
The Distributed Computing Column
by

Stefan Schmid

Aalborg University
Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark

This distributed computing column features an interesting survey by Reut Levi
and Moti Medina on the emerging field of centralized local algorithms, arising in
the context of big graph analytics problems. The column also includes a report
on a recent Dagstuhl seminar on another emerging field of interest to the TCS
community: on the algorithmic foundations of programmable matter. Many thanks
to the authors for their contribution and enjoy!

http://www.en.aau.dk/

A (Centralized) Local Guide

Reut Levi1 and Moti Medina1

1Max Planck Institute for Informatics, Saarland Informatics
Campus, Germany, {rlevi,mmedina}@mpi-inf.mpg.de

1 Introduction
Massive graphs, which contain millions and even billions of nodes, modeling the
Internet, the World Wide Web, semantic networks and social networks, are being
analyzed and processed constantly. As a result, classical models of computation,
in which polynomial-time algorithms are considered efficient, may become inad-
equate. In the field of sublinear-time algorithms, the goal is to design extremely
fast algorithms that probe only a minuscule portion of the input. Likewise, if the
size of the output grows linearly in the size of the input, then it becomes desirable
to provide access to parts of the output without having to store and compute it
entirely. This is where Local Computation Algorithms (or the CentLocal model),
as defined by Rubinfeld et al. [57], comes into play.

In this survey we focus on CentLocal algorithms for computational graph
problems. A CentLocal algorithm for a computational problem provides the user
with query access to a global solution of the problem, while performing, per query,
only a sublinear number of probes to the input. For example, in the maximal in-
dependent set problem (mis) a query is “is vertex v part of an mis?". The model
requires that the answers to all queries must be consistent with a single solution
regardless of the number of possible solutions. Usually, the challenge comes from
this requirement. For instance, without the requirement for consistency, in the
case where for each query there is a global solution for which the answer is “yes”
(e.g., every vertex can be in some mis), the CentLocal algorithm can trivially an-
swer “yes” to all the queries without performing any probe. Instead, for example
in the mis problem, the CentLocal algorithm gives the “illusion” that it maintains
a specific maximal independent set, that is, given a query v the algorithm an-
swers whether v belongs to this specific mis that it “has in mind” even though the
CentLocal algorithm cannot probe all of the input graph. For a formal definition
of local algorithms in the context of graph problems, which is the focus of this
survey, see Section 2.

{rlevi,mmedina}@mpi-inf.mpg.de

There are many models of computation which are “local” such as: (1) dis-
tributed local computation by Linial [41], (2) property testing [12, 26], and (3) sub-
linear approximation algorithms (see [55] for a survey). Each of these models has
some limitations on the way it accesses the input, and the way it produces the
output, for example: (1) in the distributed local model each vertex is given a local
input, and can explore its r-neighborhood via r rounds of synchronous communi-
cation with its neighbors. After these r rounds the vertex does a local computation
and outputs its own part of the output. Note that each local output is consistent
with a certain global output, and that the main resource here is the communica-
tion with other vertices. (2) An algorithm in the property testing model decides
whether the input graph has a property or is far from having this property, ac-
cording to some predefined distance measure. This testing algorithm can perform
sublinear number of probes to the graph in order to reach its decision. (3) In the
sublinear approximation model (see [55, 56] and the references within) an algo-
rithm approximates the value of an optimal solution to a certain graph problem,
e.g., what is the size of the optimal vertex cover of the input graph? Again, the
algorithm, is allowed to perform sublinear number of probes in order to approx-
imate the value of the optimal solution. We elaborate on studied connections of
these models to the CentLocal model in Section 4. These connections also yield
some useful tools for designing CentLocal algorithms.

Apart from the tools obtained by the connections to other local models, there
are techniques which are frequently used for designing CentLocal algorithms,
which we overview in Section 3. We then overview the current state-of-the-art
algorithms for various graphs problems in terms of the already established tools
(see Section 5). We do not cover all work in the field, moreover, there is a lot
of research in related models which we do not cover at all in this survey, see,
e.g., [2, 3, 11, 32, 58].

