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Abstract

Combinatorics on words aims at finding deep connections between proper-

ties of sequences. The resulting theoretical findings are often used in the

design of efficient combinatorial algorithms for string processing, but may

also have independent interest, especially in connection with other areas of

discrete mathematics. The property we discuss here is, for a given finite

word, that of being closed. A finite word is called closed if it has length ≤ 1

or it contains a proper factor (substring) that occurs both as a prefix and as a

suffix but does not have internal occurrences. Otherwise the word is called

open. We illustrate several aspects of open and closed words and factors,

and propose some open problems.

1 Introduction

In combinatorics on words, one often classifies finite or infinite words accord-

ing to some combinatorial property. For example, a finite word can be primitive

(e.g. aba) or a power of another word (e.g. abaaba = (aba)2). Another example

is the property of having a border (a proper factor that occurs both as a prefix

and as a suffix of the word), or being unbordered. Once a property has been cho-

sen, one may look at the factors of a given word by separating those that verify

the property from those that do not. For example, the word abaab has five dis-

tinct bordered factors, namely aa, aba, baab, abaa and abaab and all the other

factors (the empty word ε, a, b, ab, ba, aab and baa) are unbordered. Several

papers have been devoted to the study of those words that are extremal with re-

spect to the proportion of factors that verify a given property, for example words

with the maximum (or minimum) number of distinct square factors [17, 21, 22],

palindromic factors [7, 19, 15], unbordered factors [27, 20], etc.
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Despite the simplicity of the definitions, there are several natural questions

on these topics that are remaining unanswered for many decades. For example,

nobody still knows if the following conjecture, attributed to Fraenkel and Simp-

son [17], holds true:

Conjecture 1. Any word of length n contains less than n distinct square factors.

For infinite words, one may check whether there are arbitrarily long factors (or

prefixes) verifying a given property. For example, every aperiodic infinite word

contains arbitrarily long unbordered factors, while in a purely periodic infinite

word the maximum length of an unbordered factor is bounded. 1

An approach we find particularly promising consists in associating, with a

given infinite word, an infinite binary sequence whose i-th element is 1 or 0 de-

pending whether the prefix of length i of the word verifies the chosen property or

not. This may be seen as the characteristic sequence of the property for the given

word. For example, take the infinite Fibonacci word 2

F = abaababaabaababaababa · · ·

and the property of being a square (concatenation of a word with itself). Then the

corresponding characteristic sequence is

χsq(F) = 000001000100000100000 · · ·

where there is a 1 at position i if and only if i is twice a Fibonacci number and

i ≥ 6 (that is, at positions 6, 10, 16, 26, 42, 68, etc.).

In this contribution, we explore the property of being closed or open.

Definition 2. A finite word is closed if it has length ≤ 1 or it contains a proper

factor that occurs both as a prefix and as a suffix but does not have internal occur-

rences. Otherwise the word is open.

For example, the word aba is closed since the factor a appears only as a prefix

and as a suffix, while the word ab is open since no factor appears only as a prefix

and as a suffix.

The first binary closed words are:

ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abab, abba, baab, baba, bbbb.

1Recall that an infinite word is called purely periodic if it has the form xω, i.e., it is obtained

by concatenating a finite word x with itself infinitely many times; it is called periodic if it has the

form yxω for two finite words x and y; finally, it is called aperiodic if it is not periodic.
2The Fibonacci word F can be defined as the word over the alphabet {a, b} in which the distance

between the n-th b and the n-th a is n, for every n > 0. The name comes from the fact that this

word is intimately related to the well-known sequence of Fibonacci numbers F1 = 1, F2 = 1,

Fn = Fn−1 + Fn−2 for n > 2. For further details, the reader may look at [4] and [14].



In what follows, we call frontier the factor of a closed word that occurs in it

only as a prefix and as a suffix (the frontier of words of length 1 is the empty word

ε). Note that a word cannot have more than one factor that occurs in it only as a

prefix and as a suffix, without internal occurrences. Hence the frontier of a closed

word is unique. Also note that the frontier of a closed word is its longest border.

