
The Distributed Computing Column
by

Stefan Schmid

Faculty of Computer Science, University of Vienna
Währinger Strasse 29, AT - 1090 Vienna
stefan_schmid@univie.ac.at

In this issue of the distributed computing column, Robert Elsässer and Tomasz
Radzik provide a review of interesting recent models and results for population
protocols, with a focus on exact majority and leader election.

Many thanks to the authors for their contribution and enjoy!
PS: For those dear readers interested in learning even more about population

protocols, I would like to point out that it happens that the September 2018 issue
of the SIGACT News column also features an overview article on population
protocols, by Alistarh and Gelashvili, revolving around models where agents in the
system can have more than a constant amount of local memory.

http://cs.univie.ac.at
http://www.univie.ac.at
stefan_schmid@univie.ac.at


Recent Results in Population Protocols for
ExactMajority and Leader Election

Robert Elsässer
Department of Computer Sciences

University of Salzburg
elsa@cs.sbg.ac.at

Tomasz Radzik
Department of Infomatics
King’s College London

tomasz.radzik@kcl.ac.uk

Abstract

Population protocols act in a simple and natural framework to solve fun-
damental problems in networks. Given a population of n anonymous nodes
(agents), a scheduler chooses in discrete time steps two nodes for interac-
tion, which then exchange their current states and perform a so called state
transition. We focus on the random scheduler, which selects in each step two
nodes uniformly at random for interaction, and on the problems of exact ma-
jority and leader election. In exact majority, initially the nodes possess one
of two opinions, A or B, and the population is required to converge to a con-
figuration, in which every node has the opinion of the initial majority. In
leader election, each node starts with the same state, and the system should
converge to a configuration, with exactly one node in a leader state. The
goal is to design protocols, which require a small number of states and reach
a correct final configuration as fast as possible. In this paper, we give an
overview of the population protocols for these problems, focusing on the
most recent results.

1 Introduction
Population protocols, introduced by Angluin et al. [5], act in a simple and natural
computational framework to solve certain fundamental problems in networks. In
the underlying communication model, the system consists of n anonymous nodes
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(also referred to as agents or individuals) and a scheduler which selects in discrete
time steps pairs of nodes for interaction. Two interacting nodes exchange their
current states and perform a state transition, which is specified in the population
protocol. The system is expected to stabilize eventually in configurations which
obey the output property specified in the problem definition. For example, in the
leader election problem, all nodes start in the same state and the system should
eventually stabilize in a configuration with exactly one node outputting a leader
state and all the other nodes in follower states.

The population is modeled by a graph, and the nodes are connected according
to the edges of this graph. Interactions are only allowed between adjacent nodes,
that is, the scheduler can only choose pairs of nodes that are connected. A pro-
tocol is specified by a state transition function (or more generally, by a transition
algorithm), which is applied at each interaction. The complexity measures of a
protocol are the size of the state space of the transition function and the conver-
gence time to the output property. Thus given a problem and a graph modeling
a population, the goal is to design a protocol which has a small state space and
converges fast to a correct configuration.

Angluin et al. [5] motivated the population protocols model by simple compu-
tations in sensor networks. They gave an example of a flock of birds, where each
bird is equipped with a simple limited-capacity sensor. Each sensor becomes acti-
vated upon receiving a global start signal, and two sensors can only communicate
if they are close enough to each other. The sensors are able to measure the temper-
ature of the birds and the goal is to recognize whether a certain threshold number
of birds in the flock have elevated temperature. Other examples motivating pop-
ulation protocols come from chemical reaction networks [42] and from relations
between population protocols and Petri nets and vector addition systems [31].
Chen et al. [23] showed that population protocols can be implemented at the level
of DNA molecules, and Cardelli and Csiksz-Nagy [22] discussed similarities of
structure and dynamics between some biochemical regulatory processes in living
cells and some population protocols.

In the original definition of population protocols, the actions of each node are
goverened by the same finite state machine, which describes the state transitions.
The finite state space is independent of the size of the population, meaning that
the nodes, as computational devices, possess only a constant number of bits. All
nodes follow the same protocol, i.e., two interacting nodes perform the state tran-
sition defined by the finite state machine applied to the current states of the nodes.
The nodes are indistinguishable, i.e., there are no node identifiers. The scheduler
is usually governed by adversary, but the schedule (the infinite sequence of pairs
of nodes chosen for interaction) must fulfill some global minimum fairness con-
dition to ensure progress of computation. Finally, while we expect that the system
converges to the correct output, we cannot require that the nodes detect when a



stable configuration is reached. See Aspnes and Ruppert [11] for a comprehensive
discussion of various aspects of the population protocols model.

When the population protocols were introduced, the main question was to
characterize the class of problems which are solvable in this model. In the basic
model population protocols compute exactly predicates definable in Presburger
arithmetic [5, 6, 9]. The question of computational power of population protocols
has been considered also under different variants of the communication model or
for certain classes of interaction graphs, such as bounded-degree graphs [5, 21].
In the case of an adversarial scheduler, the worst case interaction graph is the
clique, as any schedule on an arbitrary graph can be simulated by a sequence of
interactions on a complete graph.

If the scheduler is governed by an adversary, then it is impossible to reason
about the convergence time of population protocols. Therefore, in most cases
when the purpose of study is to analyze and compare convergence times of popu-
lation protocols, a random scheduler is assumed. This means that at each discrete
time step, two nodes are selected uniformly at random for interaction. In recent
years, to study trade-offs between memory and time, the constant memory restric-
tion has been relaxed and population protocols with the state space growing with
the number of nodes have been analyzed.

1.1 Model
A population protocol and its time performance can be formalized as follows (see
e.g. [15]). Let V denote the population, that is, the set of nodes; n = |V |. All
protocols which we consider in this paper assume the complete graph of node
connections, that is, any pair of nodes can interact. Let S be the set of states of the
protocol, which can have constant size or its size may grow with n. Let q(v, t) ∈ S
denote the state of a node v ∈ V at step t (i.e., after t individual interactions), where
q(v, 0) is the initial state of v. Two interacting nodes perform a state transition
according to a common deterministic function δ : S × S → S × S . Transition
δ(q′, q′′) = (r′, r′′) means that if a node v′ in state q′ interacts with a node v′′ in
state q′′, then v′ changes its state to r′ and v′′ to r′′. A population protocol has
also an output function γ : S → Γ, which is referred to in the specification of the
desired output property of the computation. Here Γ is the set of output values.

If interactions between nodes are undirected (or symmetric), then transition
δ(q′, q′′) = (r′, r′′) implies that δ(q′′, q′) = (r′′, r′). In particular, for each state q,
there is a transition δ(q, q) = (r, r) for some state r. If interactions are directed
(asymmetric), then one of the two interacting nodes is the caller (or initiator) and
the other one is the callee (or responder). In this case we can have symmetry
breaking transitions δ(q, q) = (r′, r′′), where r′ , r′′. In this paper we consider
undirected interactions, unless stated otherwise.



We say that the system is in a stable configuration, if no sequence of inter-
actions can change the outputs of the nodes. The computation continues (it is
perpetual) and nodes may continue updating their states, but if a node changes
from a state q to another state q′, then the outputs γ(q′) and γ(q) are the same.
The main types of output guarantees are always correct and w.h.p.1 correct. An
always correct protocol reaches a correct stable configuration with probability 1.
A w.h.p.-correct protocol reaches the correct stable configuration with high prob-
ability, but with some low but positive probability it may stabilize in incorrect
configurations or may not stabilize at all.

The sequential time is defined as the number of interactions. The parallel time
counts the number of rounds, each consisting of n interactions. In this paper we
assume the random scheduler, so each node participates on average in 2 interac-
tions in one round, and we always give the parallel time of a protocol.

The most frequently used notions of time performance of a population protocol
are the stabilization time and the convergence time. The stabilization time TS is
defined as the first round when the system enters a correct stable configuration.
The convergence time TC measures the number of rounds until the system has
reached and remains in configurations, which have the correct output property
required in the problem specification. In the case of a random scheduler TS and
TC are random variables. We are interested in population protocols for which the
stabilization time TS , or convergence time TC, is small w.h.p. and the expectation
E(TS ), resp. E(TC), is finite and ideally also small. A finite expectation implies
that the protocol is always correct. Note that TC ≤ TS since a stable configuration
implies that the system will output the same values in all subsequent steps.

