A related field is parallel computing, however
there the focus is on how to distribute some computing task to multiple computing
entities, typically coupled via shared memory, such as multiple cores of a proces-
sor, in order to perform the computation faster and more efficient. In contrast,
distributed computing typically studies what can still be solved in spite of, and,
what is impossible due to, faults occurring in a network-coupled system.

One classic failure model in distributed computing are process crashes, where,
at some unknown point in time, a process may simply seize to operate. Crashes are
usually permanent and are particularly insidious because of two reasons: First, a
process may crash after sending a message only to a subset of the other processes,
thereby creating local uncertainty of who still received its last message. Secondly,
in an asynchronous system, where there are no bounds on the message delays
or the time it may take a process to complete its computation, there is no way
to locally distinguish a crashed process from a painfully slow one. In contrast,
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dynamic networks usually consider transient communication faults, where links
may recover after being faulty. In this sense, crashes are almost a special case
of a dynamic network, where at some point in time a process seizes to send any
messages.

Our focal point here is a special notion of dynamic networks, where com-
munication is controlled by an entity, called message adversary. This paradigm
conceptually assumes that every single message delivery is under the control of
an adversary that tries to foil the effort of the processes to solve a distributed
computing task. If the adversary has a winning strategy that renders the task un-
solvable, irrespective of the algorithm employed by the processes, we say that the
task is impossible under the adversary. If, on the other hand, there exists an algo-
rithmic winning strategy for the processes, we say the problem is solvable under
the adversary. The main topic of this article are the circumstances under which a
given distributed computing task is solvable under a message adversary and under
which it is impossible. Clearly, every truly distributed task is impossible if the
message adversary is not restricted in some way, since it may simply suppress
all messages otherwise. Thus, we will usually assume an adequately restricted
message adversary that, ideally, allows us to precisely pin down the relevant pa-
rameters for which solvability and impossibility can be established. A concrete
example for this can be seen in [Figure 6]

We will restrict our attention to synchronous dynamic networks, where the
computation evolves in lock-step synchronous rounds. Each round consists of a
phase of communication where every process attempts to broadcast its message to
all other processes. It is here that the message adversary determines which mes-
sages are delivered and which are lost forever. After the communication phase
ends, the processes perform some computation, which may depend on the mes-
sages that they just received as well as their current state. The rules of this compu-
tation are given as a deterministic algorithm, one for each process, which we will
specify in pseudo-code for convenience. The communication in a given round,
controlled by the message adversary, can be concisely expressed as a directed
graph G,, called the communication graph, where the set of vertices consists of
the processes and an edge from p to ¢ in the graph means that ¢ has received the
message from p in round r. As we shall see, an essential quality of a communica-
tion graph is whether it is rooted, i.e., whether it contains a rooted spanning tree.
A given run, dictated by the message adversary, effectively consists of a sequence
of communication graphs (G,),-o, one for each round, called a communication
pattern. It thus makes sense to describe a message adversary as a set of communi-
cation patterns, called the admissible communication patterns. Perhaps the most
important insight about running deterministic algorithms in these kinds of systems
is that the states of the processes in a given round are completely determined by
the initial states of the process and the communication pattern generated by the
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Figure 1: Communication graphs G, G, G for 3 rounds.

P1 Pi Pi P1
| | l |

P2 Ps P3 P4
VRN VAEIRN VRN VRN
P4 Ps P2 P2 P+ Ps P2 P33 Ps

Round 1 Round 2 Round 3 Round 4

P3 Ds D3

Figure 2: A communication pattern where it takes O(n) rounds until some node
broadcasts, despite a constant hop distance in every single graph (bold nodes rep-
resent processes that heard from p; after the depicted communication graph was
applied).

message adversary.

An example for the first three rounds of a communication pattern can be seen
in[Figure 1| Even though there is no direct connection from p; to ps and ps is even
disconnected most of the time, there is still an information flow from p; to ps in
the following sense: If every process p; initially holds some piece of information,
e.g. an integer x;, and executes a simple store and forward algorithm, i.e., it stores
and forwards all integers received so far in some set S;, we have x; € S5 at the
end of round 3. Clearly, x; is forwarded to p, in round 1, which in turn forwards
it to p3 in round 2. Finally, ps receives x; from pj3 in round 3.

It is important to realize that local properties of the communication graphs
do not necessarily have direct implications on the communication pattern, even
though this might seem plausible at first glance. For example, one may be tempted
to conjecture that a maximum radius of 2 in every communication graph guaran-
tees that all processes have heard from some process after a constant number of
rounds. This is not the case, however: Consider, for example, the three-round
communication pattern for processes pi, ..., ps shown in Herein, G,
is a directed tree of height 3, with a single root node p; and a single node in the
second level. In the following rounds, this second level node switches places with
a new node from the third level. In this scenario, p4 has not heard from p; by the
end of round 3, even though the length of the path from p, to any other process is
< 2 in every G,. It is not hard to generalize this example to a set of n processes



P1,- .., P to see that it takes actually O(n) rounds until every process heard from
p1 even though every communication graph has a constant radius of 2.

Throughout this article, we focus on the classic distributed consensus prob-
lem, where each process is assigned an input value and eventually needs to irre-
vocably decide on an output value, which must be the same for all processes. It
is interesting to note that, under the message adversaries considered here, given
an algorithm, the only variance in the initial states of the processes comes from
different input value assignments. Therefore, each run of a deterministic consen-
sus algorithm is actually completely determined by this input value assignment,
together with the communication pattern.

2 Justification

The ability to achieve agreement in a distributed computing system where com-
munication is highly unreliable is interesting both from a theoretical and a prac-
tical perspective. For example, consensus is required for ensuring consistency in
replicated databases, which are distributed across a number of servers, or for con-
sistent mode switches e.g. in distributed reconfiguration. The interest in solving
consensus in dynamic networks comes from the increasing pervasiveness of wire-
less and even mobile devices, which are subject to unreliable communication and
energy constraints. A rigorous theoretical understanding of what can and cannot
be computed in dynamic networks is, to some degree, necessary for their design
and optimization.

Mobility Mobile ad-hoc networks [[19] consist of highly mobile devices that
move in a fashion that is hard to predict. This may incur that two participants
that could communicate flawlessly with each other at one point in time due to
their close proximity may not be able to directly communicate at all soon after if
they have moved apart too far. Dynamic networks excel in expressing this issue,
as the respective edge may simply disappear from one round to the next in the
communication graph. In fact, the network topology may change completely from
round to round.

Directed Communication A common paradigm in computer networks is to as-
sume that links are bidirectional, in the sense that if p hears from g at some point in
time, then also g hears from p. While this is certainly justified in wired “landline”
networks, where the connection is present in both directions or not at all, ensur-
ing this in a wireless setting comes at a price: localized fading or interference
phenomena [27, [17]] such as the capture effect or near-far problems [32] lead to



communication that is inherently directed. Guaranteeing bidirectional communi-
cation here necessitates spending additional resources, which may be undesirable
in many cases, especially if solutions can also be achieved with unidirectional
forms of communication. Furthermore, there are instances such as disaster re-
lief applications [22] where strong communication guarantees may simply not be
achievable at all.

