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Abstract

We discuss five ways of proving Chernoff’s bound and show how they
lead to different extensions of the basic bound.

1 Introduction
Chernoff’s bound gives an estimate on the probability that a sum of independent
Binomial random variables deviates from its expectation [14]. It has many variants
and extensions that are known under various names such as Bernstein’s inequality
or Hoeffding’s bound [4, 14]. Chernoff’s bound is one of the most basic and ver-
satile tools in the life of a theoretical computer scientist, with a seemingly endless
amount of applications. Almost every contemporary textbook on algorithms or
complexity theory contains a statement and a proof of the bound [2,8,12,16], and
there are several texts that discuss its various applications in great detail (e.g., the
textbooks by Alon and Spencer [1], Dubhashi and Panchonesi [10], Mitzenmacher
and Upfal [19], Motwani and Raghavan [21], or the articles by Chung and Lu [6],
Hagerup and Rüb [13], or McDiarmid [17]).

In the present survey, we will see five different ways of proving the basic
Chernoff bound. The different techniques used in these proofs allow various gen-
eralizations and extensions, some of which we will also discuss.

2 The Basic Bound
We begin with a statement of the basic Chernoff bound. For this, we first need a
notion from information theory [9]. Let P = (p1, . . . , pm) and Q = (q1, . . . , qm)
be two probability distributions on m elements, i.e., pi, qi ∈ R with pi, qi ≥ 0,
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for i = 1, . . . ,m, and
∑m

i=1 pi =
∑m

i=1 qi = 1. The Kullback-Leibler divergence or
relative entropy of P and Q is defined as

DKL(P‖Q) :=
m∑

i=1

pi ln
pi

qi
.

If m = 2, i.e., if P = (p, 1 − p) and Q = (q, 1 − q), we write DKL(p‖q) for
DKL((p, 1− p)‖(q, 1−q)). The Kullback-Leibler divergence measures the distance
between the distributions P and Q: it represents the expected loss of efficiency if
we encode an m-letter alphabet with distribution P with a code that is optimal for
distribution Q. Now, the basic Chernoff bound is as follows:

Theorem 2.1. Let n ∈ N, p ∈ [0, 1], and let X1, . . . , Xn be n independent random
variables with Xi ∈ {0, 1} and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi.

Then, for any t ∈ [0, 1 − p], we have

Pr[X ≥ (p + t)n] ≤ e−DKL(p+t‖p)n.

3 Five Proofs for Theorem 2.1
We will now see five different ways of proving Theorem 2.1.

3.1 The Moment Method
The usual textbook proof of Theorem 2.1 uses the exponential function exp and
Markov’s inequality. It is called the moment method, because exp simultaneously
encodes all moments X, X2, X3, . . . of X. This trick is often attributed to Bern-
stein [4]. It is very general and can be used to obtain several variants of Theo-
rem 2.1, perhaps most prominently, the Azuma-Hoeffding inequality for martin-
gales with bounded differences [3, 14].

The proof goes as follows. Let λ > 0 be a parameter to be determined later.
We have

Pr[X ≥ (p + t)n] = Pr[λX ≥ λ(p + t)n] = Pr
[
eλX ≥ eλ(p+t)n].

From Markov’s inequality, we obtain

Pr
[
eλX ≥ eλ(p+t)n] ≤ E[eλX]

eλ(p+t)n .

Now, the independence of the Xi yields

E[eλX] = E
[
eλ

∑n
i=1 Xi

]
= E

[ n∏
i=1

eλXi

]
=

n∏
i=1

E
[
eλXi

]
=

(
peλ + 1 − p

)n
.



Thus,

Pr[X > (p + t)n] ≤
( peλ + 1 − p

eλ(p+t)

)n
, (1)

for every λ > 0. Optimizing for λ using calculus, we get that the right hand side
is minimized if

eλ =
(1 − p)(p + t)
p(1 − p − t)

.

Plugging this into (1), we get

Pr[X > (p + t)n] ≤
[( p

p + t

)p+t( 1 − p
1 − p − t

)1−p−t
]n

= e−DKL(p+t‖p)n,

as desired.