A protocol is uniform, if it does not refer to the number of nodes or its esti-
mate, that is, it uses the same transition function for any population size. Pop-
ulation protocols with constant number of states are uniform, but protocols with
the state space growing with the increasing population tend to be nonuniform.
For example, a nonuniform protocol may specify that a node repeats some op-
eration for log n interactions. An example of a uniform protocol with growing
state space is the asymmetric protocol with transitions δ(qi, qi) = (qi, qi+1) and
δ(qi, q j) = (qi, q j), for i, j ≥ 1 and i , j. Recent papers which focus on designing
uniform population protocols include [15, 26, 27]. A formal model of uniform
protocols is given in [26, 27] and assumes that transition functions are specified
by Turing Machines. The same Turing Machine (TM) is used for populations of
any size. Each node has a copy of this TM and the current state of this node is the
content of the tape(s) of its TM.

1A property P(n), e.g. that a given protocol reaches a stable correct configuration, holds w.h.p.
(with high probability), if it holds with probability at least 1 − n−α, where constant α > 0 can be
made arbitrarily large by changing the constant parameters in P(n) (e.g. the constant parameters
of a protocol).



1.2 Exact majority and leader election

Probably the most well-studied problems in this area are exact majority and leader
election. In the following, we will define these problems separately, and in Sec-
tions 4 and 5 we are going to discuss the most recent results and their analysis in
more detail.

Exact majority. At the beginning, each node has opinion A or B and we
assume that one of these two opinions is in majority. Let a0 and b0 denote the
initial number of nodes with opinion A and B, respectively. The goal is to design
a population protocol such that the system eventually stabilizes in a configuration
in which all nodes know which opinion has larger support. That is, if a0 > b0,
then all nodes eventually output A, if a0 < b0, then all nodes eventually output
B, and there is no output requirement, if a0 = b0. Formally, we assume that
initially each node is in one of two states qA and qB, and if, say, a0 > b0, for
any fair sequence of interactions Υ, there is some tΥ such that for any t > tΥ,
we have γ(q(v, t)) = A. In this paper we are mainly interested in exact majority,
meaning we want protocols, which work whenever the initial imbalance between
the opinions |a0 − b0| is positive, even if it is just 1. In contrast, approximate-
majority protocols may not work, if the initial imbalance is below some threshold.
When we simply refer to “majority”, we mean exact majority.

Leader election. Initially all nodes are in the same state and the goal is that
eventually exactly one node is in a leader state, while all other nodes are in fol-
lower states. Formally, the set of output values is Γ = {L, F} and for any fair
sequence of interactions Υ, there is some tΥ such that for any t > tΥ, we have
γ(q(v, t)) = L for exactly one node v, and γ(q(u, t)) = F for all other nodes u.

For both problems the objective is to design population protocols which solve
the problem and require a small number of states and rounds. On one side, there
are different types of lower bound results, which bound the number of states given
certain time requirements, or bound the time given certain requirements on the
number of states. On the other, more extensive side, a number of exact-majority
and leader election protocols exist with specific upper bounds on both the number
of states and (stabilization and/or convergence) time.

In the next section we give an overview of protocols for these two problems,
focusing on recent results. In Section 3 we give some basic probabilistic results,
which are often used in the protocols we consider. This is followed by more de-
tailed discussion of exact-majority protocols in Section 4 and leader election pro-
tocols in Section 5. For exact majority (Section 4), we first explain the canceling-
doubling framework, which was introduced by Angluin et al. [7], and then discuss
how this framework was implemented in protocols proposed by Angluin et al. [7],
Bilke et al. [20], Alistarh et al. [2] and Berenbrink et al. [15]. The protocol pro-
posed in [15], which has O(log n) states and O(log5/3 n) stabilization time w.h.p.



and in expectation, is currently the fastest population protocol for exact majority
with O(polylog n) states. The descriptions of the canceling-doubling framework
in Section 4.1 and of the algorithms in Sections 4.3-4.5 are (almost) the same as
in [15] w.r.t. style, wording and formulation.

For leader election (Section 5), we outline the protocols proposed by Al-
istarh et al. [1], Bilke et al. [20], Alistarh et al. [2], Berenbrink et al. [19]
and Gąsieniec and Stachowiak [33]. The protocol proposed in [33] is the first
O(polylog n)-stabilization time leader election protocol with asymptotically opti-
mal O(log log n) number of states.

In Section 6 we highlight two very recent advances: parameterized proto-
cols proposed by Berenbrink et al. [16], which allow smooth trade-off between
space and time, and fast constant-state protocols proposed by Kosowski and Uz-
nański [37].

2 Overview of population protocols for exact major-
ity and leader election

Since the introduction and the first analysis of population protocols in Angluin et
al. in [5], a multitude of papers have considered this model and presented solu-
tions to various fundamental problems. The survey by Aspnes and Ruppert [11]
discusses variants of population protocols and several early results.

Draief and Vojnović [29] and Mertzios et al. [38] focused on population pro-
tocols for exact majority and analyzed two similar four-state protocols, which
solve the problem on any graph in polynomial time, w.h.p. and in expectation.
Mertzios et al. [38] showed that the expected stabilization time of their protocol
is O(n5) on any graph and O(n log n/|a0 − b0|) on the complete graph. Draief and
Vojnović [29] derived the same bound for the complete graphs and obtained also
bounds on the expected stabilization time for other graphs, including cycles, stars
and random graphs.

Both four-state majority protocols use the same idea of weak versions a and b
of the two main opinions A and B. The transition functions of their protocols are
given in the table below. The states X and Y stand for distinct strong opinions, x
and y stand for the corresponding weak opinions, and q stands for any state.



(q′, q′′) δ(q′, q′′)
1 (X,Y) (x, y) in [38], (y, x) in [29]
2 (X, y) (x, X)
3 (X, x) (X, x)
4 (x, y) (x, y) in [38], (y, x) in [29]
5 (q, q) (q, q)

The strong versions of the two opinions can be seen as tokens moving around
in the population. When interacting with a node possessing a weak opinion of
opposite sign, the strong opinion converts this weak opinion to a weak opinion of
its own kind (transition 2). If two strong opinions A and B interact, they cancel
each other, converting to the weak versions a and b (transition 1). The correctness
of the protocol follows from the fact that the difference between the number of
nodes with (strong) opinion A and B is preserved during the computation and
eventually all strong opinions of the initial minority are canceled out. Finally, the
remaining strong opinions of the majority convert every weak opposite opinion.

Draief and Vojnović [29] viewed their algorithm as a special case of the in-
terval consensus protocol of Bénézit et al. [14], and analyzed it in the continuous
time model, which for the case of uniform edge rates is roughly equivalent to the
random interaction model.

Angluin et al. [7] derived population protocols with constant number of states
for various functions. Their protocols are w.h.p.-correct and require the presence
of the leader from the onset of the computation to synchronize the nodes. Their
exact majority protocol w.h.p. converges in O(log2 n) time and is based on the idea
of phases consisting of cancellations and duplications of opinions, which has been
used in many subsequent papers. Each phase takes Θ(log n) time. The first half of
the phase is a cancellation stage, while the second half is a duplication stage. The
leader is used to implement a mechanism, which ensures that the nodes progress
together from stage to stage. In the cancellation stage of a phase, if two (strong)
opposite opinions meet (interact), they cancel each other. In the duplication stage,
if a node possessing a strong opinion meets a node without a strong opinion, then
both adopt the strong opinion involved in this interaction, i.e., the strong opinion is
duplicated. To preserve the majority opinion, the two new tokens are not allowed
to duplicate in this phase anymore. Within O(log n) repetitions of cancellation-
duplication phases, all nodes possess the majority opinion. We discuss in more
detail this cancellation-duplication framework in Section 4.

Population protocols with constant state space, like the four-state exact-
majority protocols, are simple and easy to implement, but they are usually slow.
However, the stabilization time of the four-state protocols decreases, if the initial
imbalance |a0 − b0| is large, so their performance would be improved, if we could



boost the initial imbalance. To achieve this, Alistarh et al. [4] simply multiplied
the initial opinions by some integer r ≥ 2. Then, the nodes keep the number of
strong opinions they currently possess, requiring r states for this. When the strong
opinions of the initial minority are canceled out, |a0 − b0|r strong opinions of the
initial majority are in the population. This speeds up both the canceling of strong
opinions and the converting of weak opinions of the initial minority. Refining this
idea, Alistarh et al. [1] derived an exact majority protocol with stabilization time
O(log3 n), w.h.p. and in expectation, and O(log2 n) states.

Bilke et al. [20] proved that the cancellation-duplication framework from [7]
can be extended to the leaderless case, if the agents have enough states to count
their interactions. Their majority protocol has stabilization time O(log2 n) w.h.p.
and in expectation, and uses O(log2 n) states. Berenbrink et al. [18] extended
the previous results on majority protocols to k ≥ 2 opinions (plurality voting) and
arbitrary graphs. Their algorithm uses the idea of load balancing [41] and achieves
O(polylog n) time using a polynomial number of states, assuming that the initial
imbalance bwteen the first and second opinion is Ω(n/polylog n). For the case
of complete graphs and two opinions (k = 2), their protocol converges w.h.p. in
O(log n) time. Gąsieniec et al. [32] derived space optimal population protocols
for the absolute and relative majority problem.

