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Abstract
Modern cryptocurrency systems, such as the Ethereum project, permit

complex financial transactions through scripts called smart contracts. These
smart contracts are executed many, many times, always without real con-
currency. First, all smart contracts are serially executed by miners before
appending them to the blockchain. Later, those contracts are serially re-
executed by validators to verify that the smart contracts were executed cor-
rectly by miners.

Serial execution limits system throughput and fails to exploit today’s
concurrent multicore and cluster architectures. Nevertheless, serial execu-
tion appears to be required: contracts share state, and contract programming
languages have a serial semantics.

This paper presents a novel way to permit miners and validators to exe-
cute smart contracts in parallel, based on techniques adapted from software
transactional memory. Miners execute smart contracts speculatively in par-
allel, allowing non-conflicting contracts to proceed concurrently, and “dis-
covering” a serializable concurrent schedule for a block’s transactions. This
schedule is captured and encoded as a deterministic fork-join program used
by validators to re-execute the miner’s parallel schedule deterministically
but concurrently.

1 Introduction
Cryptocurrencies such as Bitcoin [17] or Ethereum [9] are very much in the 
news. Each is an instance of a distributed ledger: a publicly-readable tamper-
proof record of a sequence of events. Simplifying somewhat, early distributed
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ledgers, such as Bitcoin’s, work like this: clients send transactions1 to miners,
who package the transactions into blocks. Miners repeatedly propose new blocks
to be applied to the ledger, and follow a global consensus protocol to agree on
which blocks are chosen. Each block contains a cryptographic hash of the previ-
ous block, making it difficult to tamper with the ledger. The resulting distributed
data structure, called a blockchain, defines the sequence of transactions that con-
stitutes the distributed ledger2.

Modern blockchain systems often interpose an additional software layer be-
tween clients and the blockchain. Client requests are directed to scripts, called
smart contracts, that perform the logic needed to provide a complex service, such
as managing state, enforcing governance, or checking credentials. Smart contracts
can take many forms, but here we will use (a simplified form of) the Ethereum
model [9].

A smart contract resembles an object in a programming language. It manages
long-lived state, which is encoded in the blockchain. The state is manipulated by
a set of functions, analogous to methods in many programming languages. Func-
tions can be called either directly by clients or indirectly by other smart contracts.
Smart contract languages are typically Turing-complete. To ensure that function
calls terminate, the client is charged for each computational step in a function
call. If the charge exceeds what the client is willing to pay, the computation is
terminated and rolled back.

When and where is smart contract code executed? There are two distinct cir-
cumstances. Each smart contract is first executed by one or more miners, nodes
that repeatedly propose new blocks to append to the blockchain. When a miner
creates a block, it selects a sequence of user requests and executes the associated
smart contract code for each Ethereum transaction in sequence, transforming the
old contract state into a new state. It then records both the sequence of transactions
and the new state in the block, and proposes it for inclusion in the blockchain.

Later, when the block has been appended to the blockchain, each smart con-
tract is repeatedly re-executed by validators: nodes that reconstruct (and check)
the current blockchain state. As a validator acquires each successive block, it
replays each of the transactions’ contract codes to check that the block’s initial
and final states match. Each miner validates blocks proposed by other miners,
and older block are validated by newly-joined miners, or by clients querying the
contract state. Code executions for validation vastly exceed code executions for
mining.

Existing smart contract designs limit throughput because they admit no con-

1Following blockchain terminology, a transaction is a payment or set of payments, not an
atomic unit of synchronization as in databases or transactional memory.

2This description omits many important issues, such as incentives, forking, and fork resolution.



currency. When a miner creates a block, it assembles a sequence of transactions, 
and computes a tentative new state by executing those transactions’ smart con-
tracts serially, in the order they occur in the block. A miner cannot simply ex-
ecute these contracts in parallel, because they may perform conflicting accesses 
to shared data, and an arbitrary interleaving could produce an inconsistent final 
state. For Bitcoin transactions, it is easy to tell in advance when two transaction 
conflict, because input and output data are statically declared. For smart contracts, 
by contrast, it is impossible to tell in advance whether two contract executions will 
conflict, because the contract language is Turing-complete.