3.2 Chvátal’s Method
The following proof of Theorem 2.1 is due to Chvátal [7]. As we will see below,
it can be generalized to give tail bounds for the hypergeometric distribution. Let
B(n, p) be the random variable that gives the number of heads in n independent
Bernoulli trials with success probability p. Then,

Pr[B(n, p) = l] =

(
n
l

)
pl(1 − p)n−l,

for l = 0, . . . , n. Thus, for any τ ≥ 1 and k ≥ pn, we get

Pr[B(n, p) ≥ k] =

n∑
i=k

(
n
i

)
pi(1 − p)n−i

≤

n∑
i=k

(
n
i

)
pi(1 − p)n−i τi−k︸︷︷︸

≥1

+

k−1∑
i=0

(
n
i

)
pi(1 − p)n−iτi−k

︸                      ︷︷                      ︸
≥0

=

n∑
i=0

(
n
i

)
pi(1 − p)n−iτi−k.

Using the Binomial theorem, we obtain

Pr[B(n, p) ≥ k] ≤
n∑

i=0

(
n
i

)
pi(1 − p)n−iτi−k

= τ−k
n∑

i=0

(
n
i

)
(pτ)i(1 − p)n−i =

(pτ + 1 − p)n

τk .

If we write k = (p + t)n and τ = eλ, we get

Pr[B(n, p) ≥ (p + t)n] ≤
( peλ + 1 − p

eλ(p+t)

)n
.

This is the same as (1), so we can complete the proof of Theorem 2.1 as in Sec-
tion 3.1.



3.3 The Impagliazzo-Kabanets Method

The third proof is due to Impagliazzo and Kabanets [15], and it leads to a con-
structive version of the bound. Let λ ∈ [0, 1] be a parameter to be chosen later.
Let I ⊆ {1, . . . , n} be a random index set obtained by including each element
i ∈ {1, . . . , n} with probability λ. We estimate Pr

[∏
i∈I Xi = 1

]
in two different

ways, where the probability is over the random choice of X1, . . . , Xn and I.
On the one hand, using the union bound and independence, we have

Pr
[∏

i∈I

Xi = 1
]
≤

∑
S⊆{1,...,n}

Pr
[
I = S ∧

∏
i∈S

Xi = 1
]

=
∑

S⊆{1,...,n}

Pr[I = S ] ·
∏
i∈S

Pr[Xi = 1]

=
∑

S⊆{1,...,n}

λ|S |(1 − λ)n−|S | · p|S |

=

n∑
s=0

(
n
s

)
(λp)s(1 − λ)n−s = (λp + 1 − λ)n, (2)

by the Binomial theorem. On the other hand, by the law of total probability,

Pr
[∏

i∈I

Xi = 1
]
≥ Pr

[∏
i∈I

Xi = 1 | X ≥ (p + t)n
]

Pr[X ≥ (p + t)n].

Now, fix X1, . . . , Xn with X ≥ (p+t)n. For the fixed choice of X1 = x1, . . . , Xn = xn,
the probability Pr

[∏
i∈I xi = 1

]
is exactly the probability that I avoids all the n − X

indices i where xi = 0. Thus,

Pr
[∏

i∈I

xi = 1
]

= (1 − λ)n−X ≥ (1 − λ)(1−p−t)n.

Since the bound holds uniformly for every choice of x1, . . . , xn with X ≥ (p + t)n,
we get

Pr
[∏

i∈I

Xi = 1 | X ≥ (p + t)n
]
≥ (1 − λ)(1−p−t)n,

so
Pr

[∏
i∈I

Xi = 1
]
≥ (1 − λ)(1−p−t)n Pr[X ≥ (p + t)n].

Combining with (2),

Pr[X ≥ (p + t)n] ≤
(
λp + 1 − λ

(1 − λ)(1−p−t)

)n

. (3)



Using calculus, we get that the right hand side is minimized for λ = t/(1− p)(p+ t)
(note that λ ≤ 1 for t ≤ 1 − p). Plugging this into (3),

Pr[X > (p + t)n] ≤
[( p

p + t

)p+t( 1 − p
1 − p − t

)1−p−t
]n

= e−DKL(p+t‖p)n,

as desired.