Recently Alistarh et al. [2] showed that any majority protocol, which has
expected stabilization time O(n1−ε), where ε can be any positive constant, and
satisfies the properties of monotonicity and output dominance. needs Ω(log n)
states. They also derived an algorithm, with Θ(log n) states and stabilization time
O(log2 n) w.h.p. and in expectation. Informally, the running time of a monotonic
protocol does not increase if executed with a smaller number of agents. The out-
put dominance means that if the positive counts of states in a stable configuration
are changed, then the protocol will stabilize to the same output. All known ma-
jority protocols satisfy both these properties, but it is not clear whether they are
necessary, so we cannot exclude the possibility that the conditional lower bound
Ω(log n) on the number of states does not hold in the general case.

Very recently Kosowski and Uznański [37] and Berenbrink et al. [16] showed
that there are algorithms with polylogarithmic convergence time TC while using
o(log n) states. As outlined in [15], in [37] the authors design a programming
framework with corresponding compilation schemes that provide a simple way of
obtaining protocols, which are w.h.p. correct, use O(1) states and converge in ex-
pected polylogarithmic time. Their protocols can be made always correct by using
O(log log n) states per node, while keeping polylogarithmic time, or by increas-
ing the time to O(nε), while keeping a constant bound on the number of states.
In [16] the authors derive an always correct majority protocol which converges
w.h.p. in O(log2 n/log s) time and uses Θ(s + log log n) states, as well as an always
correct majority protocol which stabilizes w.h.p. in O(log2 n/log s) time and uses



O(s · log n/log s) states, where s ∈ [2, n].
Turning attention into the leader election problem, it is easy to come up with a

3-state protocol which elects the leader in complete graphs in O(n) time in expec-
tation. There are two leader states L1, L2, and one follower state F, and initially
each node starts in state L1. During the computation each node in a state Lx is a
leader. If two leaders of different type interact, the L2 node becomes a follower.
At each interaction, the leader state is switched (L1 becomes L2 and vice-versa),
unless the leader turns into a follower. Eventually one single leader remains in the
population.

Recent O(polylog n)-time O(polylog n)-state population protocols for leader
election have been derived by Alistarh and Gelashvili [3]. Their algorithm uses
O(log3 n) states and O(log3 n) time, w.h.p. and in expectation. Doty and Solove-
ichik [28] showed that any leader election protocol with constant size memory
requires at least linear convergence time. Alistarh et al. [1] proved that any
leader election or exact majority protocol with stabilization time n/ logω(1) n re-
quires Ω(log log n) states. In the same paper, they design an algorithm with
O(log2 n) states and polylogarithmic stabilization time. Bilke et al. [20] reduced
the expected and w.h.p. time to O(log2 n) while keeping the number of states at
O(log2 n). Subsequently, keeping the stabilization time at O(log2 n), Alistarh et
al. [2] reduced the number of states to O(log n), and finally Gąsieniec and Sta-
chowiak [33] reduced the number of states to asymptotically optimal O(log log n).

The papers by Kosowski and Uznański [37] and Berenbrink et al. [16] men-
tioned earlier consider both the exact-majority and the leader election problems.
The former shows protocols for leader election which have the same performance
characteristics as their exact-majority protocols. The latter develops a parame-
terized leader election protocol, which gives, for example, a protocol stabilizing
w.h.p. in o(log2 n) time with O(log log n) states.

A somewhat different but related line of research is on approximate majority.
Angluin et al. [8] designed a simple 3-state protocol, which decides majority in
O(log n) time, w.h.p., provided that the initial difference is at least ω(

√
n log n).

The protocol is very simple. If two agents of opposite opinion meet, one of them
enters a so called “undecided” state. An undecided agent adopts at the next inter-
action the opinion of its partner. Protocols utilizing the concept of such an unde-
cided state have recently been analyzed in the framework of plurality consensus
in a parallel communication model, see e.g. [13, 35, 17, 24].

Another related problem considered in the framework of population protocols
is counting. In Mocquerd et al. [40], the authors propose a population protocol
for computing the difference between nodes being initially in state A and the ones
in state B. Their algorithm uses O(n3/2) states and requires w.h.p. O(log n) time.
For further results on counting agents in various settings and assuming different
fairness conditions the reader is referred to [10, 36, 12, 25].



Doty et al. [27] consider the size counting problem, i.e., calculating the exact
number of agents in a population. They present a uniform algorithm that con-
verges in time O(log n log log n) and requires O(n60) states, w.h.p. This protocol
uses leader election as a sub-protocol, which requires O(log n log log n) time and
O(n18) states. At the end, they indicate how to reduce the state complexity to
O(n30) for exact counting and to O(n9) for leader election.

Doty and Eftekhari [26] study uniform population protocols for estimating
log n within a constant additive error, or equivalently, estimating the size of the
population within a constant multiplicative factor. They present an algorithm,
which uses O(log7 n log log n) states and requires time O(log2 n), w.h.p. The pro-
tocol is converging but not terminating, in the sense that the population does not
signal when the population is close to log n. The authors then show that a uniform
population protocol for any problem requiring more than constant time cannot
terminate with probability bounded away from 0, subject to some assumptions
about initial configurations. However, if the leader exists from the beginning of
the computation, then the protocol for estimating log n can be made terminating.

In Sections 4 and 5, we outline recent protocols for exact majority and leader
election. Our focus is on the main techniques, which lead to protocols with low
space and time requirements.

3 Main probabilistic tools
While analyzing the correctness and time performance of population protocols,
we frequently look what happens during a given period of C log n rounds, for
some constant C. The expected number of interactions of a given node during
this period is 2C log n and, by a simple application of the Chernoff bounds (see
e.g. [39]), w.h.p. each node participates in roughly that many interactions. This is
formalized in the proposition below, which is used in most analyses, though often
more detailed insights into the relative activity of different nodes are needed.

Proposition 1. For all C > 0 and 0 < δ < 1, during a period of C log n rounds,
with probability at least 1 − n−Θ(δ2C), each node participates in at least 2C(1 −
δ) log n and at most 2C(1 + δ) log n interactions.

Population protocols frequently refer to the (one-way) epidemics, or broadcast
process, which completes w.h.p. in Θ(log n) rounds. Each node is either in an M
state (has the message) or in a ¬M state, and whenever a node in a state M interacts
with a node in state ¬M, the latter changes to an M state (gets the message). A
node can also get the message spontaneously, without receiving it from anyone
else. The process starts when the first node gets (spontaneously) the message and
completes when all nodes have the message. The proposition below is the basic



statement about the probabilistic dynamics of the broadcast process, but, as with
Proposition 1, often more detailed properties of this process are needed.

Proposition 2. There is a constant c0, such that for c ≥ c0, the broadcast process
completes in c log n rounds with probability at least 1 − n−Θ(c).

4 Exact majority

4.1 Canceling-doubling phases with synchronization
In this section we discuss the framework of canceling-doubling phases, which
was introduced by Angluin et al. [7] and is the basis of many exact-majority pro-
tocols. We assume first that the nodes are synchronized in the following way. For
a constant C of our choice, w.h.p. all nodes receive the signal “change” every
Ω(log n) many rounds, with the intervals between the consecutive signals span-
ning at least C log n rounds. When a node receives such signal, it changes to the
next stage of the computation. The nodes do not receive these signals exactly at
the same time, but we assume that w.h.p. they all receive the same signal within
a period of c log n rounds, for some constant c which is considerably smaller than
C. Assuming, by induction, that all nodes have just entered the current stage of
the computation, w.h.p. each node will participate in at least C log n interactions
before the nodes start moving on to the next stage (from Proposition 1). While the
current stage progresses, the levels of activity of the nodes (the number of their
interactions) may start diverging, but the next signal will again tightly synchronize
their progress, moving them roughly together to the next stage.

We view the A/B votes as tokens which can have different values (or magni-
tudes). Initially each node has one token of type A or B with value 1 (the base, or
original, value of a token). Throughout the computation, each node either has one
token or is empty. Let v.token ∈ {A, B, ∅} be the type of token held by node v. In
the following we say that two tokens meet if their corresponding nodes interact.

• When two opposite tokens A and B of the same value meet, then they can
cancel each other and the nodes become empty. Such an interaction is called
canceling of tokens.

• When a token of type X ∈ {A, B} and value z interacts with an empty node,
then this token can split into two tokens of type X and half the value z/2, and
each of the two involved nodes takes one token. We call such an interaction
splitting, duplicating or doubling of a token.