Miners are rewarded for each block they successfully append to the blockchain, 
so they have a strong incentive to increase throughput by parallelizing smart con-
tract executions. We propose to allow miners to execute contract codes in parallel 
by adapting techniques from Software Transactional Memory (STM) [11]: treat-
ing each invocation as a speculative atomic action. Data conflicts, detected at run-
time, are resolved by delaying or rolling back some conflicting invocations. Treat-
ing smart contract invocations as speculative atomic actions dynamically “discov-
ers” a serializable concurrent schedule, producing the same final state as a serial 
schedule where the contract functions were executed in some one-at-a-time order.

But what about later validators? Existing STM systems are non-deterministic: 
if a later validator simply mimics the miner by re-running the same mix of spec-
ulative transactions, it may produce a different serialization order and a different 
final state, causing validation to fail i ncorrectly. Treating contract invocations as 
speculative transactions improves miners’ throughput, but fails to support deter-
ministic re-execution as required by validators.

Notice, however, that the miner has already “discovered” a serializable con-
current schedule for those transactions. We propose a novel scheme where the 
miner records that successful schedule, along with the final s tate, allowing later 
validators to replay that same schedule in a concurrent but deterministic way. De-
terministic replay avoids many of the the miner’s original synchronization costs, 
such as conflict detection and r oll-back. Over time, parallel validation would be 
a significant benefit because validators perform the vast majority of contract exe-
cutions. Naturally, the validator must be able to check that the proposed schedule 
really is serializable.

In the remainder of this paper, we show first how t echniques f rom transac-
tional boosting [10] can be adapted to permit non-conflicting smart contracts to 
execute concurrently. We then show how miners running smart contracts concur-
rently in this manner can instrument their transactions to capture a fork-join [1] 
schedule to be executed by validators, deterministically, verifiably, and in parallel.



1 contract Ballot {
2 mapping(address => Voter) public voters;
3 // more state definitions
4 function vote(uint proposal) {
5 Voter sender = voters[msg.sender];
6 if (sender.voted)
7 throw;
8 sender.voted = true;
9 sender.vote = proposal;

10 proposals[proposal].voteCount += sender.weight;
11 }
12 // more operation definitions
13 }

Figure 1: Part of the Ballot contract

2 Blockchains and Smart Contracts

In Bitcoin and similar systems, transactions typically have a simple structure, dis-
tributing the balances from a set of input accounts to a set of newly-created output 
accounts. In Blockchains such as Ethereum, however, each block also includes 
an explicit state capturing the cumulative effect of transactions in prior blocks. A 
Transaction is expressed as executable code, often called a smart contract, that 
modifies that s tate. Ethereum blocks thus contain both t ransactions’ smart con-
tracts and the final state produced by executing those contacts.

The contracts themselves are stored in the blockchain as byte-code instructions 
for the Ethereum virtual machine (EVM). Several higher-level languages exist for 
writing smart contracts. Here, we describe smart contracts as expressed in the 
Solidity language [18].

Listing 1 is part of the source code for an example smart contract that imple-
ments a ballot box [19]. The owner initializes the contract with a list of proposals 
and gives the right to vote to a set of Ethereum addresses. Voters cast their votes 
for a particular proposal, which they may do only once. Alternatively, voters may 
delegate their vote. The contract keyword declares the smart contract (Line 1).

The contract’s persistent state is recorded in state variables. For Ballot , the 
persistent state includes fields of scalar type such as the owner (omitted for lack of 
space). State variables such as voters (declared on Line 2) can also use the built-in 
Solidity type mapping which, in this case, associates each voter’s address with 
a Voter data structure (declaration omitted for brevity). The keys in this mapping



are of built-in type address, which uniquely identifies Ethereum accounts (clients
or other contracts). These state variables are the persistent state of the contract.

Line 4 declares contract function, vote, to cast a vote for the given proposal.
Within a function there are transient memory and stack areas such as sender. The
function vote first recovers the Voter data from the contract’s state by indexing into
the voters mapping using the sender’s address msg.sender. The msg variable is
a global variable containing data about the contract’s current invocation. Next, the
sender.vote flag is checked to prevent multiple votes. Note that sequential exe-
cution is critical: if this code were naïvely run in parallel, it would be vulnerable
to a race condition permitting double voting. Ethereum contract functions can be
aborted at any time via throw, as seen here when a voter is detected attempting to
vote twice. The throw statement causes the contract’s transient state and tentative
storage changes to be discarded. Finally, this Ballot contract also provides func-
tions to register voters, delegate one’s vote, and compute the winning proposal.
The complete Ballot example is available elsewhere3.

