
The Concurrency Column
by

Nobuko Yoshida

Department of Computing
Imperial College London

180 Queen’s Gate, London, SW7 2AZ
n.yoshida@imperial.ac.uk, http://mrg.doc.ic.ac.uk/

http://www.doc.ic.ac.uk/
http://www.doc.ic.ac.uk/
 n.yoshida@imperial.ac.uk
http://mrg.doc.ic.ac.uk/

Concurrent Structures in Game Semantics∗

Simon Castellan
Imperial College London, UK
s.castellan@imperial.ac.uk

Abstract

Game semantics is a powerful tool to design intensional denotational
semantics of complex programming languages, leading to notions of syntax-
free normal forms and fully abstract models. In game semantics, programs
become strategies, ie. set of plays, on a game given by their type.

Traditionally, game semantics represents plays as sequences of moves.
This representation forces to reduce concurrency to interleavings. In this
paper, we develop a framework of game semantics based on event struc-
tures – a partial order representation of concurrency, extending the work of
Rideau and Winskel [19]. This causal representation allows to retain more
intensional behaviour on concurrent programs. We demonstrate the benefits
of this approach by developing a notion of concurrent and nondeterministic
innocence, which an open problem despite the existence of many game se-
mantics models of concurrent languages. We show that, our innocence along
with an extension of well-bracketing, can capture the essence of parallel and
nondeterministic computation.

1 Introduction
Context Game semantics in its modern incarnation arose in the 90s to solve the
famous problem of full abstraction for PCF: trying to characterise, by mathemat-
ical means, the observational behaviour of PCF, a pure functional programming
language. Game semantics interprets programs by strategies, representing the
possible behaviours of the program against an expressive class of context [14, 20].
However, the interesting contribution of these game semantics models turned out
to be, not the full abstraction result in itself (obtained through an undecidable quo-
tient) but a key ingredient in the proof, finite definability. Game semantics for PCF
allows to describe faithfully programs up to reduction in a syntax-free manner.

∗This work has been supported by EPSRC EP/K034413/1 and EP/K011715/1.

s.castellan@imperial.ac.uk

Game semantics was later extended to programming languages with effects
such as references [1] and control operators [16], which correspond to relaxing
conditions on strategies: references correspond to relaxing innocence and control
operators relaxing well-bracketing. In the first case, we obtain a full abstraction
result without having to resort to an undecidable quotient, illustrating the fact that
observational equivalence of programming languages with effects can be easier to
understand than those of pure functional programming languages.

Game semantics was then extended to nondeterminism and concurrency, even
though innocence was never lifted to those settings, making a result of finite de-
finability and full abstraction for pure extensions of PCF to nondeterminism and
parallelism impossible (apart from the recent work by Tsukada and Ong for se-
quential nondeterminism [21]).

In addition, the interleaving nature of these models makes it harder to rea-
son on strategies and model complex behaviours such as reorderings occurring in
weak memory models. Finally, the interleaving representation is not adapted for
efficient verification. For all these reasons, a theory of concurrent game semantics
based on a truly concurrent model is needed.

Contribution and outline of the paper Section 2 introduces game semantics
as a way to extend operational semantics to open terms. Section 3 introduces
the ideas of a game semantics based on event structures [19], on which it builds to
improve the representation of nondeterminism in order to cope with wilder notions
of convergences. Section 4 explains how to deal with non linearity, the previous
model being linear, by the addition of symmetry to the model. Section 5 discusses
innocence and well-bracketing in this framework, and how together they allow us
to prove finite definability for a parallel and nondeterministic extension of PCF
(up to may equivalence). Finally we conclude in Section 6.

Origin of the results The results presented here originate from the author’s
Ph.D “Concurrent structures in game semantics” [4]. The original model on event
structures is due to Rideau and Winskel [19, 5]. The extension to symmetry, along
with the notions of innocence and well-bracketing and the intensional full abstrac-
tion in this new setting is joint work with Pierre Clairambault and Glynn Winskel.

Related work For more detailed related work section, please see the author’s
Ph.D [4]. The first approach to truly concurrent games semantics dates back to
Abramsky and Melliès [2], and their model of MALL, using closure operators.
Melliès later worked on asynchronous games. Based on this approach, Melliès
and Mimram [18] developed a preliminary notion of concurrent innocence (in a
deterministic setting) which is not intrinsic to a strategy but depends on the type.

Hirschowitz and collaborators [13, 9] use presheaves over plays represented
as multigraphs to give a concurrent game semantics to message-passing program-
ming languages. However their work does not support composition. They pro-
vide a notion of innocence in terms of a sheaf condition which was later recast
by Tsukada and Ong [21] in the λ-calculus to give a notion of nondeterministic
(sequential) innocence.

In parallel, work on partial order representations of strategies in ludics was
carried out by Curien, Faggian, Maurel, and Piccolo [10, 8, 11] which inspired
[19], the starting point of the thesis.

2 An introduction to game semantics

We now provide a gentle introduction to game semantics using arithmetic expres-
sions as a running example.

Operational semantics. An informal semantics of arithmetic expressions (eg.
“3+(3+5)”) could be “perform the leftmost operation between two syntactic num-
bers and continue until only a single number is left”. This intuition naturally leads
to an operational semantics. In this setting, we would have 3+(3+5)→ 3+8→ 11,
and 11 is the semantics of “3 + (3 + 5)”. We write J3 + (3 + 5)K = 11.

Variable and functions. Consider now arithmetic expressions that can contain
variables: “x + 3” becomes a valid expression e(x). Our operational semantics
gets stuck now: “x + 3” is not a number, and yet there are no operations between
syntactic numbers to perform. It seems natural to consider that the semantics of
“x + 3” is the function mapping a number n to the number n + 3.

However, to go from an arbitrary expression e to the corresponding function,
operational semantics cannot really be extended. A solution would be to say that
an expression e(x) has meaning n 7→ Je(n)K where n is the mathematical expres-
sion reduced to a number whose value is that of n.

Doing so, we lost the operational flavour: the evaluation of variables is in-
visible in the semantics. In particular, the expressions “2 × x” and “x + x” both
denote the function that maps a number to its double, yet “x + x” has two occur-
rences of the variable x whereas “2 × x” has only one. This loss of intensional
information can cause problems when moving to a richer setting, for instance to
evaluate expressions e(x) where an occurrence of x yields the result of a coin toss
(0 or 1). In this case, e(x) := “2× x′′ always evaluates to an even number whereas
e′(x) := “x + x′′ may not, as x could evaluate once to zero, and once to one.