3.4 The Encoding Argument

The next proof stems from discussions with Luc Devroye, Gábor Lugosi, and
Pat Morin, and it is inspired by an encoding argument [20]. A similar argument
can also be derived from Xinjia Chen’s likelihood ratio method [5]. Let {0, 1}n

be the set of all bit strings of length n, and let w : {0, 1}n → [0, 1] be a weight
function. We call w valid if

∑
x∈{0,1}n w(x) ≤ 1. The following lemma says that for

any probability distribution px on {0, 1}n, a valid weight function is unlikely to be
substantially larger than px.

Lemma 3.1. Let D be a probability distribution on {0, 1}n that assigns to each
x ∈ {0, 1}n a probability px, and let w be a valid weight function. For any s ≥ 1,
we have

Pr
x∼D

[
w(x) ≥ spx

]
≤ 1/s.

Proof. Let Zs = {x ∈ {0, 1}n | w(x) ≥ spx}. We have

Pr
x∼D

[
w(x) ≥ spx

]
=

∑
x∈Zs
px>0

px ≤
∑
x∈Zs
px>0

px
w(x)
spx

≤ (1/s)
∑
x∈Zs

w(x) ≤ 1/s,

since w(x)/spx ≥ 1 for x ∈ Zs, px > 0, and since w is valid. �

We now show that Lemma 3.1 implies Theorem 2.1. For this, we interpret
the sequence X1, . . . , Xn as a bit string of length n. This induces a probability
distribution D that assigns to each x ∈ {0, 1}n the probability px = pkx(1 − p)n−kx ,
where kx denotes the number of 1-bits in x. We define a weight function w :
{0, 1}n → [0, 1] by w(x) = (p + t)kx(1 − p − t)n−kx , for x ∈ {0, 1}n. Then w is
valid, since w(x) is the probability that x is generated by setting each bit to 1
independently with probability p + t. For x ∈ {0, 1}n, we have

w(x)
px

=

(
p + t

p

)kx
(
1 − p − t

1 − p

)n−kx

.



Since ((p + t)/p)((1 − p)/(1 − p − t)) ≥ 1, it follows that w(x)/px is an increasing
function of kx. Hence, if kx ≥ (p + t)n, we have

w(x)
px
≥

( p + t
p

)p+t (1 − p − t
1 − p

)1−p−tn

= eDKL(p+t‖p)n.

We now apply Lemma 3.1 toD and w to get

Pr[X ≥ (p + t)n] = Pr
x∼D

[kx ≥ (p + t)n] ≤ Pr
x∼D

[
w(x) ≥ pxeDKL(p+t‖p)n

]
≤ e−DKL(p+t‖p)n,

as claimed in Theorem 2.1.
See the survey [20] for a more thorough discussion of how this proof is related

to coding theory.

3.5 A Proof via Differential Privacy

The fifth proof of Chernoff’s bound is due to Steinke and Ullman [22], and it uses
methods from the theory of differential privacy [11]. Unlike the previous four
proofs, it seems to lead to a slightly weaker version of the bound. Let m be a
parameter to be determined later. The main idea is to bound the expectation of m
independent copies of X.

Lemma 3.2. Let m ∈ N, m ≤ en, and let X(1), X(2), . . . , X(m) be m independent
copies of X. Then,

E
[
max{X(1), X(2), . . . , X(m)}

]
≤ pn + 5

√
n ln m.

We will give a proof of Lemma 3.2 below. First, however, we will see how we
can use Lemma 3.2 to derive the following weaker version of Theorem 2.1.

Theorem 3.3. Let n ∈ N, p ∈ [0, 1], and let X1, . . . , Xn be n independent random
variables with Xi ∈ {0, 1} and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi.

Then, for any t ∈ [0, 1 − p], we have

Pr[X ≥ (p + t)n] ≤ e−
1

64 t2n.