Execution Model: Miners and Validators. When a miner prepares a block for
inclusion in the blockchain, it starts with the ledger state as of the chain’s most
recent block. The miner selects a sequence of new transactions, records them in
the new block, and executes them, one at a time, to compute the new block’s state.
The miner then participates in a consensus protocol to decide whether this new
block will be appended to the blockchain.

To ensure that each transaction terminates in a reasonable number of steps,
each call to contract bytecode comes with an explicit limit on the number of virtual
machine steps that a call can take. (In Ethereum, these steps are measured in “gas”
and clients pay a fee to the miner that successfully appends that transaction’s block
to the blockchain.)

After a block has been successfully appended to the blockchain, that block’s
transactions are sequentially re-executed by every node in the network to check
that the block’s state transition was computed honestly and correctly. (Smart con-
tract transactions are deterministic, so each re-execution yields the same results as
the original.) These validator nodes do not receive fees for re-execution.

To summarize, a transaction is executed in two contexts: once by miners be-
fore attempting to append a block to the blockchain, and many times afterward by
validators checking that each block in the blockchain is honest. In both contexts,
each block’s transactions are executed sequentially in block order.

3http://solidity.readthedocs.io/en/develop/solidity-by-example.html

http://solidity.readthedocs.io/en/develop/solidity-by-example.html


3 Speculative Smart Contracts
This section discusses how miners can execute contract codes concurrently. Con-
currency for validators is addressed in the next section.

Smart contract semantics is sequential: each miner has a single thread of con-
trol that executes one EVM instruction at a time. The miner executes each of the 
block’s contracts in sequence. One contract can call another contract’s functions, 
causing control to pass from the first contract code to the second, and back again.
(Indeed, misuse of this control structure has been the source of well-known secu-
rity breaches [6].) Clearly, even sequential smart contracts must be written with 
care, and introducing explicit concurrency to contract programming languages 
would only make the situation worse. We conclude that concurrent smart con-
tract executions must be serializable: indistinguishable, except for execution time, 
from a sequential execution.

There are several obstacles to running contracts in parallel. First, smart con-
tract codes read and modify shared storage, so it is essential to ensure that concur-
rent contract code executions do not result in inconsistent storage states. Second, 
smart contract languages are Turing-complete, and therefore it is impossible in 
general to determine statically whether contracts have data conflicts.

We propose that miners execute contract codes as speculative actions. A miner 
schedules multiple concurrent contracts to run in parallel. Contracts’ data struc-
tures are instrumented to detect synchronization conflicts at run-time, in much the 
same way as mechanisms like transactional boosting [10]. If one speculative con-
tract execution conflicts with another, the conflict is  resolved either by  delaying 
one contract until the other completes, or by rolling back and restarting one of 
the conflicting executions. When a speculative action completes successfully, it is 
said to commit, and otherwise it aborts.

Storage Operations. We assume that, as in Solidity, state variables are re-
stricted to predefined types such as scalars, structures, enumerations, arrays, and 
mappings. A storage operation is a primitive operation on a state variable. For 
example, binding a key to a value in a mapping, or reading from a variable or an 
array are storage operations. Two storage operations commute if executing them 
in either order yields the same result values and the same storage state. For exam-
ple, in the address-to-Voter Ballot mapping in Listing 1, binding Alice’s address 
to a vote of 42 commutes with binding Bob’s address to a vote of 17, but does 
not commute when deleting Alice’s vote. An inverse for a storage operation is an-
other operation that undoes its effects. For example, the inverse of assigning to a 
variable is restoring its prior value, and the inverse of adding a new key-value pair 
to a mapping is to remove that binding, and so on. The virtual machine system 
can provide all storage operations with inverses.



The virtual machine is in charge of managing concurrency for state variables
such as mappings and arrays. Speculation is controlled by two run-time mecha-
nisms, invisible to the programmer, and managed by the virtual machine: abstract
locks, and inverse logs.

Each storage operation has an associated abstract lock. The rule for assigning
abstract locks to operations is simple: if two storage operations map to distinct
abstract locks, then they must commute. Before a thread can execute a storage
operation, it must acquire the associated abstract lock. The thread is delayed
while that lock is held by another thread4. Once the lock is acquired, the thread
records an inverse operation in a log, and proceeds with the operation.