Program/Context dialogue. To account operationally for variables, the opera-
tional semantics needs to be updated. Previously, the relation → only described
steps of internal computation. We wish to update this vision to allow the context
(or the environment) to communicate with the program, in order to provide it with
values for the variables: the expression now exchanges messages with its context.
A possible execution of “x + 2” is now:

x + 2
q+

x
−→ [] + 2

2−
−→ 2 + 2 −→ 4

Some steps are now labelled: they denote the messages sent or received by the
program during the step. The polarity in superscript indicates whether the message
is sent (+) or received (−) by the program. The first step, labelled q+

x , is a question
to the context: the expression asks the value for x. The expression now awaits an
answer from the context, symbolised by the placeholder []. Then, in a second step,
the program receives an answer: this occurrence is equal to 2. The placeholder
is replaced with the value. At this point, the result can be computed without
communication with the context. The expression “x + 2” has many possible such
executions as the context is free to choose the answer to the question q+

x .
This solves the problem shown earlier, as “x + x” has the following execution:

x + x
q+

x
−→ [] + x

0−
−→ 0 + x

q+
x
−→ 0 + []

1−
−→ 0 + 1→ 1.

If we forget the intermediate programs and internal steps, and simply consider
the sequence of messages exchanged, we get: q+

x · 0
− · q+

x · 1
−. To remember the

final value of the program, we add an extra message at the end where the program
signals to the context its result, and also an initial message from the environment
to start the computation, which gives the following dialogue:

q− · q+
x · 0

− · q+
x · 1

− · 1+.

Intuitively, a particular dialogue captures the interaction of a particular pro-
gram against a particular context. The semantics of an expression now becomes
the set of dialogues where the program interacts against a particular context, eg.

Jx + xK = {q− · q+
x · n

− · q+
x · m

− · (n + m)+ | n,m ∈ N}

Game semantics and composition. From this idea of interpreting programs by
dialogues, game semantics has been used to interpret a variety of programming
languages. The interpretation supports programs with free variables. In game
semantics, the previous diagram is written as follows:

(x : N) ⇒ N

q−

q+

0−

q+

1−

1+

Time flows from top to bottom; the right column (result component) denotes mes-
sages about the result and the left column messages about x (x component).

In game semantics, programs become sets of valid dialogues, defined as plays
of a 2-player (Player/Opponent) game. Moves of the game represent the mes-
sages the program can send or receive (depending on the polarity). Such sets of
dialogues are strategies explaining how Player reacts to Opponent moves.

This representation makes it easy to represent composition. Consider an ex-
pression e(x) (say x + x) in which another expression e′(y) (say 3 × y) is to be
plugged for x, resulting in an expression e(e′(y)) (3× y + 3× y). We want to derive
the dialogues of Je(e′(y))K from those of Je′(y)K and Je(x)K. First, we form inter-
action dialogues where e(x) is run so that messages sent to the x component are
forwarded to e′(y) on its result component and conversely:

(y : N)
e′(y)
==⇒ N (x : N)

e(x)
==⇒ N

q−

q− q+

q+

1−

3+ 3−

q− q+

q+

2−

6+ 6−

9+

The result component of e′(y) plays against the x component of e(x). The
external context can only communicate on the y component of e′(y) and the result

component of e(x). Hiding the communication in the middle between e(x) and
e′(y), we have the following dialogue:

(y : N) ⇒ N
q−

q+

1−

q+

2−

9+

which is a valid dialogue in the semantics of 3 × y + 3 × y = e(e′(y)), as expected.
This shift from extensional models (representing open terms by functions) to

interactive models (representing open terms by dialogues) was initiated by the
question of capturing observational equivalence of pure functional programs.

Compositionality, and observational equivalence. The previous interpretation
in terms of dialogues is compositional. As seen above, dialogues can be composed
via interaction, hence the dialogues for a large expression can be obtained from
dialogues of its subparts. This property is interesting from a practical point of view
as it makes the semantics easier to compute for a large code base. Since it can be
done incrementally, if a little part of the code changes, it is easier to recompute
the total semantics since the semantics of the rest need not be recomputed.

However, this property is also interesting from a theoretical standpoint. If two
programs have the same set of dialogues, then the programs will have the same
behaviour in any context: they are observationally equivalent. This allows to
substitute one for the other in a larger code base without breaking things. The
semantics gives a sound tool to reason about observational equivalence.

When the converse holds, that is when two programs are observationally equiv-
alent, then they have the same semantics (in our case, the same dialogues), then
the interpretation is fully-abstract: the semantics provides a complete tool to rea-
son about program equivalence.

Concurrency and alternation. So far, the model described is sequential: op-
erations are done in a linear order, one after the other. What happens if we want
to represent parallel evaluation? For instance x + y could be run by asking the
value for x and y in parallel, waiting for both answers and then returning the final
value. However, currently our dialogues are all alternating. Players (the program
or the context) take turns in sending messages. To be able to represent dialogues

exhibiting concurrency, we need to relax this assumption and authorise the Player
to send a message to the context before receiving an answer to the previous mes-
sage. For instance, the following diagrams depicts dialogues for the expression
x + y that feature parallelism:

(x : N) × (y : N) ⇒ N (x : N) × (y : N) ⇒ N

q− q−

q+ q+

q+ q+

3− 3−

1− 1−

4+ 4+

Here x + y interacts against a context that supplies y = 3 and x = 1. The
questions are asked in a non sequential way: both questions are actually sent
before receiving any answers. However, the dialogues differ by the order in which
the questions are sent (left: x then y; right: y then x). As a result, such dialogues
implicitly feature a scheduler resolving the parallelism of the program. Hence a
dialogue now represents the interaction of a particular program against a particular
context, scheduled in a particular way.

Causal representation of concurrency. This representation of concurrency by
linear dialogues is not very satisfactory as dialogues need to contain scheduling
information. This leads to a combinatorial explosion since concurrency is essen-
tially represented by interleavings: the number of dialogues used to represent a
particular program grows exponentially with the number of parallel computations.
Moreover, it is also not satisfactory from a theoretical standpoint: the scheduling
information obfuscates the intention of the program and makes it hard for the
representation to scale to richer programming settings such as probabilistic pro-
gramming. It also makes the correspondence between shapes of dialogues and
programming features difficult to generalise.

To work around this problem, it is necessary to take the question of the math-
ematical representation of concurrency seriously. Insisting to observe the order in
which the parallel requests are made, forces the scheduler to also be observable.
To relax this assumption, it becomes necessary to come to terms with the impos-
sibility of observing the order in which some messages are sent (or received). In
concrete terms, this means moving away from chronology to causality. Dialogues
should not be totally ordered anymore; but only partially-ordered. Two messages
are concurrent if they are not comparable for the partial order, ie. we do not know

in which order they appear. The two previous linear dialogues can be subsumed
by a single partially-ordered diagram:

(x : N) × (y : N) ⇒ N

q−

q+ q+

1− 3−

4+

Such approaches are often called truly concurrent as they represent concur-
rency as a primitive notion, distinct from the interleaving of (sequential) traces.