Access to the input graph of the CentLocal algorithm is given via probes to
a graph oracle, for example, an algorithm asks the graph oracle “what are the
neighbors of vertex v ?", and the oracle replies with a list of vertices. In all the
algorithms surveyed here it is assumed that such an oracle is provided. This oracle
can be to a fixed graph, or to a graph drawn from a certain distribution of random
graphs. In Section 6 we consider the task of implementing an oracle that gives
access to a graph which is drawn from the Barabási-Albert Preferential Attach-
ment model [7] and the random recursive tree model [53]. In some cases these
graphs are huge, calling for a Local Graph Generator. These generators are local
in the sense that they generate the graph for each query on-the-fly, while giving
the illusion of drawing the graph (completely) first, storing it in the oracle’s mem-
ory, and then answering to these queries. Furthermore, not only that the graph is
not stored in the local generator’s memory, the number of bits that are stored by
the generator are sublinear, for each query, as well as the number of consumed

random bits, and the running time of the generator.

Notations. In the rest of this survey paper we are going to use the following
notations. Let G = (V, E) denote an undirected graph, and n denote the number of
vertices in V . We denote the degree of v by deg(v). Let ∆ denote the maximum
degree, i.e., ∆ , maxv∈V{deg(v)}. The length of a path equals the number of edges
along the path. For u, v ∈ V let dist(u, v) denote the length of the shortest path
between u and v in the graph G. The ball of radius r centered at vertex v in the
graph G is defined by Br(v) , {u ∈ V | dist(v, u) ≤ r}. For k ∈ N+ and n > 0, let
log(k)(n) denote the kth iterated logarithm of n, where log(0)(n) , n. For n ≥ 1,
define log∗(n) , min{i : log(i)(n) ≤ 1}, that is, this function roughly counts how
many times one can take a logarithm of n until the outcome is constant. We say
that an event A occurs with high probability (w.h.p) if there exists a constant c > 0
such that Pr[A] ≥ 1 − 1

nc .

2 The CentLocalModel
The model of centralized local computations was defined by Rubinfeld et al. [57].
In this section we give the definition for the CentLocal model for problems over
labeled graphs as it appears in Even et al. [17] (with slight variations) com-
plemented by a discussion about query-order-oblivious, stateless, and stateful
CentLocal algorithms. In the definition by Reingold and Vardi [54, Sec. 3] the
running time of the CentLocal algorithm is also considered, and the space re-
quired for the state and for the bits of the random seed are counted separately.

Labeled graphs. An undirected graph G = (V, E) is labeled if: (1) Vertex names
are distinct and each have description of at most O(log n) bits. For simplicity,
assume that the vertex names are in {1, . . . , n}. We denote the vertex whose name
is i by vi. (2) Each vertex v holds a list of deg(v) pointers, called ports, that point
to the neighbors of v. The assignment of ports to neighbors is arbitrary and fixed.

Problems over labeled graphs. Let Π denote a computational problem over
labeled graphs (e.g., maximum matching, maximal independent set, vertex color-
ing). A solution for problem Π over a labeled graph G is a function, the domain
and range of which depend on Π and G. For example: (1) In the Maximal Match-
ing problem, a solution is an indicator function M : E → {0, 1} of a maximal
matching in G. (2) In the problem of coloring the vertices of a graph by (∆ + 1)
colors, a solution is a coloring c : V → {1, . . . ,∆ + 1}. Let sol(G,Π) denote the set
of solutions of problem Π over the labeled graph G.

Probes. In the CentLocalmodel, access to the labeled graph is limited to probes.
A probe is a pair (v, i) that asks “who is the ith neighbor of v?”. The answer to
a probe (v, i) is as follows. (1) If deg(v) < i, then the answer is “null”. (2) If
deg(v) ≥ i, then the answer is the (ID of) vertex u that is pointed to by the ith port
of v.