Proof. Set α = Pr[X ≥ (p + t)n], and let X(1), X(2), . . . , X(m) be m independent
copies of X. Then,

Pr
[
max{X(1), X(2), . . . , X(m)} ≥ (p + t)n

]
= 1 − (1 − α)m ≥ 1 − e−αm. (4)



On the other hand, Markov’s inequality gives

Pr
[
max{X(1), X(2), . . . , X(m)} ≥ (p + t)n

]
= Pr

[
max{X(1), X(2), . . . , X(m)} − pn ≥ tn

]
≤

E
[
max{X(1), X(2), . . . , X(m)}

]
− pn

tn
≤

5
√

ln m
t
√

n
,

by Lemma 3.2. Thus, setting m = exp
(( e−1

5e

)2t2n
)
, and combining with (4), we get

(e − 1)/e ≥ 1 − e−αm ⇔ α ≤ e−
(

e−1
5e

)2
t2n.

The lemma follows since
( e−1

5e

)2
≥ 1

64 . �

It remains to prove Lemma 3.2. For this, we use an idea from differential
privacy. Let A ∈ {0, 1}m×n, A = (ai j), be an (m × n)-matrix with entries from {0, 1}.
For a given parameter γ > 1, we define a random variable S γ(A) with values in
{1, . . . ,m} as follows: for i = 1, . . . ,m, let bi =

∑
j=1,...,n ai j be the sum of the entries

in the i-th row of A. Set

Cγ(A) =

m∑
i=1

γbi .

Then, for i = 1, . . . ,m, we define

Pr[S γ(A) = i] =
γbi

Cγ(A)
.

The random variable S γ(A) is called a stable selector for A (see the work by
McSherry and Talwar [18] for more background). The next lemma states two
interesting properties for S γ(A). For a matrix A ∈ {0, 1}m×n, a vector ~c ∈ {0, 1}m,
and a number j ∈ {1, . . . , n} we denote by (A− j, ~c) the matrix obtained from A by
replacing the j-th column of A with ~c.

Lemma 3.4. Let A ∈ {0, 1}m×n be an m × n matrix with entries in {0, 1}. We have

• Stability: For every vector ~c ∈ {0, 1}m and every i ∈ {1, . . . ,m},

γ−2 Pr[S γ(A− j, ~c) = i] ≤ Pr[S γ(A) = i] ≤ γ2 Pr[S γ(A− j, ~c) = i].

• Accuracy: Let bi be the sum of the i-th row of A. Then,

Ei∼S γ(A)[bi] ≤
m

max
i=1

bi ≤ Ei∼S γ(A)[bi] + logγ m.



Proof. Stability: for k ∈ {1, . . . ,m}, let bk be the sum of the k-th row of A, and let
b̃k be the sum of the k-th row of (A− j, c̃). Since A and (A− j, c̃) differ in one column,
and since the entries are from {0, 1}, we have b̃k − 1 ≤ bk ≤ b̃k + 1. Hence,

γ−1Cγ(A− j, ~c) ≤ Cγ(A) ≤ γCγ(A− j, ~c)

and
γ−2 Pr[S γ(A− j, ~c) = i] ≤ Pr[S γ(A) = i] ≤ γ2 Pr[S γ(A− j, ~c) = i],

as claimed.
Accuracy: The inequality Ei∼S γ(A)[bi] ≤ maxm

i=1 bi is obvious. For the second
inequality, we observe that by definition,

bi = logγ(Cγ(A) Pr[S γ(A) = i]).

Thus,

Ei∼S γ(A)[bi] =

m∑
i=1

Pr[S γ(A) = i] logγ(Cγ(A) Pr[S γ(A) = i])

=

m∑
i=1

Pr[S γ(A) = i] logγ Cγ(A) −
m∑

i=1

Pr[S γ(A) = i] logγ
1

Pr[S γ(A) = i]

≥

m∑
i=1

Pr[S γ(A) = i] logγ γ
maxm

i=1 bi − logγ m,

=
m

max
i=1

bi − logγ m,

since Cγ(A) =
∑m

i=1 γ
bi ≥ γmaxm

i=1 bi and since x 7→ − logγ(x) is a convex function.
�

Lemma 3.4 shows that S γ(A) constitutes a reasonable mechanism of estimat-
ing the maximum row sum of A without revealing too much information about
any single column of A. We can now use Lemma 3.4 to bound the expectation of
the maximum of m independent copies of X.