Nondeterminism. One last challenge we would like to address is nondetermin-
ism. A program is nondeterministic when it may evaluate to more than one re-
sult. Typical examples of nondeterministic programs include primitives to gen-
erate pseudo-random numbers that are found in most programming languages.1

Nondeterminism is also a natural byproduct of shared memory concurrency as
races between memory accesses create nondeterministic behaviours.

Suppose that in our language of expressions, we add the construct choice
which evaluates to zero or to one. The semantics of choice in terms of dialogues
is very easy to define: it contains the following two dialogues:

N N

q− q−

0+ 1+

However this representation suffers from several drawbacks. One major draw-
backs is that it may hide the nondeterministic branching point, information which
is useful for many theoretical developments. In the thesis, we use event structures
[22] which represent nondeterminism via conflict (more details later on):

1In practice most pseudo-random generators are deterministic, but the nondeterminism is ap-
parent, in the sense that the result often depends on parameters outside the control of the program-
mer, such as the time of execution for example.

N

q−

0+ 1+

3 Game semantics on event structures
This section presents the model of Rideau and Winskel [19] for concurrent and
(angelic) nondeterministic game semantics.

3.1 Event structures
In Section 2, we presented briefly partially-ordered dialogues and event structures
as a tool to represent concurrent programs. We now make those observations
formal and introduce the mathematical setting.

Causality As a first example of concurrent strategies, consider the join prim-
itive that spawns two calculations in parallel and terminates when both have ter-
minated. Such a primitive would have the type proc × proc ⇒ proc where proc
is the type of commands, that is programs performing computational effects but
returning no value of interest. It could be described by the following dialogue:

a : proc × b : proc ⇒ join a b : proc
run−

run+ run+

done− done−

done+

The previous examples of Section 1 played on natural numbers where the al-
lowed moves where q (question for the value) and n (answer to the question).
Since on proc there are no values to return, the moves are here run (beginning of
the computation) and done (end of the computation).

This diagram represents now a partial order which is generated by the transi-
tive closure of _ (immediate causal dependency). Note the inversion of polarity
between the two sides of ⇒. This inversion was already present in the previous
section and is due to join acting as the environment for a and b. When the context

runs join a b, a and b are run immediately, in any order as the two events run+

are incomparable. When both process terminate (issuing a done−) the program
signals that it has terminated.

In this context, a valid (partial) execution is a set of events which is such that
if an event e occurs, then any of its immediate causes e′ _ e must appear. In other
words, an execution is a downclosed subset of events.

Nondeterminism Most concurrent programming features induce nondetermin-
ism: be it shared memory concurrency (à la Concurrent Idealized Algol [3]) or
channels (à la CCS [17]). To accommodate nondeterminism, causal dependency
is however not enough, as nondeterminism implies that two events might be in-
compatible: for instance the outcomes of a nondeterministic coin-tossing. Non-
determinism is usually modelled using sets of executions: in our case, sets of
partial-orders. However, this forgets nondeterministic branching points, and iden-
tifies the terms M1 = λ f . f tt + f ff and M2 = λ f . f (tt + ff) (where + is nondeter-
ministic choice) which are not must-equivalent. To solve this issue, one solution
is to add a notion of conflict to causality to know which events can occur in the
same execution.

Definition 3.1 (Event structures (with general conflict)). An event structure is a
triple (E,≤,ConE) where (E,≤E) is a partial order of events and ConE ⊆ P f (E)
is a set of finite consistent sets of E subject to the following axioms:

(1) For every e ∈ E, the set [e] = {e′ ∈ E | e′ ≤ e} is finite,

(2) For all Y ∈ ConE and X ⊆ Y then X ∈ ConE,

(3) For all e ∈ E, {e} ∈ ConE,

(4) If X is consistent, so is its downclosure

[X]E = {e′ ∈ E | e′ ≤ e for some e ∈ X}.

In particular, if X ∈ ConE and e ≤ e′ ∈ X then X∪{e} ∈ ConE. Our conflict here
is general (as opposed to binary) as it makes the mathematical theory smoother.

Notations on event structures Given an event structure E, write e _E e′ for
immediate causality defined as e < e′ with no events in between. If e ≤E e′,
we say that e′ causally depend on e. If e _E e′, we say that e′ immediately
causally depends on e, or that there is a causal link from e to e′. Given e ∈ E,
write [e) = [e] \ {e}. Two events e, e′ ∈ E are concurrent when they are in-
comparable for the causal order and {e, e′} ∈ ConE. A finite configuration is a

consistent finite set of events of E which is downclosed for ≤. Finite configura-
tions (abbreviated as configurations in the rest) represent partial executions. The
notion of configurations is crucial when reasoning on event structures. The set
of finite configurations of E will be written C (E). Configurations are naturally
ordered by inclusion, and any configuration inherits a partial order from E. A
configuration x ∈ C (E) extends by e ∈ E (written x

e
−−⊂ x ∪ {e}) when e < x and

x ∪ {e} ∈ C (E). In that case, e is called an extension of x. Two extensions of e, e′

of x are compatible when x ∪ {e, e′} ∈ C (E), incompatible otherwise. In that
case, we say that e and e′ are a minimal conflict in the context x (or involved in a
minimal conflict). In the general case, it depends on the context x, but when the
event structure has binary conflict, it is independent from x and coincide with the
notion of minimal conflict introduced above.

A consequence of the axioms of event structures is that for every e ∈ E, the
set [e] is a configuration representing the causal history of e. Such configura-
tions are called prime configurations, or equivalently a prime configuration is a
configuration with a top element. Remark that, consequently [e) is also always a
configuration. Given a configuration x of an event structure E, a covering chain
is a sequence ∅ = x0−⊂x1−⊂. . .−⊂xn = x of configurations leading to x.

Drawing event structures Pictures will only feature event structures with bi-
nary conflict and represent immediate causality (_) and minimal conflict ().

Example 3.2. The interpretation of the nondeterministic sum of processes can be
represented by the event structure:

a : proc, b : proc ` sum a b : proc
run−

run+ run+

done− done−

done+ done+

The difference with the join operator is the conflict between the two occur-
rences of run+ that ensures the presence of only one of the run+ in a single ex-
ecution. The conflict propagates upwards: the causal future of these events are
also in conflict. In this example, the names run, done come from an (implicit) la-
belling of events by moves of a game. Such labelled event structures will be used
to represent strategies on games.

3.2 Games and strategies
We now define a notion of games and strategies on them to make formal the dia-
grams of the previous section.