Message Adversaries A message adversary that can adapt to varying operating
conditions and even to the behavior of some given algorithm is a very strong as-
sumption, which offers several advantages: First and foremost, it allows to model
systems that suffer from uncoordinated boot-up sequences or systems that must
recover from massive transient faults: Wireless network connectivity can be ex-
pected to improve over time here, e.g., due to improving clock synchronization
quality. Assuming a message adversary that behaves differently during stable and
unstable periods is obviously advantageous in terms of coverage. A solution al-
gorithm that can cope with such an adaptive adversary succeeds in every run,
which makes the solution also suitable for safety-critical applications where fail-
ures would be catastrophic. Furthermore, such solutions also work if message
delivery is vulnerable from a security point of view, i.e., if message loss may, at
least to some extent, be in fact caused by a malicious entity that tries to attack the
system.

Synchronous Execution Thanks to modern communication technology [31]],
assuming the ability to implement lock-step synchronous execution of all pro-
cesses 1s not unreasonable nowadays. As synchronized clocks are typically re-
quired for basic communication in wireless systems anyway, e.g., for transmis-
sion scheduling and sender/receiver synchronization, global synchrony is reason-
ably easy to achieve: It can be integrated directly at low system levels as in 802.11
MAC+PHY [1], provided by GPS receivers, or implemented by means of network
time synchronization protocols like IEEE 1588 or FTSP [23]].

We hope that the above justifications for message adversaries have sufficiently
piqued the curiosity of the reader to dive into the results presented in the following
sections. The algorithms given may stimulate the development of more practical
solutions for a real system that can be approximated with satisfactory accuracy by
a given message adversary, and the characterization theorems allow answering the
question whether distributed consensus can be solved in a dynamic network with
certain communication guarantees at all.



3 Related Work

Consensus characterizations for distributed computing systems have existed for a
long time, at least since the highly influential result [15] that showed the impos-
sibility of consensus in an asynchronous system even if just a single crash failure
may occur. In more detail, it has been shown that every potential solution algo-
rithm has an admissible, forever undecided run. This proof is of particular tech-
nical interest, as it introduced the now-standard bivalence proof technique, which
essentially shows that there is a bivalent initial configuration and each bivalent
configuration has a bivalent successor configuration. We will use this formalism
heavily for our own impossibility proofs, albeit in a less subtle fashion. In addi-
tion to this, it has been shown in [[13] that a majority of correct processes suffices
to solve consensus in an asynchronous system if processes are either correct or
initially dead. The proposed solution algorithm employs a communication graph
approximation, in which an initial clique that has no incoming edges from outside
of the clique can be found. Much of our employed methodology is closely related
to this idea and may even be seen as a translation of this principle to the message
adversary model.

The impossibility of asynchronous consensus with a single faulty process from
[15] has been generalized in several directions. In [9]], the technique from [13]
was translated from consensus to decision tasks in general, for which a precise
characterization was given. This characterization rests on the notion of input,
output and decision vectors (where the i-th component represents the input, output
and decision of p;) and their graph. The core result from [9] is that a decision task
is solvable despite a single crash failure if, and only if, the graph of the decision
vectors is connected and, for every partial input vector, a covering decision vector
exists and can be computed.

Studying consensus in synchronous message passing systems subject to link
failures dates back at least to the seminal paper [26] by Santoro and Widmayer;
generalizations have been provided in [29, 12, 8} [13} [11] (see below for more de-
tails). In all these papers, consensus, resp. variants thereof, are solved in systems
where, in each round, a digraph is picked from a set of possible communication
graphs. The term message adversary was coined by Afek and Gafni in [2] for this
abstraction.

A different approach for modeling dynamic networks has been proposed in
[20]: T-interval connectivity guarantees a common subgraph in the communica-
tion graphs of every T consecutive rounds. [21] studies agreement problems in
this setting. Note that solving consensus is relatively easy here, since the model
assumes bidirectional and always connected communication graphs. In particular,
I-interval-connectivity, the weakest form of T-interval connectivity, implies that
all nodes are able to reach all the other nodes in the system.



There have also been developed several “round-by-round” frameworks, which
allow to relate models of computation with different degrees of synchrony and
failures. Examples are round-by-round fault detectors by Gafni [16], the GIRAF
framework by Keidar and Shraer [[18]], the HO model by Charron-Bost and Schiper
[12]], and the hybrid failure model by Biely et. .al. [8]].

Oblivious message adversaries

Perhaps one of the earliest characterizations of consensus solvability in distrib-
uted computing systems prone to communication errors is [26], where it is shown
that consensus is impossible if up to n — 1 messages may be lost each round.
The reason for this was identified to be that communication patterns in this case
are adjacency-preserving and continuous, the combination of which allows an in-
ductive construction of a perpetually bivalent execution, i.e., an execution where
consensus can never be solved, independent of the solution algorithm employed.
This proof is in the spirit of the classic consensus impossibility proof from [15]],
even though in the latter, the construction of a forever bivalent execution that is
also admissible is harder and necessitates somewhat even more subtle arguments.

The term “oblivious message adversary” for a message adversary that can
choose the communication graphs in every round from a fixed set of graphs was
coined in [13]. In this terminology, the adversary from [26] may, each round,
pick any graph from the set that contains all communication graphs where n — 1
or fewer edges are missing. In [13], a property of an equivalence relation on the
sets of communication graphs was identified, which captures exactly the source of
consensus impossibility in the oblivious setting. It was shown how this property
can be used to find a necessary and sufficient condition for solving consensus.
While this result was certainly a major inspiration for our work, to the best of our
knowledge there is no way to generalize it directly to non-oblivious message ad-
versaries. Nevertheless, it provides an exact characterization for consensus solv-
ability under oblivious message adversaries, thereby answering this question and
providing a significant generalization of the classic result from [26]. As stated
above, the latter can be seen as a special case of [[13]], even though we should note
that the agreement problem considered in [26] was more general than consensus.