Online Property of CentLocal-algorithms. The input of an algorithm alg for
a problem Π over labeled graphs in the CentLocal model consists of three parts:
(1) access to a labeled graph G via probes, (2) the number of vertices n and the
maximum degree ∆ of the graph G, and (3) a sequence {qi}

N
i=1 of queries. Each

query qi is a request for an evaluation of f (qi) where f ∈ sol(G,Π). Let yi denote
the output of alg to query qi. We view algorithm alg as an online algorithm
because it must output yi without any knowledge of subsequent queries.

Consistency. We say that alg is consistent with (G,Π) if

∃ f ∈ sol(G,Π) s.t. ∀N ∈ N ∀{qi}
N
i=1 ∀i : yi = f (qi) . (1)

Examples. Consider the problem of computing a maximal independent set. The
CentLocal-algorithm is input a sequence of queries {qi}i, each of which is a ver-
tex. For each qi, the algorithm outputs whether qi is in I, for an arbitrary yet fixed
maximal independent set I ⊆ V . Consistency means that I is fixed for all queries.
The algorithm has to satisfy this specification even though it does not probe all of
G, and obviously does not store the maximal independent set I. Moreover, a state-
less algorithm does not even remember the answers it gave to previous queries.
Note that if a vertex is queried twice, then the algorithm must return the same
answer. If two queries are neighbors, then the algorithm may not answer that both
are in the independent set. If the algorithms answers that qi is not in the inde-
pendent set, then there must exist a neighbor of qi for which the algorithm would
answer affirmatively. If all vertices are queried, then the answers constitute the
maximal independent set I.

Resources and Performance Measures. The resources used by a CentLocal-
algorithm are: probes, space, and random bits. The running time used to answer a
query is not counted. The main performance measure is the maximum number of
probes that the CentLocal-algorithm performs per query.

The state of algorithm alg is the information that alg saves between queries.
The space of algorithm alg is the maximum number of bits required to encode the
state of alg. A CentLocal-algorithm is stateless if the algorithm does not store
any information between queries. In particular, a stateless algorithm does not

store previous queries, answers to previous probes, or answers given to previous
queries.

Definition 1. An online algorithm is a CentLocal
[
q, s

]
algorithm for Π if (1) it

is consistent with (G,Π), (2) it performs at most q probes, and (3) the space of the
algorithm is bounded by s.

The goal in designing algorithms in the CentLocal model is to minimize the
number of probes and the space (in particular q, s = o(n)). A CentLocal

[
q, s

]
algorithm with s = 0 is called a stateless CentLocal

[
q
]

algorithm. Stateless
algorithms are useful in the case of uncoordinated distributed servers that answer
queries without communicating with each other.

Randomized local algorithms. A randomized CentLocal-algorithm is also pa-
rameterized by the failure probability δ. We say that alg is a CentLocal

[
q, s, δ

]
algorithm for Π if the algorithm is consistent, performs at most q probes, and uses
space at most s with probability at least 1 − δ. The standard requirement is that
δ = 1/poly(n).

The number of random bits used by a randomized algorithm is also a resource.
One can distinguish between two types of random bits: (1) random bits that the
algorithm must store between queries, that is, between the 1st and the 2nd and so
on, and (2) random bits that are not stored between queries. We use the convention
that information that is stored between queries is part of the state. Hence, random
bits, that are chosen before the first query, are not included in the state, even if
they are stored between queries, e.g., in [1, 45, 46, 54] the state does not change
during the execution of the CentLocal algorithm. Thus, a randomized algorithm
can be stateless although s , 0.

Query-Order-Oblivious and Stateless Algorithms. An important property of
a CentLocal algorithm is that it is query-order-oblivious (QOO) [57, 1]. In par-
ticular, this property is useful if the CentLocal algorithm is used as a subroutine
in Property Testing or in sublinear time approximation (see Sections 4.2 and 4.3).
We say that a CentLocal algorithm is QOO if the (global) solution that the algo-
rithm computes does not depend on the input sequence of queries. Being QOO
and being stateless are equivalent. A simple observation [17] is that a stateless
CentLocal algorithm is also QOO. The converse [27, Sec. 4.1, Obs. 1] is also
true, that is, every QOO CentLocal algorithm can be simulated by a stateless
CentLocal algorithm without incurring any overhead to the probe-complexity.
The simulation is as follows: the stateless simulation invokes the QOO algorithm
with its initial state and the same random seed for each query.