Games as event structures with polarities In our setting, games will simply
be event structures where each event carries a polarity:

Definition 3.3 (Game). A game is an event structure E along with a polarity
labelling polE : E → {+,−}.

Event structures with polarities will be drawn as event structures, where polar-
ity is indicated in superscript of events. We will also make use of the notation “let
a+ ∈ A” to introduce a positive event of a game A (similarly “let a− ∈ A” to intro-
duce a negative event). We will often use the term play to refer to a configuration
of a game by analogy with the standard game-theoretic terminology.

A possible game for booleans B is as follows:

q−

tt+ ff+

The initial question denotes the call from the environment and the two positive
moves denote the possible return values of the program.

Rules of a game are specified via its causal order and consistent sets:

• causal order: a move cannot be played before another is played,

• consistency: some moves cannot occur together (e.g., for booleans, the
moves corresponding to true and false cannot be played together).

Operation on games To build games, we will make use of two fundamental
operations on games: duality and parallel composition. Given a game A, the dual
game A⊥ is simply obtained by exchanging polarities, leaving the event structure
untouched. The simple parallel composition, or more briefly parallel composi-
tion, of A and B, denoted by A ‖ B is defined as follows:

Definition 3.4 (Simple parallel composition). Let A0 and A1 be event structures.
The event structure A0 ‖ A1 is defined as follows:

Events {0} × A0 ∪ {1} × A1

Causality (i, a) ≤A0‖A1 (j, a′) iff i = j and a ≤Ai a′

Consistency X ∈ ConA0‖A1 iff {a | (i, a) ∈ X} ∈ ConAi for i ∈ {0, 1}

Moreover, any choice of polarities on A0 and A1 induce a canonical choice of
polarities on A0 ‖ A1 via polA0‖A1

(i, a) = polAi
(a).

Parallel composition will be used to interpret product types. In A ‖ B, A and
B evolve concurrently with no interference (no causality or conflict). As a result,
the following monotonic map is an order-isomorphism:

· ‖ · : C (A) × C (B) → C (A ‖ B)
(x, y) 7→ x ‖ y = {0} × x ∪ {1} × y

join and sum play on the game proc⊥ ‖ proc⊥ ‖ proc:

proc⊥ ‖ proc⊥ ‖ proc
run+ run+ run−

done− done− done+

Strategies The strategies sketched so far can be viewed as a causal and conflict
enrichment of the game. Such strategies on a game A can be represented as event
structures (S ,≤S ,ConS) where S ⊆ A, ≤S⊇≤A (causal enrichment) and ConS ⊆

ConA (conflict enrichment). This captures the requirement that strategies must
respect the rules of the game A, that is:

• a move can only be issued after its causal dependencies,

• consistent sets of moves for strategies are also consistent in the game.

Example 3.5. Boolean negation can be represented as a strategy on B⊥ ‖ B.

B⊥ ‖ B

q+ q−

tt− ff− tt+ ff+

Note that the arrows between the question and the answers on B (the right compo-
nent) are induced by transitivity, and the inconsistency between the positive true
and false is also induced by the inconsistency on their negative counterpart.

However, how to define the boolean function that evaluates its argument and
then returns true in both cases? Two candidate diagrams come to mind:

B⊥ ‖ B B⊥ ‖ B

q+ q− q+ q−

tt− ff− tt+ tt− ff− tt+ tt+

The left diagram has one occurrence of tt+ that depends on the two possible
argument values; this is not valid because the two Opponent moves are in con-
flict: the downclosure of {tt+} is not consistent. The second solution describes a
valid event structure but has two tt moves: it is not a subset of the game anymore.
Note that the sum strategy given in Example 3.2 is also not a proper subset of the
game proc⊥ ‖ proc⊥ ‖ proc as done+ has two occurrences. As a result, to ac-
count for these behaviours, strategies should not be strict subsets of the game, but
embeddings. The notion of embedding is formalised via maps of event structures:

Definition 3.6 (Maps of event structures). A (total) map of event structures from
E to F is a function on events f : E → F such that:

• the direct image of a configuration of E is a configuration of F,

• f is injective on consistent sets.

Event structures and their (total) maps form a category E.

Strategies will be certain maps of event structures satisfying two crucial prop-
erties: courtesy (or innocence in [19]) and receptivity:

Definition 3.7. A strategy on a game A is a map of event structures σ : S → A
satisfying:

Courtesy If s _S s′ and σs is positive or σs′ negative, then σs _A σs′

Receptivity For all x ∈ C (S) and σx
a
−−⊂ where the event a is negative, then

there exists a unique s ∈ S with σs = a and x
s
−−⊂ .

The event structure S represents the behaviour of the strategy and σ indicates
how this embeds into the game. In that case, we write σ : A to denote that σ is
a strategy on A. The first axiom of maps of event structures makes sure that the
plays of S are valid according to A whereas the second one is a linearity condition
ensuring that in a play, events of the game occur at most once. This linearity
condition will be crucial to define interaction of strategies in Section 3.3. Courtesy
and receptivity are necessary for strategies to be invariant by composition under
copycat (the identity in the world of strategies), and as a result necessary to obtain

a category of strategies [19]. If σ : S → A is a strategy, we will sometimes write
C (σ) for C (S).

According to this definition, strategies σ : S → A appear as certain event
structures labelled by events of the game. As a consequence, events of a strategy
(events of S) naturally carry a polarity given by the labelling polA ◦σ, and S can
be regarded as an event structure with polarities.

We now move on to a very important example of strategy.

The copycat strategy In the game A⊥ ‖ A, each move of A appears twice, with
a different polarity. A natural strategy on this game is as follows: to play the
positive occurrence of a ∈ A, we wait for its negative counterpart on the other
side. This describes the copycat strategy. It is implemented by adding a causal
link from the negative occurrence of every a ∈ A to its positive occurrence.

Definition 3.8 (Copycat strategy). Let A be a game. The copycat strategy cc A on
A⊥ ‖ A is defined as the identity-on-events map:

cc A : CCA → A⊥ ‖ A,

where CCA is given by:

Events A⊥ ‖ A

Causality Transitive closure of

≤A⊥‖A ∪{((i, a), (1 − i, a)) | (i, a) negative in A⊥ ‖ A}

Consistency X ∈ ConCCA iff [X]CCA ∈ ConA⊥‖A.

As an example, the copycat strategy on the game B is given by:

B⊥ ‖ B
q+ q−

tt− ff− tt+ ff+

3.3 Interaction of strategies
Given a strategy σ : A and a strategy τ : A⊥, a natural operation is to have
them play against each other. This is represented mathematically by the notion
of interaction. The concrete definition of the interaction is intricate but enjoys
a simple universal property. Indeed, the category E (without polarities) has pull-
backs, which allows to define the interaction of two strategies as the pullback of
the underlying maps.