Non-oblivious message adversaries

In the world of oblivious message adversaries, as well as in the original notion
of message adversaries from [2], there is no notion of eventually stabilizing be-
havior of dynamic networks. One instance where such stabilizing behavior is
described, is the message adversary that guarantees eventually stable root compo-
nents, considered in [4]: It assumed communication graphs with a non-empty set



of sources and long-living periods of stability x = 4D + 1. [3]] studies consensus
under a message adversary with comparably long-lived stability, which gracefully
degrades to general k-set agreement in case of unfavorable conditions. However,
this message adversary must also guarantee a certain influence relation between
subsequently existing partitions. [30] established a characterization of uniform
consensus solvability/impossibility for longer stability periods. In particular, it
provides a consensus algorithm that works for stability periods of at least 2D + 1
but does not require graph sequences where all graphs are rooted. We will present
some of these ideas in more detail in

Note that the experimental evaluation of a wireless sensor network described
in [24] reveals that this assumption holds true, for a properly chosen value of D
(in particular, D = 4), with a coverage close to 100% both in an indoor and out-
door environment. Whereas one cannot obviously generalize from a single, non-
systematic experimental evaluation, these findings nevertheless suggest that the
basic assumption of an eventually vertex-stable root component is not unreason-
able in practice. [25] used message adversaries that allow a notion of “eventually
forever” to establish a relation to failure detectors.

For the special case of n = 2, [14] provides a complete characterization of
consensus solvability for message adversaries that are not oblivious: Using a bi-
valence argument, it is shown that certain graph sequences (a “fair sequence” or
a special pair of “unfair sequences”) must be inadmissible to render consensus
solvable, and provided a universal algorithm for this case. However, to the best of
our knowledge, a complete characterization of consensus solvability for arbitrary
system sizes and general message adversaries did not exist.

4 Model

We consider an ensemble of deterministic state machines, called processes, which
communicate via message passing over unreliable point-to-point links. Processes
have unique identifiers and are typically denoted by p, g, p’, ¢’, etc. The operation
proceeds in lock-step synchronous rounds r = 1,2,3,... consisting of a phase
of message exchange between the processes, which is followed by a phase of
local computations. Similar to, e.g., [21]], we use the convention that all opera-
tions of round r take place strictly within time » — 1 and time r, which results in
well-defined and stable states of all processes between the rounds: The state of a
process at time r is its initial state (specifying the starting values for each variable)
for r = 0, respectively the state at the end of its round-r computation (describing
the content of all variables as well as the messages to be sent) for r > 0. The
collection of the states of all processes at time r is called the configuration C’,
with C? denoting the initial configuration.



A dynamic graph is a mapping of each round r to a directed grap G, =
(I1, E"), called the round-r communication graph. Each node of II represents a
process, and an edge (p, q¢) in G, represents that the round-r message of p sent to
q is received by ¢ in the same round. Since every process p always successfully
receives from itself, all graphs G, are reflexive, i.e., they contain an edge (p, p) for
every process p € Il. The in-neighborhood of p in G,, In,(G,) = {q | (g, p) € G,)
hence represents the processes from which p may have received a message in
round r. We stress that the vertex set Il of a given dynamic graph is fixed (but
usually not known to the processes) and only the set of edges may vary from
round to round and assume that every p € Il has a unique identifier from the set
[1, |TT]]. We often identify a dynamic graph with an infinite sequence o of consec-
utive communication graphs and denote its vertex set by II,. When describing a
continuous subsequence o’ of o, ranging from round a to round b, we denote this
as o’ = (G,)’r’:a, where |0’| = b — a + 1, with b = oo for infinite subsequences.

A message adversary MA that may suppress certain messages in an attempt
to foil the collaboration of the processes is at the core of our model. Formally,
it is a set of dynamic graphs, or, equivalently, communication graph sequences,
which are called admissible. Sometimes it will be convenient to denote explicitly
restrictions on the size of the vertex set of the dynamic graphs of a message ad-
versary as the first index of MA. For example, MA, states that every dynamic graph
of MA, has a vertex set of size exactly n, while MA, denotes that this size is at
most 7. ConceptuallyE] we assume that processes know a priori the specification
of the message adversary, hence an algorithm that succeeds under MA must be
able to cope with the size restrictions of MA. Since a message adversary is a set of
dynamic graphs, we can compare different message adversaries via set inclusion.

We consider the consensus problem, where each process p starts with input
value x, € N and has a dedicated write-once output variable y,, where y, =
1 initially; eventually, every process needs to irrevocably decide, i.e., assign a
value to y, (termination) that is the same at every process (agreement) and was
the input of a process (validity). The assignment of the input values for each
process is specified in the initial configuration C°. Given a message adversary MA,
a deterministic consensus algorithm A and a o € MA, an admissible execution or
run & = {C° o) is a sequence of configurations C°, C' ... where for r > 0, C" is
the result of exchanging the messages to be sent according to C"! and G,, and
applying the resulting state transitions specified by A. Since A is deterministic,
the execution & is uniquely determined by an admissible graph sequence o €
MA and a corresponding initial configuration C°. Algorithm A solves consensus

"We sometimes write p € G, instead of p € II to stress that p is a vertex of G,, and sloppily
write (p, q) € G, instead of (p,q) € E".

2As we will see in de facto the processes require only knowledge of some key pa-
rameters.



under message adversary MA if, for every o € MA and every input assignment
C°, validity, agreement and termination are all satisfied in the execution (C 0 o)
of A. We will see that in some cases, the size of the set of processes II may be
different in selected dynamic graphs of MA and the processes must cope with this
and the fact that they cannot reliably compute the size of I1. We call a consensus
algorithm uniform (c.f. [3]) for MA if it solves consensus under MA and MA consists
of dynamic graphs of arbitrary size.

As usual, we write & ~, & if the finite or infinite executions € and &’ are
indistinguishable to p (i.e., the state of p at time r is the same in both executions)
until p decides. When establishing our lower bounds, we will often exploit that,
as outlined above, the configuration at time r is uniquely determined by the initial
configuration C° and the sequence of communication graphs until round r.

Dynamic graph concepts

First, we introduce the pivotal notion of a root component R, often called root
for brevity, which denotes the vertex set of a strongly connected component of a
graph where there is no edge from a process outside of R to a process in R.

Definition 4.1 (Root Component). R # 0 is a root (component) of graph G, if it is
the set of vertices of a strongly connected component R of G and Vp € G,q € R :
(p—>q9€eG=>peR

It is easy to see that every graph has at least one root component. A graph G
that has a single root component is called rooted; its root component is denoted
by Root(G). Clearly, a graph G is rooted if and only if contracting its strongly
connected components to single vertices yields a rooted tree. Hence, G is weakly
connected and contains a directed path from every node of Root(G) to every other
node of G.

Conceptually, root components have already been employed for solving con-
sensus a long time ago: The asynchronous consensus algorithm for initially dead
processes introduced in the classic FLP paper [[15] relies on a suitably constructed
initial clique, which is just a special case of a root component.

In order to model stability, we rely on root components that are present in ev-
ery member of a (sub)sequence of communication graphs. We call such a root
component the stable root component of a sequence and stress that, although the
set of processes remains the same, the interconnection topology between the pro-
cesses of the root component as well as the connection to the processes outside
may vary arbitrarily from round to round.

Definition 4.2 (Stable Root Component). A non-empty sequence (G,),¢; of graphs
is said to have a stable root component R, if and only if each G, of the sequence



is rooted and Vi, j € I : Root(G;) = Root(G;) = R. We call such a sequence an
R-rooted sequence.