The notion of closed word is known in the literature also with the name of

periodic-like word [11, 8]. An equivalent notion is that of a complete return to

a factor, as considered in [19]. A complete return to the factor u in a word w is

any factor of w having exactly two occurrences of u, one as a prefix and one as a

suffix. Hence, a word w is closed if and only if it is a complete return to one of

its factors; such a factor is clearly both the longest repeated prefix and the longest

repeated suffix of w (i.e., the frontier of w).

Another related notion is that of privileged word [24, 25, 26, 16]. A word w

is called privileged if it has length ≤ 1 or it has a privileged border that appears

exactly twice in w. Therefore, a privileged word is always closed, but there exist

closed words that are not privileged, e.g. abab, ababab, ababbabab, etc.

2 General Remarks on Open and Closed Words

The following characterizations of closed words follow easily from the definition:

1. the longest repeated prefix (resp. suffix) of w does not have internal occur-

rences in w, i.e., occurs in w only as a prefix and as a suffix;

2. the longest repeated prefix (resp. suffix) of w does not have two occurrences

in w followed (resp. preceded) by different letters;

3. w has a border that does not have internal occurrences in w;

4. the longest border of w does not have internal occurrences in w.

Obviously, the negations of the previous properties characterize open words.

For any letter a in the alphabet and for any integer n, the word an is closed,

an−1 being a factor occurring only as a prefix and as a suffix in it. This observation

can be generalized by considering the exponent of a finite word. Recall that the

period of a word w is the least positive integer p such that wi = wi+p for every

i = 1, . . . , |w| − p. The exponent of the word w is the ratio between the length

and the period of w. So for example, the period of the word abaab is 3, thus its

exponent is 5/3.

We have the following property:

Proposition 3. Any word whose exponent is at least 2 is closed.



3 The Language of Closed Words

There are much more open words than closed words of length n as n grows. In-

deed, for any nonempty word w, there exists at most one letter x such that wx is

closed [12]. Even in the binary case, already at n = 30, closed words are less than

3% of the the total [28].

However, the number of closed words of length n grows exponentially in n.

To see this, it is sufficient to observe that, as a consequence of Proposition 3, the

word ww is closed for any choice of the word w.

More precise bounds may be derived for the number of closed words of each

length. For example, it is known that for every n, there are at least 2n−5

n2 privileged

words [16], and privileged words are closed.

From the point of view of the complexity of the language of closed words in

the Chomsky hierarchy, we have that, as soon as the cardinality of the alphabet Σ

is larger than 1, the language of closed words over Σ is not context-free (and its

subset formed by the privileged words is also non-context-free) [26].

4 Sturmian Words and Rich Words

A deeply studied and particularly interesting class of words is that of Sturmian

words. There exist several equivalent definitions of Sturmian words. One is the

following: An infinite binary word is Sturmian if it is balanced and aperiodic.

Here balanced means that for any two factors u and v of the same length, the

difference between the number of occurrences of each letter in u and v is bounded

by 1. So, for example, a word containing both aaa and bab as factors cannot be

balanced. Equivalently, an infinite word is Sturmian if it contains exactly n + 1

distinct factors of length n for every n ≥ 0. The Fibonacci word is an example of

a Sturmian word.

Among the dozens of equivalent definitions of Sturmian words, there is also

one based on closed words: An infinite word w is Sturmian if and only if for every

of its factors v, there are exactly two closed factors of w whose frontier is v [29].

For example, in the Fibonacci word F, take the factor abaa. The closed factors of

F having abaa as their frontier are abaababaa and abaabaa.

A finite word is called Sturmian if it is a factor of some infinite Sturmian word,

i.e., if it is a balanced binary word.