Lemma 3.5. Let m ∈ N, and let X(1), X(2), . . . , X(m) be m independent copies of X.
Then, for any γ > 1, we have

E
[
max{X(1), X(2), . . . , X(m)}

]
≤ γ2 pn + logγ m.

Proof. Let X(1)
1 , X(2)

1 , . . . , X(m)
1 be m independent copies of X1, let X(1)

2 , X(2)
2 , . . .,

X(m)
2 be m independent copies of X2, and so on. We consider the random m × n



matrix M ∈ {0, 1}m×n whose entry in row i and column j is X(i)
j . Then, we can

write X(i) =
∑n

j=1 X(i)
j , for i = 1, . . . ,m. By the accuracy claim in Lemma 3.4,

EM
[
max{X(1), . . . , X(m)}

]
≤ EM,i∼S γ(M)

[
X(i)] + logγ m (5)

Now we bound EM,i∼S γ(M)
[
X(i)]. We unwrap the expectation for i ∼ S γ(M) and get

EM,i∼S γ(M)[X(i)] = EM

[ m∑
i=1

Pr[S γ(M) = i]X(i)
]

Let M̃ be an independent copy of M. Denote the entry in the i-th row and j-th
column of M̃ by X̃(i)

j , and set X̃(i) =
∑n

j=1 X̃(i)
j , for i = 1, . . . ,m. By the stability

claim in Lemma 3.4, for every j ∈ {1, . . . , n},

EM

[ m∑
i=1

Pr
[
S γ(M) = i

]
X(i)

]
≤ γ2EM,M̃

[ m∑
i=1

Pr
[
S γ(M− j, M̃ j) = i

]
X(i)

]
.

Since the random variables X(i)
j , X̃(i)

j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, are independent, the
pairs

(
(M− j, M̃ j), X

(i)
j
)

and
(
M, X̃(i)

j
)

have the same distribution. Therefore, we can
write

EM

[ m∑
i=1

Pr
[
S γ(M)) = i

]
X(i)

]
= EM

[ m∑
i=1

n∑
j=1

Pr
[
S γ(M)) = i

]
X(i)

j

]
≤ γ2EM,M̃

[ n∑
j=1

m∑
i=1

Pr
[
S γ(M− j, M̃ j) = i

]
X(i)

j

]
= γ2EM,M̃

[ n∑
j=1

m∑
i=1

Pr
[
S γ(M) = i

]
X̃(i)

j

]
= γ2EM

[ m∑
i=1

Pr
[
S γ(M) = i

]
EM̃

[
X̃(i)]]

= γ2EM

[ m∑
i=1

Pr
[
S γ(M) = i

]
pn

]
= γ2 pn.

We can conclude the lemma by plugging this bound into (5). �

To obtain Lemma 3.2, we set γ = 1 +
√

ln m
√

n . Now, Lemma 3.5 gives

E
[
max{X(1), X(2), . . . , X(m)}

]
≤

1 +

√
ln m
√

n

2

pn +
ln m

ln
(
1 +

√
ln m
√

n

)
≤

1 +
3
√

ln m
√

n

 pn +
ln m
√

ln m
2
√

n

,



since
√

ln m
√

n ≤ 1 by our assumption m ≤ en and ln(1 + x) ≥ x/2, for x ∈ [0, 1].
Hence, using pn ≤ n,

E
[
max{X(1), X(2), . . . , X(m)}

]
≤ pn + 5

√
n ln m,

as desired.

4 Useful Consequences
We now show several useful consequences of Theorem 2.1. These results can be
derived directly from Theorem 2.1, and therefore they also hold for variants of the
theorem with slightly different assumptions.

4.1 The Lower Tail
First, we show that an analogous bound holds for the lower tail probability Pr[X ≤
(p − t)n].

Corollary 4.1. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi. Then, for any t ∈ [0, p], we

have
Pr[X ≤ (p − t)n] ≤ e−DKL(p−t‖p)n.

Proof.