We also use the notion of the age of a token, which is the number of times it
has undergone splitting. Thus the relation between the value z and the age g of



a token is z = 1/2g. Note that any sequence of canceling and splitting interactions
preserves the difference between the sums of the values of all A and B tokens.
This difference is always equal to the initial imbalance. The primary objective is
to eliminate all minority tokens.

The computation consists of O(log n) phases, each phase consists of two stages
(the canceling stage followed by the doubling stage), with each stage having
Θ(log n) rounds and synchronized as described above. When two nodes inter-
act and they are in the same stage, then they attempt the canceling or doubling
operation (according to the stage), with the condition that each token can split
only once in one doubling stage. Each node v, in addition to v.token, stores four
boolean flags: v.stage ∈ {canceling, doubling} – the current stage; v.doubled –
true, if the node has already doubled in the current phase; v.done – true, if the
node has already made the decision on the final output; and v.fail – true, if the
node realized that the computation has failed.

From the global point of view, w.h.p. each new phase p ≥ 0 starts with all
nodes in normal states (¬v.done and ¬v.fail for all nodes), all having just entered
this phase, and all tokens having the same value 1/2p. The phase completes suc-
cessfully, if at some point all nodes have just moved to the next phase p + 1 and
are in normal states, and all remaining tokens have the same value 1/2p+1 (that
is, all tokens which survived canceling managed to double in phase p). The dif-
ference between the numbers of opposite tokens has doubled and is now equal to
2p+1|a0 − b0|.

The computation w.h.p. keeps successfully completing consecutive phases.
This is because each canceling stage w.h.p. leaves at least (2/3)n nodes empty or
eliminates all minority tokens, so if any minority tokens survive a canceling stage,
then w.h.p. all surviving tokens split in the subsequent doubling stage (w.h.p. each
token has at least C log n attempts at splitting and the probability of success in one
attempt is at least 1/3). Each successful phase halves the value of tokens and
doubles the difference between A tokens and B tokens, until the critical phase
pc, which is the first phase 0 ≤ pc ≤ log n − 1 when the difference between the
numbers of opposite tokens is

2pc |a0 − b0| > n/3. (1)

The large difference between the numbers of opposite tokens implies that w.h.p. all
minority tokens will be eliminated in this phase, if they have not been eliminated
yet in previous phases. More specifically, at the end of phase pc, w.h.p. only tokens
of the majority opinion are left and each of these tokens has value either 1/2pc+1

if the token has split in this phase, or 1/2pc otherwise.
If at least one token has value 1/2pc , then this token has failed to double during

this phase and assumes that the computation has completed. The node with this



token enters the done state and broadcasts its (majority) opinion to all other nodes.
In this case phase pc is the final phase.

Otherwise, if at the end of the critical phase all tokens have value 1/2pc+1, then
no node knows yet that all minority tokens have been eliminated. The computation
proceeds to the next phase pc + 1, which will be the final phase. Phase pc + 1 will
start with more than (2/3)n tokens and all of them of the same type, so at least one
token will have to fail to double, will enter the done state and will broadcast its
opinion. In both cases, when either phase pc or phase pc + 1 is the final one, the
failure to double is taken as the indication that w.h.p. all tokens of opposite type
have been eliminated. Some tokens may still double in the final phase and enter
the next phase (receiving later the message that the computation has completed),
but w.h.p. no node reaches the end of phase pc + 2 ≤ log n + 1. Thus w.h.p. within
O(log2 n) time, all nodes enter the done state and know the majority opinion.

The computation fails w.l.p.2 when two nodes enter the done state with op-
posite opinions. If such failure occurs, then all nodes become aware of it and the
computation could be restarted (this requires that the nodes store their initial opin-
ions). The computation may also fail, if we cannot exclude the possibility that the
synchronization fails and we get tokens in the canceling stages of two different
phases. Such tokens would have different values, so if they cancel each other, the
difference between the sums of the values of A tokens and B tokens may change,
possibly changing its sign (and the minority becomes the majority).

Thus we get a w.h.p.-correct protocol, which converges in O(log2 n) time
w.h.p. and in expectation, provided that the required synchronization is imple-
mented. The protocol uses a constant number of states to store the type of token
and the flags, plus the states needed to implement synchronization.

In Sections 4.2, 4.3, and 4.4, we outline the following ways of implementing
synchronization.

• Synchronization by the leader, which was considered by Angluin et al. [7]
and gave a w.h.p.-correct majority protocol using a constant number of
states and converging in O(log2 n) time, w.h.p., but requiring a leader node
(Section 4.2).

• Synchronization by local counting of interactions, which was considered
by Bilke et al. [20] and led to an always correct majority protocol using
O(log2 n) states and stabilizing in O(log2 n) time, w.h.p. and in expectation
(Section 4.3).

• Synchronization by clock nodes, which was considered by Alistarh et al. [2]
and led to an always correct majority protocol using O(log n) states and
stabilizing in O(log2 n) time, w.h.p. and in expectation (Section 4.4).

2w.l.p. – with low probability – means that the opposite event happens w.h.p.



In Section 4.5, we sketch a protocol proposed recently by Berenbrink et al. [15],
which overcomes the seemingly inherent log2 n asymptotic time complexity of
the canceling-doubling framework and stabilizes with the correct majority output
within O(log5/3 n) time, w.h.p. and in expectation, using O(log n) states.

4.2 Canceling-doubling phases synchronized by the leader
Angluin et al. [7] proposed synchronization of population protocols by a phase
clock based on an epidemics process controlled by the leader node, assuming that
the unique leader exists in the population already in the initial configuration. They
considered a broader context of implementing arithmetic operations and relations,
including comparison, on values stored in the population in unary. In that context,
the input configuration for the majority problem is viewed as a configuraton stor-
ing values a0 and b0, so the majority problem reduces to the problem of comparing
two values.

The phase clock in Angluin et al. [7] is implemented in the following way.
Each node v stores its clock value v.h ∈ H = {0, 1, 2, . . . ,m − 1}, where m is a
parameter of the clock. This is the cyclical range of the hours of the clock: the
next value after m − 1 is 0 and the difference between two values x and y is equal
to min{(x− y) mod m, (y− x) mod m}. The leader starts with value 0 and all other
nodes start with m − 1. Over a sequence of polynomial number of interactions,
w.h.p. at each step the clock values of the nodes differ by at most m/3 and the
clock value of the leader is at the front (in the cyclical order of H). That is, while
the clock values of individual nodes do not have to stay the same, w.h.p. they
remain close, occupying a sub-range {i, i + 1, . . . , i + j} ⊂ M, for some i and
j ≤ m/3 (the additions are modulo m), with the clock of the leader equal to i + j.

This behavior of the phase clock is achieved by the following transitions.
When the leader is involved in an interaction and both nodes have the same value,
the leader increments its clock. For any other interaction, if the interacting nodes
have different but consistent clock values, then the smaller clock value is updated
to the larger one. The clock values of two nodes v and u are consistent, if they
differ by at most m/3, and if one of them is the leader, then its clock value is not
smaller (in the cyclical order of H) than the value of the other node.

A node receives the signal to move to the next stage, when its clock value
changes to 0. When the leader advances to the next hour, that new hour is com-
municated to all nodes by the broadcast process. Using the upper bound on the
completion time of broadcast given in Proposition 2 and the lower bound that
w.h.p. Ω(log n) time is needed for the message to reach the first nε nodes, for any
constant ε > 0, it is proven in Angluin et al. [7] that their phase clock satisfies
the property stated below. This property implies that the phase clock provides
the synchronization of the nodes as was needed in Section 4.1, adding only O(1)



states to the canceling-doubling majority protocol, but the presence of the leader
is essential.

Proposition 3. There is a constant c0 such that for any constants α > 0, c ≥ c0

C > c and p > 0, there exist constants m and C′ such that with probability at least
1 − n−α, the phase clock with the parameter m completes successfully np stages:
each stage spans between C log n and C′ log n rounds and all nodes move to the
next stage within a period of c log n rounds.

4.3 Canceling-doubling phases synchronized by local counting
To avoid the leader, Bilke et al. [20] synchronize the nodes in a canceling-doubling
majority protocol by making each node keep count of its interactions. More pre-
cisely, each node keeps its own count of phases and the count of its steps (interac-
tions) within the current stage of the phase. Thus, in addition to v.token, v.stage,
v.doubled, v.done and v.fail, node v keeps also the following data, requiring in
total Θ(log2 n) states.

• v.phase ∈ {0, 1, 2, . . . , log n + 2} – the counter of phases.

• v.stage_step ∈ {0, 1, 2, . . . , (C log n)−1} – the counter of steps in the current
stage, where C is a suitably large constant.