Proposition 3.9. Let A be a game and σ : S → A and τ : T → A⊥ be strategies.
There exists an event structure S ∧T and maps of event structures Π1 : S ∧T → S
and Π2 : S ∧ T → T such that the following diagram is a pullback in E:

S ∧ TΠ1
yy

Π2
%%

S
σ %%

T
τyyA

In other terms, for every maps α : X → S and β : X → T such that σ ◦ α =

τ ◦ β, there exists a unique map 〈α, β〉 : X → S ∧ T with Π1 ◦ 〈α, β〉 = α and
Π2 ◦ 〈α, β〉 = β.

The reader can find the detailed construction of S ∧ T in [5, 4], along with
examples, that we omit for lack of space.

3.4 A category of strategies
To get a category of strategies and model programming languages, we need to
define a notion of strategy from a game A to a game B. Following Joyal [15],
a strategy from A to B will be a strategy on the compound game A⊥ ‖ B. The
notation σ : A to denote a strategy on a game A is generalised to σ : A + //B to
denote a strategy from a game A to a game B. Copycat on A becomes a strategy
from A to itself – a candidate for an identity strategy.

How to compose a strategy from A to B and a strategy from B to C to get a
strategy from A to C? One plays on A⊥ ‖ B, the other on B⊥ ‖ C, and the desired
result on A⊥ ‖ C, so it is not easily described as a closed interaction. To have
them interact on B while the parts on A and C are left untouched, we build two
strategies on A ‖ B ‖ C and take their interaction.

Definition 3.10 (Open interaction). Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C be
strategies. The maps σ ‖ C⊥ : S ‖ C⊥ → A⊥ ‖ B ‖ C⊥ and A ‖ T : A ‖ T → A ‖
B⊥ ‖ C have dual codomains.

The open interaction of σ and τ is their interaction:

τ ? σ = (σ ‖ C⊥) ∧ (A ‖ τ) : T ? S → A ‖ B ‖ C.

However, τ ? σ is not a strategy on A⊥ ‖ C as one would like, because of the
events “in the middle”, projected to B. The solution is to simply hide those events.

Hiding Hiding is performed through an operation called the projection of events
structures. It removes some events deemed internal, and propagates causal de-
pendencies and conflicts. The internal events are thought of as occurring in the
background, any time after their visible dependencies occur.

Definition 3.11 (Projection of event structures). Let E be an event structure and
V ⊆ E a subset of events (an event in V is called visible). The projection of E to V
(written E ↓ V) is the event structure which has V has set of events, and causality
and consistency is inherited from E.

Definition 3.12. Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C. Remember that their
interaction is given by τ ? σ : T ? S → A ‖ B ‖ C. An event e ∈ τ ? σ is visible
when (τ?σ)(e) < B (which means that (τ?σ)(e) is not in the B component of the
disjoint union A ‖ B ‖ C). Writing V for the set of visible events, T � S is defined
as (T ? S) ↓ V and τ � σ : T � S → A⊥ ‖ C as the restriction of τ ? σ.

The composition τ � σ is also courteous and receptive, hence it is a strategy.

Example 3.13 (Negation and nondeterministic choice). Remember the negation
strategy neg : B + //B and the nondeterministic boolean choice:

neg : B⊥ ‖ B choice : B
q+ q− q−

tt− ff− tt+ ff+ tt+ ff+

Their interaction gives (with A = ∅ – the empty game, B = B and C = B):

neg ? choice : B?
‖ B

q? q−

tt? ff? tt+ ff+

The left B – the middle of the interaction – is decorated with a star to indicate that
polarities are meaningless there (since the two strategies do not agree).

After hiding, we get back the nondeterministic boolean as expected:

neg � choice : B
q−

tt+ ff+

In what sense neg � choice and choice are the same strategy? They do
not have exactly the same events (as events of neg � choice are certain secured
bijections), but their underlying event structures are isomorphic.

A category up to isomorphism The set S of events of a strategy can be seen
as names, which σ labels with moves from the game. The exact identity of those
names does not matter, and composition heavily modifies these names. In partic-
ular cc A � σ is never equal to σ because the names do not match.

As a result, the natural equality of strategies is isomorphism:

Definition 3.14 (Isomorphism of strategies). Let σ : S → A and τ : T → A be
strategies. An isomorphism between σ and τ is an isomorphism of event struc-
tures ϕ : S � T commuting with the action on the game given by σ and τ (ie.
τ ◦ ϕ = σ). If two strategies σ and τ are isomorphic, we write σ � τ.

Moreover, most categorical laws will not hold on the nose, only up to isomor-
phism. Fortunately, isomorphism is a congruence:

Lemma 3.15 (Isomorphism is a congruence). For σ,σ′ : A + //B and τ, τ′ : B + //C
such that σ � σ′ and τ � τ′, then τ′ � σ′ � τ � σ.

Theorem 3.16 ([5]). Games and strategies up to isomorphism form a compact
closed category.

The structure before quotient can be proven to be a bicategory [5].

4 Symmetry and replication
In this category, we can interpret a wide range of nondeterministic and concurrent
processes. However, the model has a strong limitation. Due to the local injectiv-
ity of maps of event structures, a strategy can only play a move of the game at
most once in a configuration. Since moves represent in particular variables, this
restricts the expressivity of languages that can be interpreted in the model to affine
languages (languages where a variable is used at most once).

To overcome this issue, we follow the methodology of Abramsky, Jagadeesan
and Malacaria [20]: we represent nonlinear strategies on a game A by linear strate-
gies on an expanded game !A. In this section, we outline the development culmi-
nating into a cartesian-closed category, laying a strong foundation to interpret
complex concurrent programming languages.

4.1 Move duplication
First, we have to restrict the class of games we are looking at – we restrict to the
standard arenas, rephrased in terms of partial orders.

Definition 4.1. An arena is a countable game satisfying

Conflict-free All finite sets are consistent.

Forest If a1, a2 ≤ a ∈ A, then either a1 ≤ a2 or a2 ≤ a1.

Alternation If a1 _ a2, then pol(a1) , pol(a2).

For instance, the arena B for booleans is as follows:

q−

tt+ ff+

On these very simple games, we can define an operation of deep duplication:

Definition 4.2. Let A be an arena. Define the arena !A as follows:

• Events: index functions (a, α) on A

• Causality: (a, α) ≤!A (a′, α′) whenever a ≤A a′ and α′ �[a]= α.

• Polarities: pol!A(a, α) = polA(a).