Every finite Sturmian word contains the largest number of distinct palindromic

factors a word of the same length can contain, that is equal to the length of the

word plus 1 (considering also the empty word). A word (not necessarily binary)

with this property is called rich in palindromes (or, simply, rich). For example,

the Sturmian word abaab has length 5 and indeed contains 6 distinct palindromic



factors (ε, a, b, aa, aba and baab). There exist binary words that are rich but not

Sturmian, e.g. aaabab — these examples also show that a word can be rich in

palindromes even if itself is not a palindrome.

The following characterization of rich words is related to closed words: A

word is rich if and only if every of its closed factors that has a palindromic frontier

is itself a palindrome [19].

Sturmian words can be open or closed, but Sturmian palindromes are always

closed [9]. Actually, something stronger holds: any rich palindrome is closed.

The converse is not true, for example the word w = aaababbaabbabaaa is a

closed palindrome of length 16 but contains only 16 palindromic factors, hence it

is not rich (there do not exist shorter examples).

5 Words with Few Closed Factors

For every length n, there exist words with quadratically (in n) many distinct closed

factors. However, in contrast to the case of palindromic factors, a word of length

n must contain at least n+1 distinct closed factors [2]. A word containing exactly

n + 1 distinct closed factors is called CR-poor. As an example, abca is a CR-poor

word, since it has length 4 and exactly 5 closed factors, namely ε, a, b, c and abca,

whereas the word ababa is not CR-poor since it has length 5 but contains 8 closed

factors: ε, a, b, aba, bab, abab, baba and ababa.

There are some relations between rich words and CR-poor words. For exam-

ple, a palindromic word is rich if and only if all of its palindromic factors are

closed [8], while if a word w has the property that all of its closed factors are

palindromes, then w is a CR-poor word, and it is also rich [2]. Combining the two

results, one has that a word w has the property that its closed factors coincide with

its palindromic factors if and only if w is rich and CR-poor.

A characterization of CR-poor words is the following:

Theorem 4. [2] A word is CR-poor if and only if every of its closed factors has

a frontier that is a power of some letter.

The complexity of CR-poor words, however, is rather weak, in fact they form

a regular language.

6 The Characteristic Sequence of Open/Closed Pre-

fixes

With any finite or infinite word w, one can associate the binary sequence χcl(w)

whose i-th element is 1 if the prefix of length i of w is closed, and 0 if it is open.



So for example, if w = abaaab, then χcl(w) = 101001.

Recall that a word (or a sequence) is called recurrent if each of its factors

occurs infinitely often in it. For an infinite word w, the sequence χcl(w) is not

aperiodic if and only if w is either periodic or not recurrent. In the first case,

χcl(w) ends in 1ω, while in the latter case it ends in 0ω. In all the other cases,

χcl(w) is an aperiodic sequence [12].

As an example, consider the Fibonacci word F. One has

χcl(F) = 10101100111000111110 · · ·

where the lengths of the blocks of consecutive equal symbols form the sequence

of Fibonacci numbers 1, 1, 2, 3, 5, . . .

The structure of the sequence χcl has been characterized for every Sturmian

word [12]. Sturmian words are particularly interesting in this context because of

the following remarkable property:

Theorem 5. [12] Every finite or infinite Sturmian word can be uniquely recon-

structed (up to renaming letters) from its χcl sequence.

This property does not hold in general, for example the words aaba and aabb

are both associated with the characteristic sequence 1100 (and in fact aabb is not

Sturmian).

There is an algorithm running in linear time that reconstructs a Sturmian word

(up to renaming letters) from its χcl sequence [12]. We now describe a simple

linear-time algorithm for computing the χcl sequence of any word.

Recall that the border array B(w) of a word w is the integer array whose i-th

entry is the length of the longest border of the prefix of length i of w. For example,

if w = abcaacab, then B(w) = [0, 0, 0, 1, 1, 0, 1, 2]. We also define the array B′(w)

by B′(w)[i] = max j≤i B(w)[ j].