Throughout the whole computation, the triple (v.phase, v.stage, v.stage_step)
is viewed as the (combined) interaction counter v.time ∈ {0, 1, 2, . . . , 2C log2 n)}
of node v (assuming that the canceling and doubling stages are numbered 0 and
1). This counter is incremented by 1 at the end of each interaction. If v.stage_step
becomes 0 after such an increment, then node v “gets the signal” to move to the
next stage (that is, to move from canceling to doubling in the same phase, or from
doubling to canceling in the next phase).

If nodes were simply incrementing their interaction counters by 1 at each in-
teraction, then the counters would start diverging too much for the canceling-
doubling process to work correctly. The following simple mechanism keeps the
nodes sufficiently synchronized. When two interacting nodes are in different
stages, then the node in the lower stage “gets the signal” to move to the next
stage and sets its step counter to the beginning of the next stage. The protocol
relies on this synchronization mechanism in the high-probability case when all
nodes are in two consecutive stages of the computation (that is, when the counters
(v.phase, v.stage) of any two nodes differ by at most 1). In this case the process
of pulling all nodes up to the next phase follows the pattern of broadcast. Once
started, the broadcast is completed w.h.p. within c log n rounds, where constant c
is sufficiently smaller than C, and all nodes are together in the beginning part of



the next stage of the computation. Thus throughout the computation of the pro-
tocol, w.h.p. all nodes are in two consecutive stages of the computation. If two
interacting nodes are not in the same or adjacent stages (a low but positive proba-
bility), then their local times (step counters) are considered inconsistent and both
nodes enter the special fail state.

The computation can fail w.l.p., but now, in contrast to the O(1)-state syn-
chronization by the phase clock controlled by the leader, the nodes have sufficient
information to realize (eventually) that something has gone wrong. In addition
to the failure when two nodes enter the done state with opposite-type tokens, the
computation also fails when the step counters of two interacting nodes are not
consistent, or when one node reaches phase log n + 2. Whenever a node realizes
that any of these low-probability events has occurred, it enters the fail state and
broadcasts this state.

The protocol stabilizes within O(log2 n) time w.h.p. and in expectation either in
the correct all-done configuration (w.h.p.) or in the all-fail configuration (w.l.p.).
This fast protocol, which w.l.p. may fail, can be combined with a slow always cor-
rect backup protocol to give an exact-majority protocol which requires Θ(log2 n)
states per node and stabilizes in the exact majority within O(log2 n) time w.h.p.
and in expectation. The standard technique is to run both the fast and the slow
protocols in parallel and make the nodes in the fail state adopt the outcome of the
slow protocol. The slow protocol runs in expected polynomial time, say O(nα)
time, but its outcome is used only with low probability of O(n−α), so it contributes
only O(1) to the overall expected time. The four-state majority protocol can be
taken as the slow back-up protocol, and we obtain an always correct exact major-
ity protocol which uses O(log2 n) states and stabilizes in O(log2 n) time w.h.p. and
in expectation.

4.4 Canceling-doubling phases synchronized by clock nodes
The exact-majority protocol described in Section 4.3 requires Θ(log2 n) states per
node. Alistarh et al. [2] reduced the number of states to O(log n), maintaining
the O(log2 n) bound on the stabilization time. Since their protocol satisfies the
conditions of monotonicity and output dominance, in view of the lower bound
shown in [2], the O(log n) number of states is asymptotically optimal for this type
of protocols. The logarithmic number of states is achieved by using a leaderless
phase clocks, which is based on splitting the nodes into worker nodes and clock
nodes. The worker nodes execute the primary task (in our case, they compute
the majority in a sequence of canceling-doubling phases), while the clock nodes
keep the time. A worker node checks whether it should proceed to the next stage
of the computation whenever it interacts with a clock node. A similar idea was
used in protocols in other communication models to save memory of the nodes,



for example in Ghaffari and Parter [35].
We outline the construction of the leaderless phase clock, following the de-

scription of its variant in [15]. A notable difference between the phase clocks
in [2] and in [15] is that in [2] the clock nodes keep their time counters synchro-
nized on the basis of the power of two choices in load balancing: when two nodes
meet, only the lower counter is incremented. In contrast, in [15] both interacting
clock nodes increment their time counters, with the exception that the slower node
is pulled up to the next Θ(log n)-length stage, if the faster node is already there.

The nodes are partitioned into two sets with Θ(n) nodes in each set. One set
consists of the worker nodes, which may carry opinion tokens and work through
canceling-doubling phases to establish the majority opinion. These nodes main-
tain only information on whether they carry any token, and if so, then the value
of the token (equivalently, the age of the token, that is, the number of times this
token has been split). Each worker node has also a constant number of flags which
indicate the current activities of the node (for example, whether it is in the can-
celing or doubling stage of a phase), but it does not maintain a detailed counter of
the steps in the current stage.

The other set consists of clock nodes, which maintain step counters, counting
their interactions with other clock nodes modulo 2C log n, for a suitably large
constant C, and synchronizing with other clocks by the broadcast mechanism at
the end of stage (when their counters come back to 0).

The worker nodes interact with each other in a similar way as in the protocol
in Section 4.3, but now to progress orderly through the computation they rely on
the relatively tight synchronization of clock nodes. A worker node v advances
to the next part of the current phase (or to the next phase, or the next epoch),
when it interacts with a clock node whose clock indicates that v should progress.
There is also a third type of nodes, the terminator nodes, which appear later in the
computation. A worker or clock node becomes a terminator node when it enters a
done or fail state. The meaning and function of these special states are as defined
in previous subsections.

A standard input instance, when each node is a worker with a token of value 1,
is converted into a required initial workers-clocks configuration during the fol-
lowing O(log n)-time preprocessing. When two value-1 tokens of opposite type
interact they cancel out and one of the two involved nodes, say the one which has
had the token B, becomes a clock node. If two value-1 tokens of the same type
interact and their step counters have different parity, then the tokens are combined
into one token of value 2. The combined token is taken by one node, while the
other node, say the one with the odd counter, becomes a clock node. All nodes
count their interactions during the preprocessing, but the O(log n) states needed
for this are re-used when the preprocessing completes. At this point the worker
nodes have an input instance with the base value of tokens equal to 2. Some to-



kens may have value 1 (and can be considered as if already split in the first phase)
and some nodes may be empty.

The analysis of the execution of the canceling-doubling protocol with leader-
less phase clock follows closely the analysis of the protocol with all nodes count-
ing their interactions.

4.5 Majority protocol with O(log5/3 n) time and O(log n) states
Berenbrink et al. [15] present a majority population protocol with stabilization
time O(log5/3 n) w.h.p. and in expectation and O(log n) states. Note that no major-
ity protocol with O(polylog n) states and running time O(log2−α n), for any con-
stant α > 0, has been known before, not even if the weaker notions of the “con-
vergence time” or “w.h.p. correctness” were considered.

Most known majority protocols with polylogarithmic number of states and
convergence time are based on the idea of a sequence of O(log n) phases of cancel-
ing and doubling stages, described in Section 4.1. Each stage has length Ω(log n)
and the nodes are synchronized when they proceed from stage to stage. The pro-
tocol in [15] also uses this overall canceling-doubling framework but with shorter
phases of length Θ(log2/3 n) each, at the expense of weakening synchronization.
The previous majority protocols cease to function properly with sub-logarithmic
phases. Such phases are just too short to synchronize nodes, resulting in tokens
from different phases existing in the system at the same time. The computation
can then potentially get stuck, since opposite-opinion tokens from different phases
cannot cancel each other. Moreover, we do not even have the guarantee that every
node will be activated at all during a short phase – in fact, we know that w.h.p.
some nodes will not. The previous protocols require that w.h.p. each node is
activated at least logarithmically many times during each phase.

Berenbrink et al. [15] devise a way to deal with the nodes which advance too
slowly or too quickly through the short phases, that is, the nodes whose progress
is out of sync with the main bulk of nodes. Their protocol groups log1/3 n consec-
utive phases in one Θ(log n)-time epoch. The configuration of the system remains
reasonably tidy throughout one epoch even without explicit synchronization. At
the end of the epoch, a Θ(log n)-time “cleaning-up” period is added to let the nodes
synchronize their progress before they start moving on to the next epoch. There
are still O(log n) phases, so there are O(log2/3 n) epochs giving the O(log5/3 n)
bound on the convergence time of the protocol. Regarding the number of states,
it is first shown in [15] that if each node keeps track of its interactions, to sup-
port synchronization of the type described in Section 4.3, then Θ(log2 n) states
per node are needed: the product of Θ(log2/3 n) states to keep track of epochs,
Θ(log n) states to keep track of the steps in the current epoch and Θ(log1/3 n) to
store the relative age of a token (relative to the beginning of the current epoch).