Every initial move of A is duplicated infinitely many times. Deeper moves of A
are duplicated according to their depth in the tree. As a result, a strategy on !A can
play moves of A as many times as it wants. However, isomorphism of strategies
becomes now too fine-grained an equivalence. Indeed it distinguishes between
strategies which play the same positive moves with different copy indices: up
to isomorphism, there are infinitely many distinct strategies corresponding to the
same boolean. To solve this issue, we need to relax the equivalence on strategies.
A bijection θ : x ' y between configuration of !A is a symmetry when it is an
order isomorphism which preserves the projection to A: lbl(θa) = lbl a where
lbl : !A→ A is the obvious map forgetting copy indices.

To identify strategies up to copy indices, we relax isomorphism of strategies
into weak isomorphism:

Definition 4.3 (Weak isomorphism). Two strategies σ : S → !A and τ : T → !A
are weakly isomorphic when there exists an isomorphism ϕ : S � T such that for
all x ∈ C (S), the bijection σx ' τ(ϕx) induced by local injectivity is a symmetry.

Note that ϕ is an isomorphism when the bijections are all identities. However,
this is not enough to ensure compositionality.

4.2 Uniformity and event structures with symmetry
Weak isomorphism is however not a congruence. Indeed, since a strategy is al-
lowed to behave differently depending on the indices Opponent chooses, some
strategies can distinguish two weakly isomorphic strategies. Such strategies are
not uniform. We express uniformity in our setting through the notion of symmetry.

Event structures with symmetry Two configurations of a uniform strategy dif-
fering by Opponent copy indices should have isomorphic futures. To formalise
this, we use the notion of event structure with symmetry [23]:

Definition 4.4. Let A be an event structure and Ã be a set of bijections between
configurations of A. The family Ã is an isomorphism family on A if it satisfies the
following properties:

• (Groupoid) The set Ã contains all identity bijections, and is stable under
composition and inverse.

• (Restriction) For every bijection θ : x ' y ∈ Ã and x′ ∈ C (A) such that
x′ ⊆ x, then the restriction θ � x′ of θ to x′ is in Ã. In particular, θ x′ ∈ C (A).

• (Extension) For every bijection θ : x ' y ∈ Ã and every extension x ⊆
x′ ∈ C (A), there exists a (non-necessarily unique) y ⊆ y′ ∈ C (A) and an
extension θ ⊆ θ′ such that θ′ : x′ ' y′ ∈ Ã.

In this case the pair A = (A, Ã) is called an event structure with symmetry
(ess). We will use S,T ,A, . . . to range over event structures with symmetry.

Note that the set of symmetries on !A is an example of isomorphism family,
as a result !A can be naturally regarded as an event structure with symmetry. Two
configurations x, y of an event structure with symmetry A such that there exists
θ : x � y ∈ Ã are symmetric. A map of event structures with symmetry
f : A → B is a map f : A → B satisfying furthermore that for all θ ∈ Ã,
f θ := {(f a, f a′) | (a, a′) ∈ θ} ∈ B̃.

We have all the ingredients to define our notion of uniform strategies:

Definition 4.5. Let A be an arena. A ∼-strategy on A is a map of event structures
with symmetry S → !A satisfying:

Strategy The underlying map S → A is a strategy

∼-receptivity If θ ∈ S̃ is such that σθ can be extended by (a−, a′−) to ϕ′ ∈ !̃A,
then there exists a (necessarily unique) θ ⊆ θ′ with σθ′ = ϕ′

Thin If θ : x � y ∈ S̃ is the identity on negative moves, then it is the identity.

The second condition ensures that the isomorphism family S̃ is not trivial. It
requires the family to contain permutations of Opponent indices of moves reached
by the strategy. The third condition is there to ensure that symmetric configura-
tions have indeed isomorphic futures – as in general, event structures with sym-
metry only guarantee a bisimulation between futures of symmetric configurations.
Its name comes from the fact that it forces strategies to choose deterministically a
single positive index copy as opposed to saturated strategies from [6] where the
index copy is picked non-deterministically.

Interaction and composition of strategies need to be updated to take symmetry
into account – a subtle matter that we do not detail here. However, on ∼-strategies,
weak isomorphism becomes a congruence:

Theorem 4.6 ([7]). If σ,σ′ are ∼-strategies on A⊥ ‖ B which are weakly isomor-
phic, then so are τ � σ and τ � σ′ for any composable ∼-strategy τ.

The proof of this theorem relies on a 2-dimensional universal property of the
interaction, that of bipullback.

As a result, we get a category of arenas and ∼-strategies on them. However,
this category is not even cartesian! The natural candidate for products fails sur-
jective pairing (the equation σ = 〈σ ◦ π1, σ ◦ π2〉).

The category CHO The natural candidate for the product arena of A and B is
simply A ‖ B. A recurrent problem in game semantics is that without restrictions,
there are more strategies on A ‖ B than pairs of strategies on A and B. A strategy
σ on B ‖ B – representing a pair of booleans – can have a complex behaviour:
eg. the first component can return only after the second one has been evaluated:
π2 σ and π1 σ converges but not π1 σ and π2 σ (assuming a left-to-right and). A
first condition to require to prevent this problem is negativity. We restrict ourselves
to negative arenas and negative strategies, that is those whose minimal events are
negative. A second condition necessary to get surjective pairing is a concurrent
analogue of single-threadedness:

Definition 4.7. A strategy σ : S → A is single-threaded when

1. for all s ∈ S , [s] has only one minimal event,

2. if a downclosed subset is not a configuration, then it has only one minimal
event.

This condition is enough to guarantee surjective pairing and is stable under
composition. The resulting category becomes cartesian-closed:

Theorem 4.8 ([7]). Negative arenas and negative single-threaded ∼-strategies
form a cartesian-closed category CHO (Concurrent Hyland-Ong).

Note that A⊥ ‖ B is not a negative arena when A and B are. The closed
structure in CHO is given by the usual arrow construction on arena A⇒ B. From
now on, the term “strategy” will refer to negative, single-threaded ∼-strategies.

4.3 A parallel interpretation of PCF
Using the closed structure of CHO, we show that we can interpret the higher-order
language PCF inside CHO, but with a twist: we can build a parallel interpretation.

Syntax of nondeterministic PCF Syntax of nondeterministic PCF is recalled
below. The constant choice represents nondeterministic choice: it can evaluate
either to tt or ff.

(Types) A, B ::= B | N | A⇒ B
(Terms) M,N ::= x | λx. M | M N | Y | tt | ff | choice | ifM N1 N2

| n | succ M | pred M | null M

A parallel interpretation The closed structure allows us to interpret most con-
structs of this language. We only detail two interesting constructs in our setting.
First, the choice operator is interpreted by the following strategy on !B:

!B
q−,i

tt+,0 ff+,0

More interesting is the interpretation of the conditional. Traditionally in game
semantics, it is interpreted by a strategy: if : B ⇒ B ⇒ B ⇒ B taking three
arguments: the condition, the two branches, and returning one of the branches
according to the value of the condition. In our setting, there are two natural inter-
pretations of this: the usual sequential one, and a parallel one. Both are depicted
on figure 1.

