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Abstract

In computer science, category theory remains a contentious issue, with
enthusiastic fans and a skeptical majority. Categories were introduced by
Samuel Eilenberg and Saunders Mac Lane as an auxiliary notion in their
general theory of natural equivalences. Here we argue that something like
categories is needed on a more basic level. As you work with operations on
structures, it may be necessary to coherently manipulate isomorphism (or
more generally homomorphism) witnesses for various properties of these
operations, e.g. associativity, commutativity and distributivity. A working
mathematician, to use Mac Lane’s term, is well advised to be aware of the
coherent witness-manipulation problem and to know that category theory is
an appropriate framework to address the problem. Of course, the working
mathematician in question may be a computer scientist or physicist.

In computer science, category theory remains a contentious issue. The fans tend
to be enthusiastic while the majority remains skeptical. The joke

I hope most mathematicians continue to fear and despise category theory, so I can
continue to maintain a certain advantage over them.

of John Baez [1] works even better in computer science.
In a muted form this split applies to the authors of this note. As we mentioned

in [2, §1], “The first author of this paper has long been a fan of category theory;
even as a graduate student, he was described by one of his professors as ‘functor-
ized’. The second author has been far more skeptical about the value of category
theory in computer science, because of its distance from applications and because
of the peril of potential (and in some cases actual) over-abstraction.”
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Quisani1: You don’t mean that category theory itself is an over-abstraction.

Authors2: No, we don’t. As Seneca the Younger said in the first century, “gladius
neminem occidit: occidentis telum est,” that is “a sword kills nobody; it is a tool
of the killer.”

There is also the hammer-and-nail phenomenon: “For a person with a hammer,
everything looks like a nail.” Here is a true life example, but allow us to omit the
reference. A computation can be seen as a category where objects are states and
morphisms are state transitions. If you take this point of view, then you might
want computation transformers to be functorial, which narrows unreasonably your
library of computation transformers. For example, you lose compilers.

Q: Why isn’t a compiler functorial?

A: Typically, the target language is at a lower abstraction level and uses different
data structures. A higher-level step may have no meaning at the lower level, but
such steps may combine into a transformation that is meaningful at the lower level.
Besides, think of compiler optimization.

It turns out, however, that the only mathematically sound theory of topological
quantum computing in the literature is based on category theory; see [10, 11] for
example. Why? Is this an accident of history, another nail for the categorical
hammer, or there is more to it?

We have been debating this question for a while, and now we agree that some-
thing like category theory is necessary for the purpose. The goal of this note is
to give a high-level explanation of that necessity, which avoids details and which
suggests that the case of topological quantum computing is far from unique.

Consider a collection C of structures together with operations of addition and
multiplication defined on C. Up to isomorphism, both operations are commu-
tative, associative and have their respective neutral elements, and multiplication
distributes over addition.

Example 1. A C structure is a finite-dimensional vector space, over the field of
complex numbers, furnished with a fixed basis. If A, B ∈ C then the vector space
A + B is the direct sum, also known as the direct product, of vector spaces A and
B, and the fixed basis of A + B is the disjoint union of the fixed bases of A and
B. The product A ∗ B is the tensor product of the vector spaces furnished with the
cartesian product of the fixed bases of A and B. /

1A former student of the second author and our frequent interlocutor.
2Speaking one at a time



In the case of topological quantum computing, the structures are more sophis-
ticated — involving e.g. tuples of vector spaces, duality, ribbon structures — but
this is not important for the purposes of this note. A more relevant peculiarity
of topological quantum computing is that the standard isomorphisms from A ∗ B
to B ∗ A and from B ∗ A to A ∗ B are not necessarily inverse to each other. It is
convenient to think about this topologically: as A ∗ B is transformed into B ∗ A, it
matters whether A passes in front of or behind B. The two isomorphisms, known
as braiding isomorphisms, are in general different.

So far, we are within the realm of universal algebra. But here is a new aspect.
For computational purposes, it is not enough for us to know that there are two
braiding isomorphisms from A ∗B to B∗A or that there is an associativity isomor-
phism from (A∗B)∗C to A∗ (B∗C). We need these isomorphisms, in matrix form
with respect to the fixed bases, for computational purposes. These isomorphisms
satisfy the appropriate coherence laws identified by Saunders Mac Lane [9].

It is convenient to think of an isomorphism ξ : A → B as a witness that A, B
are isomorphic. Multiplication interacts with addition via the distributivity laws.
As a result, the necessity of dealing with computationally suitable witnesses for
the commutativity and associativity laws of multiplication forces us to also deal
with such witnesses for the commutativity and associativity laws of addition and
for the distributivity laws. The witnesses for the commutativity and associativity
of addition satisfy Mac Lane’s coherence laws. The coherence laws for distribu-
tivity3 have been identified by Miguel Laplaza [6, 7] who was a postdoc of Mac
Lane.