The nodes store the relative ages of tokens because the possibility of out-of-sync
nodes means that the number of interactions a node has had so far in the current
epoch does not indicate the age of a token in this node. [15] explains how the num-
ber of states can be reduced to Θ(log n) using the leaderless phase clock outlined
in Section 4.4.

During the execution of the protocol, we have a small but w.h.p. positive num-
ber of out-of-sync tokens, which move to the next phase either too early or too late
(with respect to the expectation) or simply do not succeed with splitting within a
short doubling stage. Such tokens stop contributing to the regular dynamics of
canceling and doubling. The Θ(log n)-time cleaning-up period at the end of each
epoch enables the out-of-sync tokens to reach the age required at the end of the
epoch, and then gives time for synchronizing all nodes, by the broadcast process,
when they are moving to the next epoch. The analysis of the progress of tokens
through the phases of the same epoch considers separately the tokens which re-
main synchronized and the out-of-sync tokens.

It is shown that w.h.p. there are only O(n/23 log1/3 n) out-of-sync tokens in any
one epoch. W.h.p. all out-of-sync tokens in the current epoch reach the correct age
of log1/3 n (correct for the end of this epoch w.r.t. the beginning of the epoch) by
the midpoint of the cleaning-up period, for each epoch until the final epoch j f . The
main reason why in each epoch before the final one all out-of-sync tokens w.h.p.
manage to catch up with the expected progress is that these tokens can create (by
splitting) at most O(n/23 log1/3 n)×2log1/3 n = o(n) tokens. All these tokens can easily
be accommodated in the nodes because the computation maintains the invariant
that there are Ω(n) empty nodes.

In the final epoch at least one out-of-sync token completes the epoch without
reaching the required age. When the system completes the final epoch, the task
of determining the majority opinion is not fully achieved yet. In contrast to the
generic protocol described in Section 4.1, where on completion of the final phase
w.h.p. only majority tokens are left, in the O(log5/3 n)-time protocol, there may
still be a small number of minority tokens at the end of the final epoch, so some
further work is needed.

A node which has failed to reach the required age by the end of the cur-
rent epoch, discovering that way the final epoch, enters the additional_epoch
state and broadcasts this state through the system to trigger an additional epoch
of Θ(log1/3 n) phases. More precisely, the additional epoch consists of at most
3 log1/3 n phases corresponding to epochs j f − 1 (if j f > 0), j f and j f + 1. Each
phase in the additional epoch has a full length of Θ(log n) rounds. W.h.p. these
phases include the critical phase pc and the phase pc + 1, defined by (1). The
computation during the additional epoch is as described in Sections 4.1 and 4.3,
taking O(log5/3 n) time to reach the correct all-done configuration (w.h.p.) or the
all-fail configuration (w.l.p.).



Implementing this protocol with the leaderless phase clock described in Sec-
tion 4.4 and combining with the back-up four-state protocol give an always correct
exact majority protocol which uses O(log n) states and stabilizes in O(log5/3 n)
time w.h.p. and in expectation.

5 Leader election

5.1 A general framework
Most recent population protocols for the problems we are interested in implement
first some mechanism to allow the nodes the access to an (almost) fair random
coin. In many cases, this is achieved in the following way. At the beginning, each
node initializes a so called coin bit with 0, and this bit is flipped at every interac-
tion. It can be shown (see e.g. [1]) that by the time all nodes performed at least
four interactions, the nodes are divided almost evenly into 0- and 1-nodes, and
this property is maintained for polynomial number of steps, w.h.p.. This implies
that at every further interaction, each node meets a 0- or 1-node with probability
(1 ± o(1))/2.

Several protocols for leader election usually consist of two main parts. In the
first part, each node computes a certain value, which often follows a geometric
distribution. In the second part, these values are broadcasted within the population
by some simple epidemic process, see Proposition 2. If a node observes a value
that is larger than its own, then this node turns into a so called follower or minion
(i.e., it can not become a leader anymore), and helps broadcasting the largest value
it has seen so far. Thus, only nodes that computed the maximum value in the first
phase can become leaders. Unfortunately, there may be many nodes with this
maximum value. In order to decide which of these nodes should become a leader,
different techniques have been applied.

While there have been designed population protocols for leader election with
polylogarithmic number of states before (see Section 2), we start our presentation
in Subsection 5.2 with two algorithms, which follow the framework described
above and require O(log2 n) states only. In Subsection 5.3 we describe two follow-
up protocols, which work with O(log n) states. Finally, in the last subsection we
present a breakthrough in this area, and give an algorithm with optimal number of
states O(log log n).

5.2 Protocols with Θ(log2 n) states
In [1] the authors first derive a lower bound Ω(log log n) on the number of states
for leader election and exact majority. Then, for both problems a population pro-



tocol is presented with O(log2 n) states and polylogarithmic time.
Some of the ideas of this leader election protocol have already been used in

[3]. As mentioned above, the algorithm itself consists of two main parts: the
lottery stage and the competition stage. At the beginning, each node uses its
first four interactions to divide the population into two sets, so called 0- and 1-
nodes as described above. After all nodes have performed four interactions the
two sets have almost equal size w.h.p., see previous subsection. Note that this 0
or 1 value of a node is switched at every further interaction of this node. After
its fourth interaction, each node switches to the lottery mode. In this mode, a
node computes its so called payoff. That is, it counts the number of interactions
with a 1-node until it meets a 0-node, or the number of its interactions reaches a
predefined value Θ(log n). This is then the payoff of the node. Once the payoff is
determined, the node switches to the competition mode to elect the leader.

In the competition mode, each node is at the beginning a contender and ini-
tializes its so called level with value 0. The competition mode of a node consists
of consecutive phases, each of length Θ(log payoff). If in a phase, a node only
meets agents with coin value 1, then it increments its level until some predefined
value Θ(log n) is reached. At each interaction of two nodes, the one with higher
state (payoff, level, coin) wins. That is, the node with lower payoff becomes a
follower (if it was a contender); if the payoff values are the same, then the node
with the lower level turns to a follower. If both values – payoff and level – are the
same, then among two contenders the contender with coin value 0 is turned into a
follower, if the other contender has coin value 1. Note that if one of the interacting
nodes is a follower, then the coin value does not decide the tournament of the two.
Each follower always sets its own tuple (payoff, level) to the largest one seen so
far. The authors of [1] show the following result.

Theorem 1. The algorithm described above always elects a unique leader by
using O(log2 n) states and polylogarithmic stabilization time3, w.h.p. and in ex-
pectation.

Note that the algorithm above is not uniform.
While keeping the number of states at O(log2 n), the parallel time has been

reduced to O(log2 n) in [20]. In the following, we describe the major ideas of the
algorithm, and state the main result. Some building blocks of this algorithm are
known from previous work.

The algorithm is divided into two main parts – a leader election part and a
verification part. These two parts consist of several phases. The first part itself is
divided into two halfs: preprocessing and tournament. In the preprocessing, the
nodes are divided into four subsets, (A, 0), (A, 1), (B, 0) and (B, 1). It is guaranteed

3The expected time is O(log5.3 n log log n) and the w.h.p. time is O(log6.3 n log log n).



that all these sets have linear size in n, with high probability. In a first phase,
the nodes are divided into sets A and B, and then both sets are separated into 0-
and 1-nodes. Between these phases, as well as between the preprocessing part
and the tournament part, we deploy so called synchronization phases of length
Θ(log n). In these synchronization phases, the nodes simply wait (i.e., they do
nothing, except counting the number of interactions they performed so far). The
length of the set generation phases is Θ(log n) as well. This ensures that w.h.p. at
each time step of the preprocessing all nodes are:

• either in the phase of creating A and B nodes, or in the subsequent synchro-
nization phase

• either in the synchronization phase between the set creation phases, or in
the phase of creating 0/1 nodes

• either in the phase of creating 0/1 nodes or in the subsequent synchroniza-
tion phase.

Once the number of interactions of a node in a phase reaches the value set for
the length of a phase, the node switches to the next phase, and performs the state
transitions defined in the protocol for that phase (see [20] for the details).