We would like to clarify that while “rooted” describes a graph property, “R-
rooted” describes a property of a sequence of graphs.

Given two graphs G = (V, E), G’ = (V, E’) with the same vertex set V, let the
compound graph G o G’ := (V, E"”) where (p,q) € E” if and only if there exists a
p’ € Vsuchthat (p,p’) € Eand (p',q) € E'.

In order to model information propagation in the network, we use a notion of
causal past: Intuitively, a process g is in p’s causal past, denoted g € CP),(r') if,
at time r, p holds information (sent either directly or transitively, via intermediate
messages) that g sent after time r’. This is closely related to various concepts
that have been introduced in the literature (cf. for example [10] and the references
therein), such as the heard-of sets from [[12]] or the temporal distance from [34]].

Definition 4.3 (Causal past). Given a sequence o of communication graphs that
contains rounds a and b, the causal past of process p from time b down to time a
is CP’(a) = 0 if a > b and CP)(a) = In(Gy1 © -+~ 0 G}) if a < b.

A useful fact about the causal past is that in full-information protocols, where
processes exchange their entire state history in every round, we have g € CP(s)
if and only if, at time r (and hence thereafter), p knows already the state of ¢ # p
at time s.

5 Message Adversaries

First, we introduce the adversary that adheres to dynamic network depth D, which
gives a bound on the duration of the information propagation from a stable root
component to the entire network. We showed in [6, Cor. 1] that always D < n—1;
a priori restricting D < n — 1 also allows modelling dynamic networks where
information propagation is guaranteed to be faster than in the worst case (as in
expander graphs [6]], for example).

Definition 5.1. DEPTH,(D) is the set of all infinite communication patterns o s.t.
[I1| = n and, for every ordered set of D rounds T = {ry,...,rp}, if AR C I1,,Vr €
T: the graph G, of o satisfies Root(G,) = R, then R C CP,’(r — 1) for all
p € 1l,.

The following liveness property, eventual stability, ensures that eventually ev-
ery graph sequence o has an R-rooted subsequence o’ C o of length x. This
implies that all sequences have a vertex-stable root component that consists of
the same set of processes with possibly varying interconnection topology for x
consecutive rounds.



Definition 5.2. ¢GOOD,,(x) is the set of all infinite communication patterns o such
that \I1,| = n and there exists a set R C 11, and an R-rooted o C o with |0”'| > x.

For finite x, ¢GOOD, (x) alone is insufficient for solving consensus: Arbitrarily
long sequences of graphs that are not rooted before the stability phase occurs
can fool all consensus algorithms to make wrong decisions. For this reason, we
introduce a safety property in the form of the message adversary that generates
only rooted graphs. As mentioned above, this implies that every communication
graph is weakly connected and there is a single root component, i.e. a non-empty
set of nodes from which all nodes are reachable.

Definition 5.3. ROOTED,, is the set of all infinite sequences o of rooted communi-
cation graphs such that |[1,| = n.

The short-lived eventually stabilizing message adversary ¢STABLE, p(D + 1)
used throughout the main part of our paper adheres to the dynamic network depth
D, guarantees that every G, is rooted and that every sequence has a subsequence of
at least x = D+1 consecutive communication graphs with a stable root component.
Since processes are aware under which message adversary they are executing,
they have common a priori knowledge of the dynamic network depth D and the
duration of the stability phase x. Moreover, depending on the variant actually
used, they have some knowledge regarding the system size n.

Definition 5.4. We call 9STABLE,, »(x) = ROOTED,, N ¢GOOD,,(x) N DEPTH, (D) the
eventually stabilizing message adversary with stability period x. For a fixed D,
we consider the following generalizations:

® OSTABLE oo p(X) = Upuem0.1; 9STABLE,, p(X)
e OSTABLE<y.p(x) = Y, OSTABLE, p(x)

We observe that ¢§GOOD,,(x) 2 ¢GOOD,(D) for all 1 < x < D, hence it follows
that OSTABLE,, p(x) 2 OSTABLE, p(D).

6 Impossibility Results and Lower Bounds

Even though processes know the dynamic network depth D, for very short stability
periods, this is not enough for solving consensus. In [Theorem 6.1, we prove
that consensus is impossible under ¢STABLE.., p(2D — 1) (recall that even if the
dynamic graph has a finite set of processes 11, this set is not necessarily known to
the processes). That is, if processes do not have access to an upper bound N on the
number of processes, solving consensus is impossible if the period x of eventual



stability is shorter than 2D: Here, processes can never be quite sure whether a
stable root component occurred for at least D rounds, which is critical, however,
since only a duration of D or more rounds guarantees information propagation,
according to

The core argument of the proof is that an arbitrary correct consensus algorithm
A will fail when exposed to the communication graph sequences o, o’ from
Fix the input values of processes py, ..., pp+2 to 0 and let all other processes
start with input 1. Because A satisfies termination, process pp.; eventually, by
a time 7, has reached a decision in an execution based on o. Since the situation
is indistinguishable for pp,; from the situation where everyone started with 0, it
has to decide O by validity. Crucially, pp,; cannot distinguish whether the ac-
tual communication graph sequence is o or o”, thus it decides 0 also in the latter.
If n” was chosen sufficiently large, however, process p,, never learns of an input
value other than 1. A similar argument as above shows that, by validity, p, hence
eventually decides 1 and thus two values were decided under the communication
graph sequence o’. Clearly, A does not satisfy agreement, a contradiction to the
initial supposition that A is correct, as o~ is an admissible communication graph
sequence.
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Figure 3: Communication graph sequences of [Theorem 6.1, where (G)’_, denotes
that G is the communication graph from round a until round b. A dotted edge

represents an edge which is in G; if and only if it is not in G,_;. We assume that
there are self-loops and there is an edge from every process depicted in the graph
to every process not depicted in the graph.

Theorem 6.1. Under ¢STABLE .., p(x) consensus is impossible for 0 < x < 2D.

shows that consensus is impossible under ¢STABLE ., p(D + 1),
since no process has a bound on the system size. In the remaining paper, we thus
study the adversary 0STABLE.y p(D + 1), for which we show in the next section
that consensus can indeed be solved.

As our next result, we present a lower bound for the duration x of the stable
period: We prove that even if there is an upper bound N on the number of pro-



cesses in the current sequence, consensus is impossible under 0STABLE <y p(x) if
x < D (Theorem 6.2). Note that this result improves the lower bound x > D—1 es-
tablished in [4, 6] and thus reveals that the latter was not tight. We note, however,
that the proof of the earlier result is more general in that it proves bivalence when
starting from an arbitrary stabilization round r; shows this only for
ro = 1, i.e., when the stable period occurs immediately.