If the action commits, its abstract locks are released and its log is discarded. If
the action aborts, the inverse log is replayed, most recent operation first, to undo
the effects of that speculative action. When the replay is complete, the action’s
abstract locks are released.

The advantage of combining abstract locks with inverse logs is that the virtual
machine can support very fine-grained concurrency. A more traditional imple-
mentation of speculative actions might associate locks with memory regions such
as cache lines or pages, and keep track of old and versions of those regions for re-
covery. Such a coarse-grained approach could lead to many false conflicts, where
operations that commute in a semantic sense are treated as conflicting because
they access overlapping memory regions. In the next section, we will see how to
use abstract locks to speed up verifiers.

When one smart contract calls another, the run-time system creates a nested
speculative action, which can commit or abort independently of its parent. A
nested speculative action inherits the abstract locks held by its parent, and it cre-
ates its own inverse log. If the nested action commits, any abstract locks it ac-
quired are passed to its parent, and its inverse log is appended to its parent’s log.
If the nested action aborts, its inverse log is replayed to undo its effects, and any
abstract locks it acquired are released. Aborting a child action does not abort the
parent, but a child action’s effects become permanent only when the parent com-
mits. The abstract locking mechanism also detects and resolves deadlocks, which
are expected to be rare.

The scheme described here is eager, acquiring locks, applying operations, and
recording inverses. An alternative lazy implementation could buffer changes to a
contract’s storage, applying them only on commit.

A miner’s incentive to perform speculative concurrent execution is the possi-
bility of increased throughput, and hence a competitive advantage against other
miners. Of course, the miner undertakes a risk that synchronization conflicts

4For ease of exposition, abstract locks are mutually exclusive, although it is not hard to accom-

modate shared and exclusive modes.



among contracts will cause some contracts to be rolled back and re-executed,
possibly delaying block construction, and forcing the miner to re-execute code
not compensated by client fees. Nevertheless, the experimental results reported
below suggest that even a small degree of concurrent speculative execution pays
off, even in the face of moderate data conflicts.

4 Concurrent Validation
The speculative techniques proposed above for miners are no help for validators. 
Here is the problem: miners use speculation to discover a concurrent schedule for 
a block’s transactions, a schedule equivalent to some sequential schedule, except 
faster. That schedule is constructed non-deterministically, depending on the order 
in which threads acquired abstract locks. To check that the block’s miner was 
honest, validators need to reconstruct the same (or an equivalent) schedule chosen 
by the miner.

Validators need a way to deterministically reproduce the miner’s concurrent 
schedule. To this end, we extend abstract locks to track dependencies, that is, 
who passed which abstract locks to whom. Each speculative lock includes a use 
counter that keeps track of the number of times it has been released by a com-
mitting action during the construction of the current block. When a miner starts a 
block, it sets these counters to zero.

When a speculative action commits, it increments the counters for each of 
the locks it holds, and then it registers a lock profile with the VM recording the 
abstract locks and their counter values.

When all the actions have committed, it is possible to reconstruct their com-
mon schedule by comparing their lock profiles. For example, consider three com-
mitted speculative actions, A, B, and C. If A and B have no abstract locks in 
common, they can run concurrently. If an abstract lock has counter value 1 in A’s 
profile and 2 in C’s profile, then C must be scheduled after A.

A miner includes these profiles in the blockchain along with usual information. 
From this profile information, validators can construct a fork-join program that de-
terministically reproduces the miner’s original, speculative schedule. By logging 
the locking schedule during parallel execution, the miner generates a happens-
before graph of transactions according to the order in which they acquire locks 
and commit. The validators can then use this happens-before graph to generate a 
fork-join program, where each transaction is a task that joins on any other tasks 
that precede it in the happens-before graph.

The resulting fork-join program is not speculative, nor does it require inter-
thread synchronization other than forks and joins. The validator is not required 
to match the miner’s level of parallelism: using a work-stealing scheduler [1], the



validator can exploit whatever degree of parallelism it has available. The validator 
does not need abstract locks, dynamic conflict detection, or the ability to roll back 
speculative actions, because the fork-join structure ensures that conflicting actions 
never execute concurrently.