Proposition 6. Let w be a nonempty word. Then χcl(w)[1] = 1 and for every i > 0,

χcl(w)[i] = B′(w)[i] − B′(w)[i − 1].

As an example, for the word w = abcaacab, we have that B′(w) =

[0, 0, 0, 1, 1, 1, 1, 2], and indeed χcl(w) = 10010001.

Since the border array of a word can be computed in linear time with respect

to its length [23], Proposition 6 gives a linear-time algorithm to compute the χcl

sequence of a word.

7 The Longest Closed Factor Array

The Longest Closed Factor Array [3] of a word w of length n is the integer array

LCw[1 . . . n] such that for every 1 ≤ i ≤ n, LCw[i] = ℓ if and only if ℓ is the



length of the longest closed factor of w starting at position i. For example, for

w = abcaacab, one has LCw = [8, 7, 5, 2, 3, 1, 1, 1].

Note that for every i, LCw[i] is equal to the position of the rightmost 1 in the

χcl array of the suffix of w starting at position i; that is, by Proposition 6, LCw[i]

is equal to the position of the leftmost occurrence of the maximum in the border

array of the suffix of w starting at position i.

For example, the border arrays of the suffixes of w = abcaacab are the follow-

ing (the leftmost occurrence of the maximum is underlined):

B(abcaacab) = [0, 0, 0, 1, 1, 0, 1, 2]

B(bcaacab) = [0, 0, 0, 0, 0, 0, 1]

B(caacab) = [0, 0, 0, 1, 2, 0]

B(aacab) = [0, 1, 0, 1, 0]

B(acab) = [0, 0, 1, 0]

B(cab) = [0, 0, 0]

B(ab) = [0, 0]

B(b) = [0]

and taking the positions of the underlined elements one gets the Longest Closed

Factor Array of w.

However, there are more efficient ways to compute the Longest Closed Factor

Array of a word. It is known that the Longest Closed Factor Array of a word

of length n can be computed in time O(n
√

log n) [3]. It is an open problem

whether it can be computed in linear time (another algorithm exists running in

time O(n
log n

log log n
) [1]).

But the Longest Closed Factor Array also has a combinatorial interest, because

of the following remarkable result:

Theorem 7. [3]. Every word is uniquely determined (up to renaming letters) by

its Longest Closed Factor Array.

It is known that a word of length n over a fixed-size alphabet can be recon-

structed from its Longest Closed Factor Array in time O(n log log n) [3]. Here

again, it is an open problem whether a word can be reconstructed from its Longest

Closed Factor Array in linear time.

8 Closed Length

Since single letters are closed, every word can be factored in closed words. Of

course, for a word of length n there could be a factorization in less than n closed



words. We are interested in the minimum number of closed factors in which a

word can be factored. For example, the word ababc can be factored in three

closed words (aba ·b ·c or a ·bab ·c) but not in two. We call this minimum number

the closed length of the word.

The same approach was previously introduced using palindromes in place of

closed words. The palindromic length of a word is the minimum number of palin-

dromes in which it is possible to factorize that word [18]. Also in this case, the

palindromic length of a word of length n is at most n since single letters are palin-

dromes. As an example, the palindromic length of the word aababb is 3.

The following nice conjecture is still open in general, even if it has been proved

for several classes of infinite words:

Conjecture 8. [18] An infinite word is aperiodic if and only if the palindromic

length of its factors is unbounded.

For example, it is known that the palindromic length of a factor of the Fi-

bonacci word can be arbitrarily large [18]. On the contrary, it can be proved that

the closed length of any Sturmian word is at most two [30]. By the way, for any

infinite Sturmian word w, there exist infinitely many n for which all the factors of

w of length n have palindromic length two [5].

Very recently, it has been proved that the palindromic length of a word can be

computed in linear time with respect to the length of the word [6]. We conclude

with the following problem: Is it possible to compute the closed length of a word

of length n in time O(n)?
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