For N = 2, our result can be derived from [26], where it was shown that
consensus is impossible if at most n — 1 messages are lost in each round. In our
terminology, this means that consensus is impossible under ¢STABLE, ;(1). For
general N, D, [Theorem 6.2] below shows that a stability period of D or less rounds
is insufficient for solving consensus for arbitrary values of N as well. This result
is not subsumed by [26]], since the adversary is not restricted by the number of
link failures but by the structure of the communication graph sequencesE]

Informally, the reason for the impossibility is that there are executions where,
even with a stability phase of D rounds, there is a process that cannot precisely
determine the root component of the stability window. This can be seen when
considering the graphs G,, G, G., G, from Fix the input values such
that x,, # x,, and, for each graph G,, G;, G., G4, consider the four configurations
that result when applying the graph repeatedly for D rounds. As these config-
urations are connected by an indistinguishability relation, and all processes can
become the single root component “forever after” (thereby remaining unable to
distinguish the four executions), not all these configurations can be univalent; if
they were, the configuration resulting from applying G, for D rounds would have
the same valence as the one resulting from applying G, for D rounds. An induc-
tive argument, similar to the one employed by [26], shows that this bivalence can
be preserved forever and hence no correct consensus algorithm exists.

Theorem 6.2. There is no consensus algorithm for QSTABLE<y p(x) with 1 < x <
D, even if the adversary guarantees that the first D rounds are R-rooted.

7 Solving Consensus with D + 1 Rounds of Stability

We now present our consensus algorithm for ¢STABLE<y p(D + 1), where a bound
N > nis known a priori. The pseudo-code for the main algorithm is presented in
It relies on a collection of functions given in

Since the detailed correctness proof is somewhat tedious, we first give an in-
formal description of the algorithm where we provide references to the lemmas
that correspond to our informal description.

3As we will see in the next section, consensus is possible under ¢STABLE, n(D + 1) even
though in some cases (e.g. if D = n — 1 and all communication graphs are chains) up to (n — 1)
messages may be lost in each round!
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Figure 4: Communication graphs for [Theorem 6.2 We assume there is an edge
from every process depicted in the graph to every process not depicted in the

graph.

Overview. In essence, each process p that executes [Algorithm 2| tries to solve
consensus by approximating the current graph sequence and keeping track of the
relevant partial states of the other processes. Most prominently, this includes their
proposal value X, basically their current decision value estimate. If a process ob-
serves that in the current graph sequence, the stability phase could have occurred,
i.e., it finds a root component R that might have been stable for D + 1 rounds, it
locks on to the maximum over the proposal values of the members of R. Subse-
quently, p waits if there is evidence refuting its observation. As soon as p finds
such contradictory evidence, it clears its locked-on state. If, on the other hand, p
does not find such evidence for a sufficiently long time, it decides on its proposal
value. In order for the latter to be a safe decision, the algorithm has a mechanism
that guarantees the following: As soon as a process g detects that there might
have been a process p that is convinced it holds the correct proposal value, g
adopts the proposal value of p. Crucially, g does not enter a locked-on state in this
case. The main difficulties of this approach, apart from implementing the usual
graph approximation and book-keeping mechanisms, are to ensure that (1) it can-
not happen that distinct processes are simultaneously convinced of two different
proposal values for too long, that (2) the significant information propagation de-
lays, inherent in this setting, still guarantee a timely adaptation of the proposal of
a convinced process in the entire system, while maintaining that (3) the stability
period will eventually lead to the same decision at every process.

Detailed description. The essential data structures that each process p maintains
are the set of the (reduced) past process states S, the communication graphs ap-
proximation A of the communication graphs that occurred so far, and the set of
participating processes P of whose existence p learned by now (recall that, given
a o € OSTABLE«y p(D + 1), p does not have exact knowledge of |I1,| and hence no
a priori knowledge of I1,). Process p also holds two crucial local variables, the
lock round € and the proposal value x, whose significance we outline below. In



order to access S in a clear way, provides the functions L(g, s) and

X(q, s) that, when executed by p, return the value of £ resp. x of remote process g
at time s, or —1 if this value is unknown to p. At the start of each round r, process
p attempts to broadcast P, S, and A. By our system model, every process g with
(p,q) € G, will receive this message. Maintenance of S and A is delegated pri-
marily to the update function, which merges the content of all messages received
from a process ¢ into the local copies of A and S and adds an edge (g, p), labeled
with the appropriate round, to A. In addition to this, p appends its own value of £
and X to S at the end of round r.

Before we continue with the logic of the main algorithm, we note a key insight
about our system model: To some extent, by recording received messages, inter-
preting them as in-edges in a communication graph, and trying to flood the system
with these records, processes can reliably detect root components!
implements this in the function searchRoot(s), which, when called by p in round
r, returns a set R that satisfies two key properties: If R # () then R = Root(Gy)
and if R = Root(Gy) and there is a chain of messages such that R C CP;(s) then
searchRoot(s) = R.

The very basic operation of is to find root components and “lock
on” to them, by setting the lock round ¢ to the current round and X to a determin-
istic function (e.g. max()) of the proposal values of the root members. In some
sense, the process hopes to hit p of the p-rooted sequence of length D + 1 that is
promised by the specification of ¢STABLE<y p(D + 1). After this, a process simply
waits for contradictory evidence that suggests that the currently locked-on root
component could not have been p. In more detail, in each round r,
proceeds in two phases:

In the first phase, p checks whether it needs to adapt its values of x or £. It
does this in three cases:

1. When p detects that a root component R occurred D rounds ago and p
either had £ = 0 or, D + 1 rounds ago, had detected a different root component
R # R. In either case, p sets its lock round ¢ < r and its proposal x gets the
maximum proposal X, value over all processes g € R from D rounds ago in|Line 9
This works because if the root component R’ that was found was indeed p, every
process must have locked on to it and thus, when a process detects a changed root
component R, it is guaranteed that all members of R are already locked-on to p.
In this way the proposal value of p is preserved forever.

2. If the detection from the previous case failed, p sets ¢ « 0 if there is
evidence that contradicts the current proposal value x and lock round ¢. That
is, if a process g had £, = O or a proposal different from x within the last N
rounds but after the current lock round. implements this in the func-
tion latestRefutation(r — N,r — 1), as called in The main aspect of
this procedure is that p cannot possibly remove a lock on p, as p would lead all



processes to lock on to it and remain locked on to it forever, hence there is no
contradictory evidence.

3. Possibly in addition to case 2 above, process p adapts its own proposal to
v if p sees that every process that was locked on to something during the last N
rounds was locked on to v. This is to ensure that processes adapt their proposal if
there is a set of locked-on processes that never learned of contradictory evidence
and might be tempted to assume that their lock value stems from p itself. In this
case, the function uniqueCandidate(r— N, r — 1) returns the value v when called
in

In the second phase, process p waits until it is safe to decide on X. This is the
case when, according p’s point of view, in the last N(D +2N) rounds all processes
are locked on and have the same proposal value. Process p performs this check
via the call to al1Good(r — N(D +2N), r — 1) in[Line 17] The crucial point here is
that, by a pigeon-hole argument, the observation of N(D + 2N) rounds where all
processes are locked on and have the same proposal value implies that there was in
fact a “v-locked sequence” of D + 2N rounds. A v-locked sequence consists only
of communication graphs where every process in the root component is locked
on and has the same proposal value. Such a sequence guarantees that all future
proposal values are v, thereby ensuring the safety of the algorithm.