The Power of being Stateful. In the full version of [27, Sec. 5.3, Thm. 5] a vari-
ant of the Leader Election problem is considered. A stateful algorithm that uses
O(log n) bits of state size is compared with any deterministic stateless CentLocal
algorithm. It is shown that any stateless CentLocal algorithm requires Ω(n) times
more probes than the considered stateful algorithm. This implies a separation be-
tween stateful and stateless CentLocal algorithms. In this survey, unless stated
otherwise, the described CentLocal algorithms are stateless.

3 Techniques
In this section we survey some of the known techniques. We demonstrate the
usage these techniques in the context of specific problems in Section 5, where we
survey the state-of-the-art algorithms.

3.1 Localization of Local-Sequential Algorithms
In this section we overview a way of transforming sequential algorithm with
certain properties to CentLocal algorithms [47, 1, 18, 17] which we call local-
sequential algorithms. We start with an example and then give more precise ex-
planation of the technique.

Consider the input graph in Figure 1. For now, disregard the orientation of
the edges, the numbers within the circles, and the colors of the vertices. A local-
sequential (greedy) algorithm for the mis problem is as follows: scan the vertices
according to an arbitrary, but fixed, order and add vertex v to the mis if its neigh-
bors that came before v in that order are not already in the mis and so on. Hence,
answering the question whether v is in the mis in the context of sequential algo-
rithms is quite simple: execute a greedy mis algorithm on the input graph and
check if at some iteration v is in the mis and then answer YES, or if the algorithm
already considering a vertex which is after v in the algorithm’s scanning order, in
this case the answer is NO.

In CentLocal algorithms we cannot afford a possible linear number of probes
and, of course, cannot simply “save” a global ordering of the vertices (too costly
in terms of space). We would like, some how, to have a global ordering of the
vertices which all agree on without saving it or waste linear number of probes
in order to compute it. The nice observation is that one can locally compute a
“local” ordering that all the vertices of the graph can “fill in the details” to obtain
a global ordering that is “good enough” and with small overheads. The idea is
as follows. Let us assume that we can orient the edges in a CentLocal way so
that the obtained directed graph is acyclic as in Figure 1. This orientation defines
a partial order on the vertices, e.g., the vertex with rank 0.8 is “bigger” than the

vertices with ranks 0.6, and 0.5 but no relation is defined to any other vertex. This
orientation captures the notion of v came before u in the fixed but unknown global
order if there is a directed edge (u, v). Now, the query of whether v is in the mis
is answered in the following way. The vertex v asks whether the neighbors which
it points to are in the mis. If none of these vertices are in the mis then the answer
to the query is YES otherwise the answer is NO (since at least one neighbor is in
the mis). This continues recursively until this “scanning” of the vertices reaches
a sink vertex w.r.t. the acyclic orientation at hand. Similarly to the sequential
algorithm the, as there is no vertex before the sink in the ordering, then this sink
is in the mis. Now all the answers to the recursive queries resolve, an eventually
we answer the (initial) query by NO. In fact, the scanning that we have just made
to the vertices is simply a DFS, where the decision of which vertex is in or out
of the mis are made in the “backtracking” phase of the DFS. Also note, that the
number of inner queries (or probes) that the CentLocal algorithm made are equal
to the number of vertices that are reachable from v, e.g., the upper right and the
upper left vertices were not scanned since they are after v in the order. Hence,
having a vertex with a reachability set which is linear in n would be very bad (for
example consider an input graph of a path and the orientation is from “left” to
“right”, the rightmost vertices have small probe complexity, while the leftmost
ones have linear probe complexity). This calls for another problem that need to
be solved beforehand: how do we locally orient the edges of the input graph so
that the obtained orientation is both acyclic and with bounded reachability for all
vertices? We call this problem acyclic orientation with bounded reachability and
we deal with this question in Section 5.3 where both randomized and deterministic
algorithms are discussed.