It would be wonderful if the addition operation on C were literally commu-
tative and associative, i.e., if we could get by with the identity witnesses for the
commutativity and associativity of addition. Unfortunately this is not in the cards.

We could use Example 1 for illustration, but let us simplify the situation by
abstracting from vector spaces and concentrating on their fixed bases: finite sets
with disjoint union as addition. We recall the standard definition of disjoint union
of sets.

Definition 1. The disjoint union of sets A, B is the set

A + B = {(a, 0) : a ∈ A} ∪ {(b, 1) : b ∈ B}. /

This disjoint union is neither commutative nor associative. One may think
that there is no definition that is better in the sense that it makes disjoint union
literally, not just up to isomorphism, commutative and associative. But such a
“better” definition does exist. LetN be the set of natural numbers, i.e., nonnegative
integers.

3Unfortunately for us, Laplaza considered only the symmetric case, where the two braiding
isomorphisms from A ∗ B to B ∗ A always coincide.



Definition 2. The disjoint union of finite sets A, B is the set

A+̇B = {n ∈ N : n < |A| + |B|}. /

Let’s adopt the set-theoretic convention that a natural number is the set of
smaller natural numbers. Then Definition 2 says that the disjoint union A+̇B is the
number |A|+ |B|. It is easy to see that A+̇B is indeed commutative and associative,
so that the standard witnesses for the commutativity and associativity can be taken
to be identities.

Q: Hmm, Definition 1 does not look standard to me. If fact, it looks rather arbi-
trary. Instead of 0 and 1, I can use different tags, say, 1 and 2.

A: In any of these variations, there is a natural enhancement of the definition
with canonical embeddings of A and B into A + B; the resulting operation has the
universal property of the coproduct. That is what makes the definition, in any of
these variations, standard.

Q: Definition 2 does not have this property.

A: No, it does not. It is really the up-to-isomorphism definition, except that the
isomorphism class of the disjoint union is replaced with its canonical representa-
tive.

Q: Still, the operation A+̇B has the advantage of being commutative and associa-
tive so that, as you said, the standard witnesses for commutativity and associativity
can be taken to be identities.

A: This is true, but this advantage cannot be pushed too far. For example, if a
finite set A is not a number then the equality A = A+̇∅ cannot be witnessed by the
identity. For, if A is identical to A+̇∅, then A is a number.

Categories were introduced by Samuel Eilenberg and Saunders Mac Lane as
an auxiliary notion in their general theory of natural equivalences [4]. “It is not
too misleading, at least historically, to say that categories are what one must define
in order to define functors, and that functors are what one must define in order to
define natural transformations,” writes Peter Freyd in the introduction to his book
[5].

Here we argue that something like categories is needed on a more basic level.
As you work with operations on structures, it may be necessary to coherently
manipulate witnesses for various properties of these operations. We mentioned
associativity, commutativity and distributivity, but many additional properties are
in play in topological quantum computing and elsewhere. The coherent witness-
manipulation problem may be hard.



This necessity of coherent witness-manipulation cannot be proven mathemat-
ically, and in some cases one can get around the coherent witness-manipulation
problem. For example, for limited purposes, the narrow problem of a reasonable
definition of commutative and associative disjoint union of sets can be solved by
generalizing sets to multisets. Unfortunately this solution is of little help if the
sets in question are vector-space bases.

In general, a working mathematician, to use Mac Lane’s term [9], is well ad-
vised to be aware of the coherent witness-manipulation problem and to know that
category theory is an appropriate framework to address the problem. Of course,
the working mathematician in question may be a computer scientist or physicist.

Q: You say that “something like category theory” is needed. Are there alternatives
to category theory?

A: We didn’t want to rule out possible alternatives. In some situations, it suffices
to consider groupoids, i.e., to restrict attention to isomorphisms. This setting can
be presented in a way closer to traditional algebra [3].

Q: Is there an objective need to deal with more general homomorphisms?

A: Yes, isomorphisms are sometimes insufficient. Consider, for example, Defini-
tion 2 of disjoint union. Why does it feel so lousy? One reason is that it does not
say where A and B are in the disjoint union. To have a useful disjoint union, one
needs even more, namely where individual elements of A and B lie in the disjoint
union. That information amounts to embeddings of A and B into the disjoint union,
and those are not isomorphisms.
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