The synchronization phase between the preprocessing and the tournament en-
sures that w.h.p. at the time the first node enters the tournament part, all the others
are divided into the sets defined above. The sets (A, 0), (A, 1), (B, 0), and (B, 1)
ensure that the nodes are able to perform Bernoulli trials. In the first phase of
this tournament part – we call trial phase – the nodes only count interactions with
A-nodes and an interaction with an (A, 1)-node is counted as successful. Once
the number of (not necessarily successful) counts of a node reaches a predefined
value Θ(log n), this node leaves this phase and stores the count of its successes.
Additionally, for independency reasons in the analysis, the count of the B-nodes
is elevated by some large logarithmic value. A subsequent synchronization phase
ensures that w.h.p. all nodes leave the trial phase before the actual tournament
begins. In the tournament, nodes start broadcasting their values of success, and
the maximum value wins. That is, at each interaction every node transmits the
largest value it has seen so far to its interaction partner, and if a node observes
some value that is larger than its own, then it turns to a follower. This phase has
again length Θ(log n) to ensure that the maximum value in the system is broad-
casted to all nodes w.h.p. (see Proposition 2). If a node at the end of this phase
has not seen a value, which is larger than its own, then this node declares itself a
leader candidate, and switches to the verification part.

In the verification part, each node passes through Θ(log n) phases, each of
length Θ(log n). When a leader candidate switches from one phase to the next, it



sends out a message, denoted by 0 or 1, depending on whether its interaction part-
ner at this time step is an A- or B-node. Then, the leader candidate waits C log n
interactions, where C is a large constant, before it triggers the next phase. The
followers act as relay nodes, by passing messages to their communication part-
ners at each interaction at the beginning of the phase. If two followers possessing
different types of messages interact, then they assume that more than one leader
candidate is in the system. In such a case, these nodes restart the whole procedure
by broadcasting a restart message.

As mentioned above, the followers participate in spreading messages at the
beginning of the phase only. After c log n interactions, where c is a proper small
constant (but larger than the constant in Proposition 2), a follower does not pass
any message further, and after 3C/4 · log n iterations it forgets the message. These
values ensure that w.h.p. no follower possesses any message when the next phase
is triggered by some leader candidate. It is shown in [20] that if two (or more)
leader candidates are in the system, then with constant probability this situation
will be detected in an (arbitrary but fixed) phase. Since there are Θ(log n) phases,
w.h.p. the procedure will be restarted if more than one node declared itself a
leader candidate. If a leader candidate passes through all the Θ(log n) phases,
without experiencing a restart, then the leader candidate declares itself a leader,
and sends out a message to the system that a leader has been found.

Clearly, with a small probability it may happen that two or more candidates
declare themselves leaders. However, in such a case two leaders eventually meet.
Then, one of the leaders turns into a follower (by applying standard tie-breaking
techniques), and w.h.p. in polynomial number of steps, only one leader remains
in the system. In [20] the following theorem has been shown.

Theorem 2. There is an always correct leader election protocol that requires
O(log2 n) states and has stabilization time O(log2 n), w.h.p. and in expectation.

This protocol is also not uniform, as the nodes must be aware of some Θ(log n)
values in advance.

5.3 Protocols with Θ(log n) states
In [2], Alistarh et al. mainly concentrate on exact majority. However, they also
present a leader election protocol with O(log n) states and O(log2 n) time. In this
paper, they deploy a distributed phase clock and use the coin flip generation tech-
nique as in [1]. The nodes are divided into clock nodes and workers as in the
exact majority protocol described in the same paper, see Subsection 4.4. Their
clock creation mechanism ensures that the number of clock nodes never exceeds
n/2. At each clock node, the clock is circular and has length Θ(log n). Further-
more, it is guaranteed that all clock nodes are within some range ρ around the



mean clock value, w.h.p., where ρ is still Θ(log n), but much smaller than the
length of the clock. The state transitions of the clock nodes to update their clock
values is exactly the same as in the corresponding exact majority algorithm, see
previous section.

The worker nodes can be contenders or followers (initially all of them are con-
tenders). Each such node is in a certain phase and possesses a so called High/Low
value set to 1 or 0 (initialized with 0). The total number of phases is Θ(log n).
The clock of a clock node is divided into four equal sized segments, and the first
and third segments are called ODD and EVEN, respectively. If a contender in
an odd (even) phase meets a clock node in an EVEN (ODD) segment, then the
contender switches to an intermediate state. At the next interaction, it increments
its phase by 1 (unless it is already in the highest phase, predefined at some value
Θ(log n)), and sets its High/Low indicator to the coin value of the interaction part-
ner. If two workers meet and one of them is a contender with a smaller (phase,
High/Low value) pair, then the contender becomes a follower and adopts the phase
and High/Low value of the other node. The followers always keep the highest
(phase, High/Low value) they observe. This way, at each time the highest (phase,
High/Low value) pair is spread among the workers and all nodes with smaller
(phase, High/Low value) pair are turned into followers (cf. Proposition 2). The
authors of [2] show the following theorem.

Theorem 3. The algorithm above elects a unique leader by using O(log n) states
and has stabilization time O(log2 n), w.h.p. and in expectation.

As the nodes have to know some value Θ(log n) in advance, this algorithm is
not uniform as well.

In [19], Berenbrink et al. present a simple protocol, which has the same state
and time guarantees as the one in Theorem 3. This algorithm basically combines
the synthetic coin technique of [1] with the tournament phase of [3]. First, each
node performs Θ(log log n) interactions, just flipping its coin bit at each interac-
tion. Then, the so called marking phase starts: for another log log n interactions,
if a node only meets nodes with coin bit value 1, then this node becomes marked.
This implies that w.h.p. there will be Θ(n/ log n) marked nodes.

In the tournament phase, every node starts as a leader contender and as long as
it is not turned into a follower, it counts its interactions with marked nodes (until
a predefined value Θ(log n) is reached). This number is called the counter of
the node. The counters are broadcasted in the population (at each interaction the
nodes exchange their counter values), and if a leader contender with some counter
value meets a node with a higher counter, then the leader contender turns to a
follower. Each follower keeps the highest counter value ever seen, and spreads
this value further at each interaction. If two leader contenders with the same



counter but different coin bit value meet, then the leader contender with coin bit
value 0 turns into a follower.

5.4 A protocol with optimal number of states
A breakthrough in this field was achieved by Gąsieniec and Stachowiak in [33].
Their algorithm builds partially on the methods of Angluin et al. [5] who make
use of a phase clock. The phase clock of Angluin et al. requires, however, a
distinguished node in the system at the beginning, see Subsection 4.2. They men-
tion that the role of this distinguished node can also be fulfilled by a junta of size
nε . Probably the most interesting part of the paper of Gąsieniec and Stachowiak
is the construction of a junta of size O(

√
n log n) and the integration of the junta

election process into the leader election procedure. These two building blocks are
combined in a fascinating way.

The algorithm utilizes directed state transitions. We only present here the main
ideas of the algorithm, for the details we refer the reader to [33]. The phase clock
itself is very simple. The junta nodes are called leaders and the others are called
followers. First, the authors define a circular order on a clock with m values,
where we may assume w.l.o.g. m is odd. Assign the numbers 0, . . . ,m − 1 to an
analogue clock, which can be seen as hours on the dial of this clock. Then x ≤m y
iff the number of hours between x and y is less than m/2 in the clockwise order
from x to y (e.g. m − 2 <m 1 if m ≥ 7).

If a follower with value x is called by a node with value y, then the follower
adopts the value maxm{x, y}, where maxm is the maximum according to the circular
order defined above. If a leader with value x is called by a node with value y, then
the leader adopts the value maxm{x, (y + 1) mod m}.

In [33], the authors utilize two nested clocks. The inner clock of a node op-
erates at each interaction of this node as described above. The outer clock ticks
once directly after the inner clock of the node passes through 0. The authors show
that if all agents of the population start the phase clock protocol from 0 when a
junta of size n1−ε is elected, then for a polynomial number of rounds, all nodes
are between 3m/4 and m/4 when a node passes through 0, and the number of in-
teractions between two subsequent passes through 0 for any agent is O(n log n),
w.h.p.

The junta election process is independent of the clocks; however, the junta
is then used to implement the phase clock. In order to elect a junta, the authors
use a very simple procedure. The states are represented by (l, a), where l is a so
called level and a is 0 or 1, where nodes with a = 0 do not change their state
anymore w.r.t. the junta election process. If some node v in state (l, 1) interacts as
a responder with an agent, then its level increases by 1 if the level of the initiator
is at least l (a remains 1), and a is set to 0 (l remains the same) if the level of



the initiator is less than l. The authors show that w.h.p. the highest level a node
reaches is O(log log n) and there are O(

√
n log n) nodes at highest level. A subset

of these highest level nodes will form the junta, which is used to implement the
correct phase clocks. Clearly, the nodes at highest level do not know that they are
in the junta; however, this is also not required for the correctness of the overall
leader election protocol.