8 Beyond rootedness and consecutive stability

So far, we have studied how the duration of a stability phase affects consensus
solvability in message adversaries where every communication graph is rooted. In
this section, we extend these results to investigate adversaries that do not satisfy
all properties of 0STABLE.y p but only some of those.

First, we study the case where the adversary guarantees only a constant frac-
tion of the communication graphs to be rooted. This turns out to be a rather benign
case, as our previously established techniques are almost directly applicable here.
Second, we look into the case where we do not require a constant fraction of
communication graphs to be rooted. For this purpose, we introduce STICKY(x),
a message adversary that guarantees that all root components R that are vertex-
stable for more than x rounds have an R-rooted subsequence with a duration > x
during their lifetime. This means that there may be many root components that
are overlapping, in the sense that they are vertex-stable simultaneously, but if one
of them is stable long enough, it must become the only stable root component
for a certain duration. Third, we investigate the impact of the duration of non-
consecutive stability. We assume that this duration is fixed to D rounds and study
the solvability of consensus in relation to the parameter of x of STICKY(x). Finally,
we introduce a consensus algorithm that shows that consensus is solvable if the



Algorithm 1: Helper functions for process p

1 Function update(q, P, S, A):
2 P—PuU{glUP,

3 S«<SuU§s,

4 A—AU{(r,g,p}UA,

Function searchRoot (s):

Ve {veP|d(s, *v)eAord(s,v,x*) € A}

E — {.v) € P?| A(s,u,v) € A}

Ret — 0

Let SCC(V, E) denote the set of vertex sets of the strongly connected
components (SCCs) of (V, E). A single node ¢ may constitute a SCC only

if (¢,9) € E.
10 foreach C € SCC(V,E) do

e e N N »n

11 if Ave V\C: (v,u) € Eforau € C then
12 | Ret « RetU {C}
13 return Ret

14 Function L(g, 5):
15 if (g, s,*,£) € S then return ¢
16 else return —1

17 Function X(g, 5):
18 if d(q, s, %, *) € S then return x
19 else return —1

20 Function latestRefutation(a,b):

21 T {icla,b]|dgeP:Lg,i)=0o0rX(g,i) ¢{-1,x}}
22 if T # 0 then return max(T)

23 else return —1

24 Function uniqueCandidate(a, b):
25 if 3keN: YueP,Viela,b]: L(u,i) >0 = X(u,i) =kand dq € P,
dj e [a,b]: L(g,j) >0 then

26 \ return k
27 else
28 \ return —1

29 Function allGood(a, b):
30 | return(YgeP,Vie[a,b]: L(g,i) # 0and X(¢,i) € {~1,X})

above impossibility conditions are not met.



Algorithm 2: Consensus algorithm, code for process p. Uses function
definitions from [Algorithm 1]

Initialization:
17 0,Xxex,, 0 «0,A=0,P 0
2 S {(p,r,x )}

3 re1

Round r communication:
4 Attempt to send (P, S, A) to all
5 Receive m, from all g with (g, p) € G,

Round r computation:
6 foreach my s.t. p received my = (P,, Sy, Ay) in round r do
‘ update(q, P,, Sy, Ay)

8 R « searchRoot(r — D)

9 if R+ 0and ({ =0 orR # searchRoot(r — D — 1)) then
10 X < max {X(g,r — D) | g € R}

11 {—r

12 elseif » > N then

13 if latestRefutation(r — N,r—1) > ¢ then

14 | <0

15 if uniqueCandidate(r — N,r — 1) # —1 then

16 ‘ X « uniqueCandidate(r — N,r—1)

17 if r > N(D +2N), y, = 1, £ > 0, and al1Good(r — N(D + 2N),r — 1) = TRUE
then

18 | y, X

19 S SU((p,rxt)
20 r—r+1

8.1 Dealing with a constant fraction of rooted graphs

We start our investigation with an adversary that does not satisfy the conditions
of ROOTED,, in that it contains sequences where not all communication graphs
are rooted graphs. Recall that this means that some communication graphs may
contain multiple strongly connected components such that there is no directed
path between them. In this sense, these strongly connected components define
a partitioning of the system (even though the components may still be weakly
connected to each other). Below we show how, depending on the severity of this
partitioning, consensus may still solvable with the techniques described so far.
In particular, it turns out that our methods are still applicable if there remains a
constant fraction of rooted graphs in every sequence of communication graphs.



In order to precisely express this type of partitioning, we introduce the message
adversary ROOTED,, (k).

Definition 8.1. ROOTED, (k) is the set of those infinite communication patterns
o where each subsequence o’ C o with |0'| = k contains at least one rooted
communication graph.

By definition, ROOTED, (k) describes those graph sequences where at least ev-
ery K communication graph is rooted. For this kind of relaxation of ROOTED,, it
is actually easy to adapt [Algorithm 2| The reason for this is that ¢GOOD,(D + 1)
still guarantees a rooted subsequence of D + 1 consecutive rounds and the more
relaxed condition ROOTED, (k) merely implies that we can rely only on every k™"
graph to be rooted. It follows that essentially waiting k times longer in
will result in the same amount of rooted graphs and thus the same level
of information propagation throughout the execution. In the code, this simply
amounts to increasing all durations by a factor of &, as presented in

Regarding the impossibility results from it is not hard to see that
they hold also for ROOTED, (k). The reason for this is that the adversary may
simply choose completely disconnected graphs (with self-loops) in all rounds ex-
cept in the stability phase and in one round of every subsequence of length &,
thereby satisfying ROOTED, (k). This ensures that there is no information propa-
gation in those rounds, which makes immediately applicable. As,

furthermore, the arguments for the correctness of can be adapted to
we have the following lemma.

Lemma 8.2. Fix some k € N*. Consensus is solvable under ROOTED, (k) N
$GOOD,,(x) N DEPTH,(D) if and only if x > D.

8.2 Lower bounds for partitioned graphs

Until now, we have seen that a constant fraction of rooted graphs is a very benign
case of a partitioning in the sense that essentially all our previous results remain
applicable. As we have motivated in the beginning, however, we would like to be
able to model systems that can cope with arbitrary long periods of initial uncer-
tainty. The question that we answer in the remainder of this section is how this
can be realized with respect a partitioning that remains for an arbitrary long pe-
riod. For this reason, we introduce the adversary STICKY(x) below. Informally, it
restricts a partitioning only in that any vertex-stable root component that is stable
for > x rounds is the only root component at some point during its lifetime for at
least x consecutive rounds.