Hence, given a reachability set of size at most r, which is computed by a
CentLocal

[
p
]

algorithm for the obr problem, then the total probe complexity
of simulating a local-sequential greedy is simply p · r. Plugging in the induced
obr deterministic, stateless CentLocal

[
∆O(

√
∆·log2.5 ∆) · log∗ n

]
-algorithm by Fraig-

niaud, Heinrich, and Kosowski [23] (see Section 5.1, and Section 5.3) which ob-
tains a reachability of ∆O(∆) gives a CentLocal

[
∆O(∆) · log∗ n

]
-algorithm for any

local-sequential algorithm.

The algorithms which this simulation holds are those that the decision (or
output) of each vertex depends only on its neighbors that came before him in
the ordering, for example, greedy (∆ + 1)-coloring, greedy maximal matching,
etc. For these kind of algorithms Even, Medina and Ron [18, 17] showed that
any linearization of the partial order induced by the orientation (the role of the
mentioned DFS above) gives the same outputs for each of the vertices. For a
formal definition of the class of local-sequential algorithms see Even, Medina and
Ron [18, 17]. For application of this framework in the context of online algorithms

0.85

0.8

0.6

0.9

0.99

0.7

0.5

0.2

𝒗

Figure 1: Localization of the greedy mis algorithm. The orientation of the edges
of the graph is acyclic. The query that is answered is: “Is vertex v is in the mis?”.
Each vertex is depicted by a circle, the rank of which is in this circle. A vertex
which is in the mis is depicted by a green circle, and a circle which is not in the
mis is depicted by a red circle. A vertex that was not probed in order to answer the
query is depicted by a black circle.

which are in the class of local-sequential, see Mansour et al. [45], Reingold and
Vardi [54], and London et al. [42].

3.2 Shattering
Another way of reducing a problem of finding a solution on a large graph to find-
ing independent solutions on small induced connected components is by shatter-
ing the graph. More precisely, in the shattering phase, a partial solution is found
on a subset of the vertices (or edges) of the graph. Conditioning on this partial
solution, finding the entire solution then reduces to finding solutions to each con-
nected component independently.

In some sense, in the shattering phase we remove vertices from the graph
(because the function on these vertices has already been determined). Usually the
shattering phase proceeds in iterations. If in each iteration, each vertex is removed
with constant probability, then after Ω(log ∆) independent iterations, each vertex
remains in the graph with probability at most poly(1/∆). Assuming that the events
of removing vertices are mutually independent, this is usually suffices in order
to shatter the graph into connected components of size O(log n). However, it
is usually the case that these events are not mutually independent. Fortunately,
usually the dependencies are confined only to small neighborhoods, in which case
a more careful analysis, also referred to as Beck’s approach [9], can show that
the graphs is shattered in this case as well. For example, if the removal of a

vertex depends only on its 2-hop neighborhood then the following lemmas (see
also in [57, 1, 25]) are useful in order to prove that the graph is shattered by the
union bound.

Lemma 1 ([40]). There are at most n(4∆5)s distinct trees T of size s embedded
on the distance-5 graph.

Lemma 2 ([40]). Any connected sub-graph H ⊆ G of size of at least sd4 contains
some set S of size s such that distG(u, v) for every distinct u, v ∈ S .

3.3 Partitioning
Providing access to a partition of the graph such that the number of edges in the
cut of the partition is small is a natural method for designing local algorithms for
approximation problems. The following definition is considered in the context of
partition oracles [28, 15, 36].

Definition 2. For ε ∈ (0, 1], k ≥ 1 and a graph G = (V, E), we say that a partition
P = (V1, . . . ,Vt) of V is an (ε, k)-partition (with respect to G), if the following
conditions hold:

1. For every 1 ≤ i ≤ t it holds that |Vi| ≤ k;

2. For every 1 ≤ i ≤ t the subgraph induced by Vi in G is connected;

3. The total number of edges whose endpoints are in different parts of the
partition is at most ε|V | (that is, |{{vi, v j} ∈ E : vi ∈ V j, v j ∈ V j, i , j}| ≤
ε|V |).