These two interpretations of PCF are correct – they yield observationally equiv-
alent interpretations. However, they are not observationally equivalent inside the
whole of CHO. Can we understand for which class of strategies those two inter-
pretations are equivalent?

ifpar : !B⊥ ‖ !B⊥ ‖ !B⊥ ‖ !B
q−,i

q+,i q+,i q+,i

tt−, j ff−,k b−,l b′−,l
′

b+,〈1, j,l〉 b′+,〈2,k,l
′〉

ifseq : !B⊥ ‖ !B⊥ ‖ !B⊥ ‖ !B
q−,i

q+,i

tt−, j ff−,k

q+,〈i, j〉 q+,〈i,k〉

b−,l b′−,l
′

b+,〈1, j,l〉 b′+,〈2,k,l
′〉

Figure 1: Two interpretations of if

5 Innocence and well-bracketing and concurrency
To understand which strategies cannot differentiate between the two implemen-
tations of if, we introduce two conditions on strategies that identify two ways
strategies can differentiate between the two implementations: well-bracketing (us-
ing control operators) or innocence (using memory). These conditions exist in the
sequential world and lead to a result of intentional full abstraction for PCF. Our
generalised conditions, similarly, lead to a result of intensional full abstraction for
our parallel interpretation of nondeterministic PCF (up to may testing).

Prior to our work, only a notion of concurrent well-bracketing was developed
by Ghica and Murawski [12] in a setting of interleavings. We show how to adapt
this notion to our partial order setting, and introduce a new notion of concurrent
innocence. Finally, we show that, combined together, those conditions charac-
terise pure parallel computation without side effect, by showing a result of finite
definability for a parallel interpretation of nondeterministic PCF.

Before explaining the conditions, we first introduce a technical notion that will
be useful to understand the parallelism of our strategies:

Definition 5.1. A grounded causal chain (gcc) of an event structure S is a non-
empty finite set % = {%0, . . . , %n} with %0 ∈ min(S) and %i _S %i+1 for i < n.

A grounded causal chain can be seen as a sub-thread of the strategy.

5.1 Well-bracketing
Questions and answers The usual device in game semantics to formulate well-
bracketing is that of questions and answers. Questions correspond to function or
variable calls (Opponent or Player) and answers to function returns or variable
values (again Opponent or Player). Each move of the arena is either a question or
an answer, which is formalised as a labelling on arenas.

Definition 5.2. An arena with questions and answers (or, in the following, Q/A-
arena) is an arena A along with labelling map A→ {Q,A } such that:

1. initial moves are questions,

2. answers are maximal.

In the rest of the section, we only consider Q/A arenas that we simply call
arenas – replacing the previous notion. Constructions on arenas (arrow, product,
expansion) trivially extend to Q/A-arenas. If σ : S → !A is a strategy on a
Q/A-arena, the action of σ naturally induces a Q/A-labelling on S . If S has a
Q/A-labelling, we say that an answer a ∈ S answers a question q ∈ S when
σq _ σa (ie. q justifies a in game semantics terminology).

Well-bracketing in a sequential context In sequential HO game semantics,
well-bracketing states that when a strategy should always answer the last unan-
swered question. This typically rules out control operators, for instance interpre-
tations of call/cc. This can be expressed in our setting by asking that the gccs of
a strategy should be well-bracketed: an answer in the gcc should point to the latest
unanswered question of the gcc. This condition is part of well-bracketing in [7],
but, it is not stable under composition without further restrictions on strategies.

Well-answered strategies Since there are no conflicts in the arena B, the fol-
lowing diagrams define valid strategies:

fork : !B

q−,i

tt+,0 ff+,0

ill : !(B ⇒ !B)

q−,i

q+,0 ff+,0

b−,i

The gccs of these strategies are well-bracketed. However the first one answers
twice concurrently to the toplevel, while the second one answers the toplevel and
concurrently carries on a computation by interrogating an argument. Such strate-
gies are a concurrent control operators, as it is possible to define call/cc in an
extension of Idealized Parallel Algol with them. Such behaviours are forbidden
by [12], and deemed not well-answered:

Definition 5.3. Let σ : S → !A be a strategy. A question q ∈ S is well-answered
in a configuration x ∈ C (S) when for all answer a ∈ x to q and distinct m ∈ x
justified by q (ie. σ q _ σm), then m is a question answered in x.

We can now define well-bracketing in our setting. We cannot force Opponent
to answer well all Player questions, so we should only force Player to answer well
when Opponent does:

Definition 5.4. A strategy σ : S ⇀ !A is well-bracketed when for all x ∈ C (S)
such that all Player questions of x are well-answered in x, then all Opponent
questions are well-answered in x.

Unlike the notion of well-bracketing introduced in [7], this condition is stable
under composition with no further assumptions on strategies:

Proposition 5.5. If σ and τ are composable well-bracketed strategies in CHO, so
is τ � σ.

!((proc ⇒ proc) ⇒ proc)

run−,i

run+,0

run−, j run−, j′ done−,k

done+, j′ done+, j done+,k

!((proc ⇒ proc) ⇒ proc)

run−,i

run+,0

run−, j run−, j′ done−,k

done+,0 done+,0 done+,k

Figure 2: Interferences between independent branches

5.2 Innocence
In this section, we now investigate potential definitions of innocence in this con-
current and nondeterministic setting. In a language with shared memory, one is
allowed to create complex patterns of interferences between branches.

Non-innocent behaviours Using state, one can create interferences between
two Opponent branches: for instance two branches of the same conditional or
two arguments of the same function call, or even two Opponent calls to the same
variable. Such interferences can be used for instance to observe the number of
times a function uses its argument. Figure 2 depicts two strategies exhibiting
this kind of interference, one using causality, the other conflict. These strategies
typically arise in the interpretation of shared memory programs.

Preinnocence A reading of what is not pure in the examples of Figure 2 is
that Player tries to merge two distinct Opponent threads (syntactic branches), for
instance two branches of a conditional or two arguments to the same call. This
leads to the notion of preinnocence:

Definition 5.6 (Preinnocence). A strategy σ : S → !A is preinnocent when:

1. For all s ∈ S , [s] does not contain two negative events with the same imme-
diate predecessor2.

2. If x has two incompatible extensions s1, s2, then x does not contain two
negative events with the same immediate predecessor.

Unfortunately, this condition is not stable under composition. For it to be-
come stable under composition, we need to adjoin another condition reminiscent
of sequential game semantics: visibility.

Definition 5.7. A strategy σ : S → !A is visible when for all gcc ρ ∈ gcc(S), σρ
is a valid configuration of !A.