The leader election scheme is as follows. At the beginning, all nodes are leader
candidates. Each node performs first junta election, and if its a value is set to 0,
it starts with leader election. Nodes with a = 0 participate in running the phase
clock, where the leader candidates form the junta. Clearly, different nodes may
have different level values when their a value is set to 0, so they may run phase
clocks at different rates. If a node running the phase clock at some level interacts
with an agent running a phase clock on a higher level, then this node becomes a
follower (if it was a leader candidate), and it adjusts its level to the level of the
interaction partner. The internal and external clocks are reset to 0.

While the phase clocks are running, after the inner clock of a node passes
through 0 and this node interacts with a non-leader, the node flips a coin to ob-
tain a 0 or 1 (the coin flip can be implemented by the random interactions, see
above). Message 1 is broadcasted together with the level of the corresponding
node (cf. Proposition 2), and if a leader candidate with value (l, 0) receives (l′, 1)
with l′ ≥ l, then this candidate turns into a follower spreading (l′, 1) further. This
is repeated Θ(log n) times (i.e., until value m of the outer clock is reached). The
authors show that w.h.p. this procedure elects a unique leader. The state and time
requirements are O(log log n) and O(log2 n), w.h.p., respectively.

We should note that the protocol described above is uniform; however, it may
fail to elect a leader with some small probability. In order to ensure that the
protocol always elects a unique leader, the uniformity condition has been droped.
For the details, see [33]. In a subsequent work, Gąsieniec et al. [34], extend their
algorithm to improve the expected running time to O(log n log log n); however,
the w.h.p. stabilization time remains O(log2 n). Taking into account that there is a
matching lower bound of Ω(log log n) w.r.t. the number of states [1], the algorithm
of Gasieniec and Stachowiak is state optimal.

6 Further results and open problems
Two very recent papers by Berenbrink et al. [16] and Kosowski and Uznański [37],
deal specifically with population protocols for exact majority and leader election,
focussing on small sate space and fast convergence time. We outline their results.

Berenbrink et al. [16] present parameterized protocols, which allow smooth
trade-off between space and time, and discuss various extensions of those proto-



cols in order to obtain uniformity. While focusing on fast convergence, for certain
cases they also analyze the stabilization time.

The trade-off protocols in [16] are parametrized by a value s ≥ 1. First
they derive a simple protocol that w.h.p. correctly solves exact majority in time
O(log2 n/ log s) and uses O(s + log log n) states. To obtain always correct proto-
cols, the well known technique of combining the fast w.h.p.-correct protocol with
a slow always correct protocol is applied (see Section 4). The obtained hybrid
protocol is guaranteed to always converge to the correct output, while preserving
the convergence time and the number of states as they are in the w.h.p.-correct
protocol. To obtain the same time guarantee for stabilization, the number of states
was extended to O(s log n/ log s).

The w.h.p.-correct protocol for exact majority proposed in [16] uses a similar
phase clock as given in [33], and the nodes essentially perform load balancing.
Assuming that the nodes have access to a clock (which is guaranteed w.h.p. by
the phase clock described in the previous section), they perform three different
types of actions: load expansion, load balancing, and synchronization. The pro-
tocol operates in phases of length Θ(log n). Load expansion means that at its first
interaction as an initiator, a node u multiplies its load (set initially to 1 or −1, de-
pending on the initial opinion of the node) by s. During load balancing (Θ(log n)
interactions), if two nodes interact, then they simply balance their load as evenly
as possible. During synchronization, the clocks become synchronized.

One of the main ingredients of the protocol is the implementation of the phase
clock. They basically use the phase clock from Gąsieniec and Stachowiak [33],
but modify the junta internals and the interplay between the junta and the clocks.
Firstly, once an agent leaves the junta election process, it no longer stores the level
which it has reached. That way the agents can reuse the states from the junta elec-
tion in the subsequent load balancing computations. This reusing of states means
that the protocol works with only O(s + log log n) states rather than O(s log log n).
Secondly, some further modifications of the Gąsieniec and Stachowiak algorithm
are needed to decrease the running time below Θ(log2 n). Instead of comparing
just one random bit in a phase of length Θ(log n), the nodes sample log s−log log s
bits. Then, a one way epidemic is used to broadcast the maximum to all nodes,
and only the nodes with this maximum value remain leader contenders after the
end of the phase.

In [16] the authors also discuss the uniformity of the population protocols de-
signed so far for exact majority and leader election. While the leader election
protocol of [33] can be modified to become uniform, [16] provides the first uni-
form exact majority algorithm, which stabilizes in sublinear time. This protocol
uses O(s log n log log n/ log s) states and stabilizes in O(log2 n/ log s) time, w.h.p.

Kosowski and Uznański [37] implement a different type of nested phase clocks
which use only constant number of states. The resulting algorithms for exact ma-



jority and leader election w.h.p. converge to the correct output. Further extensions
of the algorithms result in always correct protocols at the cost of increasing the
number of states to O(log log n). The essential building block of their protocols is
the implementation of the nested phase clocks. The progress of the clocks is guar-
anteed by the asynchronous random scheduler. There is a distinguished state X,
and the phase of the clock progresses, when the number of agents in state X is in
the range [1, n1−ε], where ε is a (fixed) parameter of the protocol. The hierarchy
of the clocks is implemented in a similar way as the 2-nested clock of [33]. In the
clock hierarchy C(1), C(2), . . . , clock C( j) performs at least r( j)−O(1) cycles during
one cycle of clock C( j+1), where r( j) is the rate of clock C( j). This way, a clock at
hierarchy level j + 1 has rate r( j+1) = Θ(r(1)r( j)).

For the base clock C(1), it is important to have the correct number of nodes in
state X (see above), and to ensure that some nodes remain in this state for a long
enough period. Gąsieniec and Stachowiak [33] used a junta for this, and reduced
the number of nodes to the correct size by letting the nodes traverse O(log log n)
levels, requiring O(log log n) states. Kosowski and Uznański [37] use the idea of a
self-stabilizing oscillator from [30]. At the beginning, all agents are in state X and
their number is reduced within polylogarithmic number of rounds to the correct
size. Then, the clock works correctly for another polylogarithmic time, which is
enough w.h.p. to elect a leader or to compute exact majority. During this time, the
rate of the base clock is Θ(log n) and the rate of the clock at level i is Θ(logi n).

The w.h.p.-correct majority protocol in [37] keeps iterating the execution of
Θ(log n) canceling-doubling phases. Each iteration starts with the initial opinions
of the nodes and takes O(polylog n) time. Initially the iterations might not give
correct outputs, but the first iteration after the hierarchy of clocks gets initialized
gives w.h.p. correct majority output. The clocks will stop operating at some point,
but the correct output is reached (w.h.p.), if they work for long enough to synchro-
nize one full iteration.

Note that in this implementation the number of nodes in X might be reduced
to 0, which in turn leads to the possibility that protocols are not always correct.
To obtain an always correct majority protocol, phase clocks which do not stop
working should be used, for example the O(log log n)-state clock from Gąsieniec
and Stachowiak [33]. An alternative perpetual clock proposed in [37] uses only
constant number of states and reaches the required rate within O(nε) rounds for
an arbitrary constant ε > 0 (smaller ε means larger number of states). Moreover,
an always correct majority protocol cannot start each new iteration with the initial
opinions, as otherwise we will keep getting occasionally incorrect iterations. To
prevent this, each iteration starts with the opinions the nodes had after the initial
canceling stage of the previous iteration. Those initial canceling stages gradually
eliminate the minority opinion, and when it is completely eliminated, all subse-
quent iteration must return the correct output.



The following results are shown in [37].

• There are population protocols for exact majority and leader election, which
are w.h.p. correct, and require polylogarithmic time and O(1) states.

• There are always correct population protocols, which solve exact majority
and leader election w.h.p. in time O(nε), for any constant ε > 0, and use
O(1) states.

• There are always correct population protocols, which solve exact majority
and leader election, have w.h.p. polylogarithmic convergence time, and use
O(log log n) states.

There are open questions left regarding the running time of population proto-
cols for for exact majority and leader election. Almost all protocols with polylog-
arithmic number of states designed so far for these two problems have w.h.p. con-
vergence time Ω(log2 n/ log log n). Gąsieniec et al. [34] reduce the expected time
of leader election to O(log n log log n), but the bound on the w.h.p. time remains
O(log2 n), and Berenbrink et al. [15] decrease the expected and w.h.p. running
time of exact majority to O(log5/3 n). A natural open question is how close can
we get the convergence or stabilization time (w.h.p. and/or expected) towards the
O(log n) bound, while keeping the number of states small, ideally optimal.

An interesting open question is whether the Ω(log n) lower bound on the num-
ber of states of fast exact-majority protocols can be shown if the monotonicity
or output dominance assumptions are dropped. Finally, it is still open whether
the Ω(log log n) bound on the number of states holds also if one is interested in
polylogarithmic convergence time instead of stabilization time.
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