Pr[X ≤ (p − t)n] = Pr[n − X ≥ n − (p − t)n] = Pr[X′ ≥ (1 − p + t)n],

where X′ =
∑n

i=1 X′i with independent random variables X′i ∈ {0, 1} such that
Pr[X′i = 1] = 1−p. The result follows from DKL(1−p+t‖1−p) = DKL(p−t‖p). �

4.2 Multiplicative version
Next, we derive a multiplicative variant of Theorem 2.1. This well-known version
of the bound can be found in the classic text by Motwani and Raghavan [21].

Corollary 4.2. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi and µ = pn. Then, for any

δ ≥ 0, we have

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
, and

Pr[X ≤ (1 − δ)µ] ≤
(

e−δ

(1 − δ)1−δ

)µ
.



Proof. Setting t = δµ/n in Theorem 2.1 yields

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−n

[
p(1 + δ) ln(1 + δ) + p

(
1 − p

p
− δ

)
ln

(
1 − δ

p
1 − p

)])
=

(
(1 − δp/(1 − p))δ−(1−p)/p

(1 + δ)1+δ

)µ
≤

e−δ
2 p/(1−p)+δ

(1 + δ)1+δ

µ ≤ (
eδ

(1 + δ)1+δ

)µ
.

Setting t = δµ/n in Corollary 4.1 yields

Pr[X ≤ (1 − δ)µ] ≤ exp
(
−n

[
p(1 − δ) ln(1 − δ) + p

(
1 − p

p
+ δ

)
ln

(
1 + δ

p
1 − p

)])
=

(
(1 + δp/(1 − p))−δ−(1−p)/p

(1 − δ)1−δ

)µ
≤

e−δ
2 p/(1−p)−δ

(1 − δ)1−δ

µ ≤ (
e−δ

(1 − δ)1−δ

)µ
.

�

4.3 Useful Variants
The next few corollaries give some handy variants of the bound that are often
more manageable in practice. First, we give a simple bound for the multiplicative
lower tail.

Corollary 4.3. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi and µ = pn. Then, for any

δ ∈ (0, 1), we have
Pr[X ≤ (1 − δ)µ] ≤ e−δ

2µ/2.

Proof. By Corollary 4.2

Pr[X ≤ (1 − δ)µ] ≤
(

e−δ

(1 − δ)1−δ

)µ
.

Using the power series expansion of ln(1 − δ), we get

(1 − δ) ln(1 − δ) = −(1 − δ)
∞∑

i=1

δi

i
= −δ +

∞∑
i=2

δi

(i − 1)i
≥ −δ + δ2/2.

Thus,
Pr[X ≤ (1 − δ)µ] ≤ e[−δ+δ−δ2/2]µ = e−δ

2µ/2,

as claimed. �



An only slightly more complicated bound can be found for the multiplicative
upper tail.

Corollary 4.4. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi and µ = pn. Then, for any

δ ≥ 0, we have
Pr[X ≥ (1 + δ)µ] ≤ e−min{δ2,δ}µ/4.

Proof. We may assume that (1 + δ)p ≤ 1. Then, Theorem 2.1 gives

Pr[X ≥ (1 + δ)pn] ≤ e−DKL((1+δ)p‖p)n.

Define f (δ) := DKL((1 + δ)p‖p). Then,

f ′(δ) = p ln(1 + δ) − p ln(1 − δp/(1 − p))

and
f ′′(δ) =

p
(1 + δ)(1 − p − δp)

≥
p

1 + δ
.

By Taylor’s theorem, we have

f (δ) = f (0) + δ f ′(0) +
δ2

2
f ′′(ξ),

for some ξ ∈ [0, δ]. Since f (0) = f ′(0) = 0, it follows that

f (δ) =
δ2

2
f ′′(ξ) ≥

δ2 p
2(1 + ξ)

≥
δ2 p

2(1 + δ)
.

For δ ≥ 1, we have δ/(1 + δ) ≥ 1/2, for δ < 1, we have 1/(δ + 1) ≥ 1/2. This
gives, for all δ ≥ 0,

f (δ) ≥ min{δ2, δ}p/4,

and the claim follows. �

The following corollary combines the two bounds. This variant can be found,
e.g., in the book by Arora and Barak [2].