Given access to an (ε, k)-partition of the graph where k is a constant (w.r.t.
|V |), designing local algorithms, in the bounded degree model, for a vast variety
of optimization problems becomes easy. The solution will be approximate as the
edges in the cut are usually ignored. Since the edges in the cut are ignored then
on each of the remaining connected component a solution can be found indepen-
dently. This gives constant query and time local algorithms even if a brute-force
approach is applied.

An (ε, k)-partition, where k is a constant, does not necessarily exist for any
bounded degree graph, e.g., when the graph is an expander. However, for some
problems, families of partitions with more relaxed requirements can be useful. For
examples, if one wants to provide local access to a spanner of a graph (see more
in Section 5.7), then requirement 3 can be relaxed to requiring that the number of
edges in G/P is at most ε|E|. where G/P is the graph on the vertex set {V1, . . . ,Vt}

where {Vi,V j} is an edge, iff there exist vi ∈ Vi and v j ∈ V j such that {vi, v j} ∈ E.
Requirement 1 is then relaxed as to require that each induced subgraph has small
diameter.

3.3.1 Partition via Contraction of Edges

Given a graph G = (V, E), one can obtain a partition of V , such that the subgraph
induced on each part is connected, by contraction of edges. The partition is then
defined as follows: every pair of vertices u, v for which there is a path of contracted
edges that connects u and v, are in the same part of the partition. In order to obtain
parts which are not too big, contraction can be done in iterations, where in each
iteration the edges contracted correspond to a matching (not necessarily a maximal
one) between the subgraphs induced on each part of the partition we constructed
so far, P (namely, a matching in G/P). For more details see [28] and [36].

3.3.2 Partition via Centers

Another common way to obtain a partition is by selecting random centers, e.g.,
each vertex is selected as a center independently at random with probability ε ∈
(0, 1). The partition is then defined by the Voronoi partition with respect to the
selected centers. Namely, each vertex is in the same part as the center which is
closest to it (where a rule for breaking ties should be defined). In the bounded
degree model, each vertex can find its center, after exploring O(1/ε) vertices, in
expectation. To obtain a partition such that every vertex can find its center with
probe complexity Õ(1/ε), it was shown in [39] that if after exploring Õ(1/ε) ver-
tices, a center is not found, then the vertex can become a singleton in the parti-
tion. Namely, it was shown that the total number of parts in the partition remains
O(ε|V |), even after refining the partition by introducing singletons.

For many applications, it is not always sufficient to only find the center, but
it is also necessary to find all the vertices in the respective part. If the size of the
parts is too large, then one possible solution is to decompose the parts into smaller
parts in a local manner (see e.g. [39]).

3.4 Amplification via Far Probes

Algorithms in the CentLocal-model can probe the graph (or the object at hand)
in any location, even if the queried vertex is far a way. This is a major difference
from distributed systems, where typically each processor can only communicate
with its immediate neighbors (excluding the CONGESTED-CLIQUE model). A
result by Göös et al. [27] shows that for a large family of natural problems this
extra power is not significant (see Section 4.1.2).

However, the ability to probe the graph at random locations is useful for ob-
taining an estimate of a value. Specifically, it can be used for amplification in
the following straight-forward way. Suppose that we have a randomized approxi-
mation CentLocal-algorithm that gives an approximate solution with probabil-

ity 2/3. We can obtain an algorithm that gives an approximate solution with
higher probability by adding to the algorithm a pre-processing phase. In the pre-
processing phase, we pick random seeds and for each seed we estimate the size
of the solution by sampling random vertices (or edges) and evaluating the func-
tion for the sample. For an appropriate sample size and number of trials, this
pre-processing phase is likely to provide a random seed for which the obtained
approximation ratio is as guaranteed. For an example of an application see the
randomized algorithm for approximated Maximum Matching in Section 5.5.

3.5 Partial Exploration of Reachability Set
3.5.1 Simple Pruning of the Reachability Set

Given a CentLocal approximation algorithm where the expected probe complex-
ity of each vertex is bounded by x, one can obtain a CentLocal-algorithm with
query complexity which is proportional to x and with slightly worse approxima-
tion guarantee by simply applying Markov’s inequality. Namely, the new algo-
rithm simulates the original algorithm but whenever the number of queries goes
over some predetermined threshold the algorithm stops the simulation and outputs
a predetermined answer which does not violate the feasibility of the solution.