To check that the miner’s proposed schedule is correct, the validator’s virtual 
machine records a trace of the abstract locks each thread would have acquired, had 
it been executing speculatively. This trace is thread-local, requiring no expensive 
inter-thread synchronization. At the end of the execution, the validator’s VM 
compares the traces it generated with the lock profiles provided by the m iner. If 
they differ, the block is rejected.

Miners have an incentive to publish a block’s fork-join schedule along with 
the block to induce other miners to build on that block. If a miner publishes an 
incorrect schedule, the error will be detected and that block rejected. A miner 
could publish a correct schedule equivalent to, but less parallel than the schedule 
it discovered, it would have no motive to do so because a less parallel schedule 
makes that block less attractive than competing blocks with more parallel sched-
ules, and the miner will be rewarded only if the other miners choose to build on 
that block. Because fork-join schedules are published in the blockchain, their 
degree of parallelism is easily evaluated.

5 Related Work
The notion of smart contracts can be traced back to an article by Nick Szabo in 
1997 [20]. Bitcoin [17] includes a scripting language whose expressive power was 
limited to protect against non-terminating scripts. The Ethereum blockchain [9] is 
perhaps the most widely used smart contract platform, employing a combination 
of a Turing-complete virtual machine protected from non-termination by charging 
clients for contract running times. Solidity [18] is the most popular programming 
language for programming the Ethereum virtual machine.

Luu et al. [15] identify a number of security vulnerabilities and pitfalls in the 
Ethereum smart contract model. Luu et al. [16] also identify perverse incentives 
that cause rational miners sometimes to accept unvalidated blocks. Delmolino et 
al. [7] document common programming errors observed in smart contracts. The 
Hawk [14] smart contract system is designed to protect the privacy of participants.

As noted, many of the speculative mechanisms introduced here were adapted 
from transactional boosting [10], a technique for transforming thread-safe lin-
earizable objects into highly-concurrent transactional objects. Boosting was orig-
inally developed to enhance the concurrency provided by software transactional 
memory systems [11] by exploiting type-specific i nformation. Other techniques 
that exploit type-specific properties to enhance concurrency in STMs include 
trans-



actional predication [3] and software transactional objects [12].
There are other techniques for deterministically reproducing a prior concurrent 

execution. See Bocchino et al. [2] for a survey.
Cachin et al. discuss non-deterministic execution of smart contracts in the 

context of BFT-based permissioned blockchains [4].

6 Conclusion
We have shown, conceptually, that one can exploit multi-core architectures to in-
crease smart contract processing throughput for both miners and validators. First, 
miners execute a block’s contracts speculatively and in parallel, resulting in lower 
latency whenever the block’s contracts lack data conflicts. Miners are incentivized 
to include in each block an encoding of the serializable parallel schedule that pro-
duced that block. Validators convert that schedule into a deterministic, parallel 
fork-join program that allows them to validate the block in parallel.

Elsewhere, we have published a more technical discussion showing concrete 
benchmarking results from a prototype system based on the concepts presented 
here. [8] Even with only three threads, a prototype implementation yields overall 
speedups of 1.39x for miners and 1.59x for validators on representative smart con-
tracts. In that paper we also provide a more focused discussion of the correctness 
of this architecture.

Although our discussion has focused on “permissionless” systems where any-
one can participate, the mechanisms proposed here would also be useful for “per-
missioned” systems, such as Hyperledger [13], where participants are controlled 
by an authority such as an organization or consortium. For example, in a permis-
sioned blockchain based on Practical Byzantine Fault-Tolerance (PBF) [5], the 
leader might use speculative execution to discover a concurrent schedule for a 
block, while particpants in the PBFT protocol would use the concurrent schedule 
to validate the block before voting.

Future work includes adding support for multithreading to the Ethereum vir-
tual machine, in much the same way as today’s Java virtual machines. Our pro-
posal for miners only is compatible with current smart contract systems such as 
Ethereum, but our overall proposal is not, because it requires including scheduling 
metadata in blocks and incentivizing miners to publish their parallel schedules. It 
may well be compatible with a future “soft fork” (backward compatible change), 
a subject for future research.

In addition to a multithreaded VM, we see room for advancement in program-
ming language support for smart contracts. Designing a language that lends itself 
to finer-grained c oncurrency w ill i ncrease t he s uccess o f s peculative execution 
thereby increasing throughput. It would also be useful for the language to pro-



vide better control of concurrency, helping the smart contract developer maximize
throughput while avoiding concurrency pitfalls.
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