A strategy is innocent when it is both visible and preinnocent.

Visibility ensures that each thread (represented by gccs) of a strategy are valid
strategies, in particular that they do not interfere with other threads. Visibility and
innocence are both stable under composition.

5.3 Intensional full abstraction for a parallel interpretation of
PCF

To prove that our concurrent conditions are indeed enough, we show a result of
intensional full abstraction: the observational equivalence among innocent and
well-bracketed strategies coincide. This result is based on a result of finite defin-
ability.

To define observational equivalences in this nondeterministic setting, we need
to fix a notion of convergence. In this paper, we address may convergence. The
thesis [4] presents a model whose adequacy extends to must equivalence and other
convergences, but the finite definability result only works for may equivalence as
of now.

Definition 5.8. A closed term ` M : B may converge if it reduces to a value (tt or
ff). A strategy on B may converge when it contains a positive move.

The notion of convergence induces a notion of observational equivalence:

Definition 5.9. Two terms ` M,N : A are observationally equivalent when for all
` T : A→ B, T M may converge iff T N may converge.

Two strategies σ, τ : A are observationally equivalent when for all innocent
and well-bracketed α : A⇒ B, α � σ may converge iff α � τ may.

2A negative event has always a unique predecessor because of courtesy and the shape of !A.

Lemma 5.10 (Adequacy). For two terms ` M,N : A, if JMK and JNK are obser-
vationally equivalent then so are M and N.

The converse relies on finite definability:

Lemma 5.11 (Finite definability). Let σ : A be an innocent and well-bracketed fi-
nite strategy. There exists a term ` M : A such that JMK and σ are observationally
equivalent.

A first difficulty to overcome is to define a notion of finite strategies. Because
of the replication and receptivity, all strategies are infinite. Our notion of finite
innocent strategy is based on the fact that, for innocent strategies, symmetry nor
Opponent duplication is necessary to describe them: a linear Opponent is enough
to explore them.

From this lemma follows the result of intensional full abstraction:

Theorem 5.12 (Intensional full abstraction). For terms ` M,N : A, M and N are
observationally equivalent iff JMK and JNK are.

6 Conclusion
We have presented a concurrent game semantics using event structures, and showed
how to extend the traditional notion of innocence and well-bracketing in this new
framework, leading to an intensional full abstraction result for a nondeterministic
parallel language.

In this short summary some other contributions have been omitted, such as the
application of the framework to tackle weak memory models, in a compositional
way. The framework presented here only yields adequate model for may testing;
the thesis presents an improvement that allows for adequate modelling of most
notions of convergence (must, fair, . . .) by remembering some internal events
during the composition. In both those contributions, the causal information given
by our strategies plays an essential role.

References
[1] Samson Abramsky and Guy McCusker. Full abstraction for Idealized Algol

with passive expressions. volume 227, pages 3–42. 1999.

[2] Samson Abramsky and Paul-André Melliès. Concurrent games and full com-
pleteness. In 14th Annual IEEE Symposium on Logic in Computer Science,
Trento, Italy, July 2-5, 1999, pages 431–442, 1999.

[3] Stephen D. Brookes. The essence of parallel algol. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, July 27-30, 1996, pages 164–173. IEEE Computer Society, 1996.

[4] Simon Castellan. Concurrent structures in game semantics. PhD thesis, ENS
Lyon, France, 2017.

[5] Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel.
Games and strategies as event structures. Logical Methods in Computer Sci-
ence. Accepted with minor revisions for publication.

[6] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Symmetry in con-
current games. In CSL-LICS 2014. IEEE Computer Society, 2014.

[7] Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel inten-
sionally fully abstract games model of PCF. In LICS 2015. IEEE Computer
Society, 2015.

[8] Pierre-Louis Curien and Claudia Faggian. L-nets, strategies and proof-nets.
In C.-H. Luke Ong, editor, Computer Science Logic, 19th International Work-
shop, CSL 2005, 14th Annual Conference of the EACSL, Oxford, UK, August
22-25, 2005, Proceedings, volume 3634 of Lecture Notes in Computer Sci-
ence, pages 167–183. Springer, 2005.

[9] Clovis Eberhart, Tom Hirschowitz, and Thomas Seiller. Fully-abstract concur-
rent games for pi. CoRR, abs/1310.4306, 2013.

[10] Claudia Faggian and François Maurel. Ludics nets, a game model of con-
current interaction. In 20th IEEE Symposium on Logic in Computer Science
(LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings, pages 376–
385. IEEE Computer Society, 2005.

[11] Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear
strategies. In TLCA ’09, volume 5608 of LNCS. Springer, 2009.

[12] Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained
concurrency, 2007.

[13] Tom Hirschowitz. Full abstraction for fair testing in CCS (expanded version).
Logical Methods in Computer Science, 10(4), 2014.

[14] Martin Hyland and Luke Ong. On full abstraction for PCF. Information and
Computation, 163:285–408, 2000.

[15] André Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des
Sciences Mathematiques du Québec 1(4), pages 46 – 52, 1977.

[16] James Laird. Full abstraction for functional languages with control. In Pro-
ceedings, 12th Annual IEEE Symposium on Logic in Computer Science, War-
saw, Poland, June 29 - July 2, 1997, pages 58–67. IEEE Computer Society,
1997.

[17] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1982.

[18] Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence
without alternation. In CONCUR 2007 - Concurrency Theory, 18th Interna-
tional Conference, pages 395–411, 2007.

[19] Silvain Rideau and Glynn Winskel. Concurrent strategies. In Proceedings of
the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011,
June 21-24, 2011, Toronto, Ontario, Canada, pages 409–418, 2011.

[20] Radha Jagadeesan Samson Abramsky and Pasquale Malacaria. Full abstrac-
tion for PCF. Information and Computation, 163(2):409–470, 2000.

[21] Takeshi Tsukada and C.-H. Luke Ong. Nondeterminism in game semantics
via sheaves. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 220–231. IEEE
Computer Society, 2015.

[22] Glynn Winskel. Event structures. In Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced
Course, Bad Honnef, 8.-19. September 1986, pages 325–392, 1986.

[23] Glynn Winskel. Event structures with symmetry. Electronic Notes in Theoret-
ical Computer Science, 172:611–652, 2007.

	Introduction
	An introduction to game semantics
	Game semantics on event structures
	Event structures
	Games and strategies
	Interaction of strategies
	A category of strategies

	Symmetry and replication
	Move duplication
	Uniformity and event structures with symmetry
	A parallel interpretation of PCF

	Innocence and well-bracketing and concurrency
	Well-bracketing
	Innocence
	Intensional full abstraction for a parallel interpretation of PCF

	Conclusion