Corollary 4.5. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi and µ = pn. Then, for any

δ > 0, we have
Pr[|X − µ| ≥ δµ] ≤ 2e−min{δ2,δ}µ/4.

Proof. Combine Corollaries 4.3 and 4.4. �

The following corollary, which appears, e.g., in the book by Motwani and
Raghavan [21], is also sometimes useful.



Corollary 4.6. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}
and Pr[Xi = 1] = p, for i = 1, . . . n. Set X :=

∑n
i=1 Xi and µ = pn. For t ≥ 2eµ, we

have
Pr[X ≥ t] ≤ 2−t.

Proof. By Corollary 4.2

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤

( e
1 + δ

)(1+δ)µ
.

For δ ≥ 2e − 1, the denominator in the right hand side is at least 2e, and the claim
follows. �

5 Generalizations
We mention a few generalizations of the proof techniques for Section 3. Since the
consequences from Section 4 are based on simple algebraic manipulation of the
bounds, the same consequences also hold for the generalized settings.

5.1 Hoeffding-Extension
The moment method (Section 3.1) yields many generalizations of Theorem 2.1.
The following result is known as Hoeffding’s extension [14]. It shows that the Xi

can actually be chosen to be continuous with varying expectations.

Theorem 5.1. Let X1, . . . , Xn be independent random variables with Xi ∈ [0, 1]
and E[Xi] = pi. Set X :=

∑n
i=1 Xi and p := (1/n)

∑n
i=1 pi. Then, for any t ∈

[0, 1 − p], we have
Pr[X ≥ (p + t)n] ≤ e−DKL(p+t‖p)n.

Proof. Let λ > 0 a parameter to be determined later. As before, Markov’s in-
equality yields

Pr
[
eλX ≥ eλ(p+t)n] ≤ E[eλX]

eλ(p+t)n .

Using independence, we get

E[eλX] = E
[
eλ

∑n
i=1 Xi

]
=

n∏
i=1

E
[
eλXi

]
. (6)

Now we need to estimate E
[
eλXi

]
. The function z 7→ eλz is convex, so eλz ≤

(1 − z)e0·λ + ze1·λ for z ∈ [0, 1]. Hence,

E
[
eλXi

]
≤ E[1 − Xi + Xieλ] = 1 − pi + pieλ.



Going back to (6),

E[eλX] ≤
n∏

i=1

(1 − pi + pieλ).

Using the arithmetic-geometric mean inequality
∏n

i=1 xi ≤
(
(1/n)

∑n
i=1 xi

)n, for
xi ≥ 0, this is

E[eλX] ≤ (1 − p + peλ)n.

From here we continue as in Section 3.1. �

5.2 Hypergeometric Distribution

Chvátals proof [7] from Section 3.2 generalizes to the hypergeometric distribution.
We emphasize once again that this means that all the corollaries from Section 4
also apply to this case.

Theorem 5.2. Suppose we have an urn with N balls, P of which are red. We
randomly draw n balls from the urn without replacement. Let H(N, P, n) denote
the number of red balls in the sample. Set p := P/N. Then, for any t ∈ [0, 1 − p],
we have

Pr
[
H(N, P, n) ≥ (p + t)n

]
≤ e−DKL(p+t‖p)n.

Proof. It is well known that

Pr[H(N, P, n) = l] =

(
P
l

)(
N − p
n − l

)(
N
l

)−1

,

for l = 0, . . . , n.

Claim 5.3. For every j ∈ {0, . . . , n}, we have(
N
n

)−1 n∑
i= j

(
P
i

)(
N − P
n − i

)(
i
j

)
≤

(
n
j

)
p j.

Proof. Consider the following random experiment: take a random permutation
of the N balls in the urn. Let S be the sequence of the first n elements in the
permutation. Let X be the number of j-subsets of S that contain only red balls.
We compute E[X] in two different ways. On the one hand,

E[X] =

n∑
i= j

Pr[S contains i red balls]
(
i
j

)
=

n∑
i= j

(
N
n

)−1(P
i

)(
N − P
n − i

)(
i
j

)
. (7)



On the other hand, let I ⊆ {1, . . . , n} with |I| = j. Then the probability that all the
balls in the positions indexed by I are red is

P
N
·

P − 1
N − 1

· · · · ·
P − j + 1
N − j + 1

≤

( P
N

) j

= p j.