Definition 8.3. For x > 1, STICKY(x) is defined as: STICKY(1) = ROOTED, and

for x > 1, STICKY(x) is the set of all infinite communication graph sequences o



Algorithm 3: Consensus algorithm for ROOTED, (k) N ¢GOOD,(D + 1) N

DEPTH, (D), code for process p. Uses function definitions from
Initialization:

170, Xex,, 0 —0,A=0,P 0

2 S« {(p,r,x )}

3 re1

Round r communication:
4 Attempt to send (P, S, A) to all
5 Receive m, from all g with (g, p) € G,

Round r computation:
6 foreach my s.t. p received my = (P,, Sy, Ay) in round r do
7 ‘ update(q, P,, S;. Ay)

8 R « searchRoot(r — D)

9 if R+ 0and (€ =0 orR # searchRoot(r — D — 1)) then
10 X < max {X(g,r — D) | g € R}

11 {—r

12 else if » > kN then

13 if latestRefutation(r — kN,r — 1) > ¢ then

14 | <0

15 if uniqueCandidate(r — kN,r — 1) # —1 then

16 ‘ X « uniqueCandidate(r — kN,r — 1)

17 if r > kN(D + 2N), y, = L, £ > 0, and allGood(r — kN(D + 2N),r — 1) = TRUE
then

18 | y, X

19 S« SU((p,rxt)
20 r—r+1

such that |I1,| < N and, for every subsequence o’ = (G,)fza C o with|o’'| > x, if
there is a set R C 11, such that R is a root component of every G, with r € [a, b]
but neither of G, nor Gy, then there is an R-rooted sequence o’ C o’ with

lo”’| > x.

By convention, STICKY(1) is equivalent to ROOTED,,. For x > 1,

essentially states that every sequence of length > x in STICKY(x) that consists of
communication graphs in which R occurs as a root component, in fact contains
an R-rooted subsequence of length x. This permits vertex-stable root components
that behave almost arbitrarily chaotic if their duration is < x rounds and also al-
lows multiple root components to some extent, even if their duration is > x. It
does, however, provide a very important guarantee that will be exploited algorith-



mically later on: The first vertex-stable root component that remains stable for
> x rounds, must become the only vertex-stable root component for a phase of
> x rounds before any subsequent long-lived vertex-stable root components come
into existence.

As we will see below, solving consensus in systems that are partitioned in
the sense of incurs a necessity for longer periods of stability than
before. In order to show this, we introduce the combined message adversary
OSTABLE<y p(x,y). Taken together, this lets us formulate a generalized version
of OSTABLEy p(x), which can express partitioned communication graphs as well
as non-consecutive liveness periods:

Definition 8.4. 0STABLEy p(x,y) := STICKY(x) N $GOOD,(y) N DEPTH, (D).

It is not hard to see that, because ROOTED,, = STICKY(1) by convention, we
have QSTABLEgN,D(l,y) = ()STABLEgN,D(y).

In order to extend the characterization of 0STABLEy p(x, ) to the entire range
of its parameters, we should investigate the cases where x > 1. When setting x > 1
in STICKY(x), however, we unfortunately cannot simply apply the techniques from
|Algorithm 3|and [Theorem 6.1|again, but instead need to develop new algorithms
and impossibility results. We will find that a significantly longer period of stability
than before is required to solve consensus in this case: In below,
we find that increasing consecutive stability to y = 2D still renders consensus
impossible due to the partitioning that occurs when x > 1.

We prove this lower bound for the message adversary MA = (). STICKY(i) N
¢GOOD,(2D) N DEPTH,(D), which is sufficient since MA C OSTABLE«y p(x,2D)
for x > 1. Glossing over many of the details, MA may generate o-; and o4 from
resulting in admissible executions &, = (C°, o) and &, = (C°, o),
where C° is an initial configuration in which the processes of A = {a,a’} and
the processes of B = {b,b’} start with different inputs. The validity condition
implies that in any correct consensus algorithm, by some round 7, b decided a
different value in &, than a in &4. Furthermore, MA may generate o, and o3 from
where &, = (C°, 0,) and &3 = (C°, 073) result in the indistinguishabilities
g1 ~p & ~c & ~4 &4 This implies that a and b decided differently in &, and &3
and hence c¢ can never make a correct decision in &, or &s.

Lemma 8.5. Fix an arbitrary integer x > 1. Consensus is impossible under
OSTABLE<y.p(x,y) if y < 2D.

8.3 Lower bounds for non-consecutive stability

As we have just seen, even under a slightly partitioned message adversary, we
require already a stability phase that is about twice as long as in the case where
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Figure 5: Sequences of We use an upper case letter X to denote the
graph x & x’. For D > 1, a “wavy” edge X ~~ Y stands for a chain X — p; —

.. = Pi,, = Y wherei; # iy for j # j. X — p (resp. p — X) stands for the
presence of the two edges (x, p) and (x’, p) (resp. (p, x) and (p, x’)). The chain
is unique wrt. X and Y and its vertex-set is disjoint from that of any other chain,
denoted by a “wavy” line in the same graph. For D = 1, X ~ Y is simply an
ordinary edge X — Y. A dotted, unidirectional edge x -» y represents an edge
that is in G; iff it is not in G;_;. A dotted, bidirectional edge x <> y means that
there is a single unidirectional edge between x and y that alternates its direction
in every round. We assume that there is an edge from each process (or set of
processes) depicted in the graph to every process not depicted in the graph.

every communication graph is rooted. A question that arises in this context is
whether this stability really needs to be consecutive, as we have required so far. In
order to investigate this, i.e., to model the behavior of partly consecutive stability,
we introduce a generalized variant of ¢GOOD,,(x) below.

Definition 8.6. ¢GOOD, (v, z) is the set of all infinite communication graph se-
quences o such that |I1,| = n and there exists a set R C Il, and an R-rooted
o’ C o with |o’| > y. In addition, the subsequence o’ is followed by a finite
subsequence o C o such that at least z communication graphs G, of o satisfy
Root(G,) = R.

allows us to express that an R-rooted sequence of length at least
x is followed by y not necessarily consecutive communication graphs with unique

root component R. It leads to our final, most general definition of the eventually
stabilizing message adversary:

Definition 8.7. 0STABLE.y p(x, Y, z) := STICKY(x) N $¢GOOD,(y, z) N DEPTH,(D).



A particularly interesting value for the second parameter z of ¢GOOD,(y, z)
seems to be z = D: According to this is precisely enough for
the state information of the consecutively vertex-stable root component to propa-
gate from the end of its stability phase to all other processes. Our lower bound,
expressed in below, thus states that consensus is impossible under
OSTABLE<y p(x,y, D) if y < x. The reason is that the information propagation dur-
ing a stability phase of y rounds, where y < x, is insufficient for some process to
reliably detect that the stability window has occurred. Subsequently, this turns out
to be a tight bound in the sense that consensus becomes solvable if y > x.