Thus, by linearity of expectation E[X] ≤
(

n
j

)
p j. Together with (7), the claim

follows. �

Claim 5.4. For every τ ≥ 1, we have

(
N
n

)−1 n∑
i=0

(
P
i

)(
N − P
n − i

)
τi ≤ (1 + (τ − 1)p)n.

Proof. Using Claim 5.3 and the Binomial theorem (twice),

(
N
n

)−1 n∑
i=0

(
P
i

)(
N − P
n − i

)
τi =

(
N
n

)−1 n∑
i=0

(
P
i

)(
N − P
n − i

)
(1 − (τ − 1))i

=

(
N
n

)−1 n∑
i=0

(
P
i

)(
N − P
n − i

) i∑
j=0

(
i
j

)
(τ − 1) j

=

(
N
n

)−1 n∑
j=0

(τ − 1) j
n∑

i= j

(
P
i

)(
N − P
n − i

)(
i
j

)

≤

n∑
j=0

(
n
j

)
((τ − 1)p) j = (1 + (τ − 1)p)n,

as claimed. �

Thus, for any τ ≥ 1 and k ≥ pn, we get as before

Pr[H(N, P, n) ≥ k] =

(
N
n

)−1 n∑
i=k

(
P
i

)(
N − P
n − i

)
≤

(
N
n

)−1 n∑
i=0

(
P
i

)(
N − P
n − i

)
τi−k ≤

(pτ + 1 − p)n

τk ,

by Claim 5.4. From here the proof proceeds as in Section 3.2. �



5.3 Negative Correlations
The proof by Impagliazzo and Kabanets [15] from Section 3.3 can be used to
relax the independence assumption. It now suffices that the random variables are
negatively correlated.

Theorem 5.5. Let X1, . . . , Xn be random variables with Xi ∈ {0, 1}. Suppose there
exist pi ∈ [0, 1], i = 1, . . . , n, such that for every index set I ⊆ {1, . . . , n}, we have
Pr

[∏
i∈I Xi = 1

]
≤

∏
i∈I pi. Set X :=

∑n
i=1 Xi and p := (1/n)

∑n
i=1 pi. Then, for any

t ∈ [0, 1 − p], we have

Pr[X ≥ (p + t)n] ≤ e−DKL(p+t‖p)n.

Proof. Let λ ∈ [0, 1] be a parameter to be chosen later. Let I ⊆ {1, . . . , n} be a ran-
dom index set obtained by including each element i ∈ {1, . . . , n} with probability
λ. As before, we estimate the probability Pr

[∏
i∈I Xi = 1

]
in two different ways,

where the probability is over the random choice of X1, . . . , Xn and I. Similarly to
before,

Pr
[∏

i∈I

Xi = 1
]

= Pr
[∏

i∈I

Xi = 1
]
≤

∑
S⊆{1,...,n}

Pr
[
I = S ∧

∏
i∈S

Xi = 1
]

≤
∑

S⊆{1,...,n}

Pr[I = S ] · Pr
[∏

i∈S

Xi = 1
]
≤

∑
S⊆{1,...,n}

λ|S |(1 − λ)n−|S | ·
∏
i∈S

pi. (8)

We define n independent random variables Z1, . . . ,Zn as follows: for i =

1, . . . , n, with probability 1 − λ, we set Zi = 1, and with probability λ, we set
Zi = pi. By (8), and using independence and the arithmetic-geometric mean in-
equality.

Pr
[∏

i∈I

Xi = 1
]

= E
[ n∏

i=1

Zi

]
=

n∏
i=1

E[Zi] =

n∏
i=1

(1 − λ + piλ) ≤ (1 − λ + pλ)n. (9)

The proof of the lower bound remains unchanged and yields

Pr
[∏

i∈I

Xi = 1
]
≥ (1 − λ)(1−p−t)n Pr[X ≥ (p + t)n],

as before. Combining with (9) and optimizing for λ finishes the proof, see Sec-
tion 3.3. �
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