Lemma 8.8. Fix an integer x > 1 and y € N*. Consensus is impossible under
OSTABLEsN’D(X, y, D) lfy < X.

8.4 A general solution algorithm

We now show that consensus is solvable under 0STABLE <y p(21, 22, D) forz, > z; >
D by providing which copes with this message adversary, despite its
power to partition the communication graphs and providing only a partially con-
secutive stability phase. The algorithm reuses some of the supporting functions
from and employs the same mechanisms to approximate the graph
sequence and store/forward the processes’ initial values.

Informally, in a round r, the algorithm checks if it can reliably find a unique
root component R in round r — D (Lines [§]and [9). If this is the case, the algorithm
searches for the first round s such that this root component consecutively occurred
in (Gy)_ and locks the maximum proposal value x a process g € R held at time
s (Lines [I0] to [[2). This ensures that if a unique root component occurs in a
subsequence of at least D + 1 rounds, every process has the same lock value,
forever after.

The criterion for a decision is straightforward in |Algorithm 4f a process p
decides in as soon as it detects a R’-rooted subsequence of duration at
least z, (Lines [I9]to [22)). Compared to our previous approaches, it is interesting
to note that fixing the third parameter of ¢STABLE<y p(21,22, D) to D here ensures
that every process eventually must detect this subsequence, thereby ensuring ter-
mination. Again, the algorithm decides on the largest value of Xf] of ¢ € R’, where
t is the earliest round such that R appeared as a root component in every com-
munication graph G, for r € [t,i] but not in Gi_; (Line [23). Since we have that
Zp > 71, it is guaranteed that the first sequence detected in this way is locked by
all processes forever after, according to the mechanism described in the previous
paragraph. It follows that all future decisions are the same.

Taken together with our previous possibility and impossibility results, this en-
ables a characterization of the consensus solvability of ¢STABLE<y p(x,y, D) for



Algorithm 4: Consensus algorithm for 0STABLE<y p(21, 22, D), code for
process p. Uses function definitions from [Algorithm 1]

Initialization:
17 0,Xxex,, 0 «0,A=0,P 0
2 S {(p,r,x )}

3 re1

Round r communication:
4 Attempt to send (P, S, A) to all
5 Receive m, from all g with (g, p) € G,

Round r computation:
6 foreach my s.t. p received my = (P,, Sy, Ay) in round r do
‘ update(q, P,, Sy, Ay)

8 R « searchRoot(r — D)
9 if |R| =1 then

10 S«—r—-D

11 while s > 1 and R C searchRoot(s—1)do s« s—1
12 x < max{X(q, s) | ¢ € R}

B3R <0

14i<0

15 whiley, = Landi<r—1do

16 i—i+1

17 if |[searchRoot(i)| # 1 then R « 0

18 else // |searchRoot(i)| =1

19 if searchRoot(i) # R’ then

20 R’ < searchRoot(i)

21 tei

22 ifi—t+1>2z then

23 while t > 1 and R’ C searchRoot(t—1)do t —t—1
24 yp < max{X(q,t) | g € R’}

25 S SU(p,rxt)
26 r—r+1

all values of x,y € N*, which is shown in Fig. [6

9 Additional Results

In addition to what we presented so far, [33]] develops some additional results that
we will sketch briefly below.
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Figure 6: Characterization of the consensus solvability/impossibility border of
OSTABLEn p(x,y,2), where z = 0if y < D + 1 and z = D otherwise: red (upper
left) = impossible, green (right) = possible.

Strongest message adversary A popular method to model consensus solvabil-
ity in distributed computing systems is the failure detector formalism. In essence,
and without going into the details, a failure detector is an oracle that can be queried
by a process to yield additional information it might not have obtained otherwise
and which helps the process to solve consensus. Traditionally, this formalism is
used in distributed computing systems prone to crash failures, where the output of
the failure detector is some function on the processes that have crashed so far. This
makes sense, since, in these systems, the crucial difficulty is to locally distinguish
a crashed process from a silent one (which could occur, e.g., in an asynchronous
system because a process is very slow). Perhaps the most celebrated contribu-
tion of the failure detector formalism is the introduction of a hierarchy among
the failure detectors that allows to compare failure detectors to each other using a
simulation procedure. This leads to the definition of a weakest failure detector for
consensus, which should encapsulate exactly the information needed to achieve
consensus solvability in a system where consensus is ordinarily impossible.

We investigate how this idea can be transferred to the message adversary
model, in order to establish an order relation among the message adversaries,
using an adaptation of the simulation procedure from the failure detector formal-
ism. On the positive side, we are able to identify a class of strongest message
adversaries that still enable a solution for consensus. On the negative side, we
discover that this class is rather large, which means that the granularity of such a
simulation approach is not very satisfactory. A preliminary version of this work
appeared in [28]].

k-set agreement A natural follow-up question to is whether systems
that do not allow consensus solutions because they do not guarantee an adequate
replacement for rootedness allow solutions to easier problems than consensus,
such as k-set agreement. The k-set agreement problem is a generalization of con-
sensus where not all decision values must be the same but instead there may be at



most k different decision values. Perhaps surprisingly though, even if the number
of rooted spanning trees in each communication graph is limited to k, k-set agree-
ment is still impossible. In fact, it turns out that even more severe restrictions than
this render k-set agreement impossible. In order to make k-set agreement solvable,
it seems that there needs to be some kind of “significant influence” relation from
a set of k select vertex-stable root components to all subsequent vertex-stable root
components. One instance of such a k-set agreement algorithm was presented in

[17].

Limit-closed message adversaries Regarding a complete characterization of
consensus solvability, we show that a simple characterization exists for the class
of limit-closed message adversaries. Limit-closed means that if the limit of every
sequence (0 ,),-0, Where o, is an admissible communication pattern, whose first r
rounds coincide with the first » rounds of o, 1s admissible. Our characterization
shows that consensus is solvable under a limit-closed message adversary, if and
only if, every admissible communication pattern o~ has a round r and a process g
such that the following holds: in all communication patterns that are transitively
indistinguishable to o in round r, all processes have heard from g, i.e., for every
p € Il we have g € CP(0).

Point set topology Going one step further, we look for potential topologies for
the set of process-time pairs, which result from the product of the initial configura-
tions with the communication patterns. We find that there exists a semi-metric that
expresses distance in certain terms of indistinguishability, which can be used to
define a semi-metric, topological space on the process-time pairs on which a con-
sensus characterization can be formulated: Exploiting the well-known fact that
the consensus task is a continuous map, it can be shown that consensus solvability
is equivalent to the existence of a separation of this space that respects the validity
condition. In other words, we show that for every input value v, the process time
pair with the initial configuration where all processes start with v cannot be in the
same connected component as the process time pair with the initial configuration
where all processes start with v # v.
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