3.5.2 Efficient Exploration of the Reachability Set

The expected size of the reachability set of a local-sequential algorithms (see Sec-
tion 3.1) for classical problems such as Maximal Independent Set and Maximum
Matching was shown to be exponential in the maximum degree, ∆ [47]. Fortu-
nately, the size of the reachability set does not immediately determined the query
complexity of the simulation. More specifically, it was conjectured by Nguyen
and Onak [47] and was proved by Yoshida, Yamamoto, and Ito [61], that when
the query-tree is explored in a specific order then the expected query complex-
ity can be bounded by O(∆2) (where the expectation is over the vertices and the
random orderings). Roughly speaking, the vertices with lower rank should be
examined first by the simulation since the sequential algorithm examines these
vertices first too. For this variant of simulation, the key lemma in [61] bounds
the expected query complexity of a vertex of rank i. The Lemma shows that the
bound only grows linearly with the rank.

3.6 Local Improvement
The local improvement technique was introduced by Nguyen and Onak [47] for
the design of sublinear approximation algorithms. This technique is then applied

in the context of sublinear approximation algorithms to vertex cover, maximum
cardinality matching, maximum weighted matching, Set cover, etc.

In the context of CentLocal this technique was applied in maximum cardinal-
ity matching, maximum weighted matching (see Section 5.5).

The local improvement technique transforms an approximation algorithm which
works in k phases into a CentLocal algorithm. More precisely, let us assume that
the approximation algorithm works in k phases, where the input of each phase is
the output of the previous one, e.g., the input for the first phase is simply the input
to the algorithm and the output of the algorithm is the output of the last phase.
Note that these phases are not necessarily the same phase which is executed over
and over again. The transformation deals with implementing k CentLocal oracles
for each of these phases, where the ith oracle gives a random access to the output
of the ith phase. In turn, providing a random access to the output of the approxi-
mation algorithm is equivalent to answering a query to the kth CentLocal oracle.
This query generates “inner” queries to the (k − 1)th oracle and so on, moreover,
each of these oracles also performs probes to the graph in order to compute the
output of the corresponding phase, given the input from the previous one. For
concrete applications of this technique see Section 5.5.

4 Connections to other Models
In the previous section we elaborated on known techniques that are used in the
CentLocal model. In this section we present “connections” to other models,
namely, given an algorithm in the CentLocal model how can we “translate” it
to an algorithm in a different model? or the other way around? These connections
are useful in two ways: (1) upper bounds: one can compile a “new” algorithm
quickly, maybe in the first steps of one’s research on a new problem, (2) lower
bounds: translation from model A to model B can help carrying lower bounds
from B to A.

4.1 Relation to the Distributed Local Model (DistLocal)
Unlike the “probe based” CentLocal model the classical DistLocal model [41,
52] is based on synchronous message passing, that is, each vertex communicates
only with its neighbors in the graph in synchronized rounds, where in each round
vertices send messages to their neighbors (not necessarily the same message to
all of them), receive messages, and perform local computation. We say that a
distributed algorithm is a DistLocal [r]-algorithm if the number of communica-
tion rounds is r. This implies that the information collected by the DistLocal
algorithm after r rounds in each vertex v is simply Br(v). Compare this to the

CentLocalmodel where after t probes the CentLocal algorithm, which is queried
on vertex v, knows {v} ∪

⋃t
i=1 N1(pi), where pi is the ith probes made by the

CentLocal algorithm. Hence, Having the ability to probe anywhere in the graph
seems much more powerful than “just” collecting information from your neigh-
bors. We discuss on this matter in more depth in Section 4.1.2. The CentLocal
model is defined in Section 2. For a formal definition of the DistLocal model
see [41, 52]. For a survey on DistLocal algorithms see [59]. We now outline the
similarities and differences between the two models in Table 1.

Criterion CentLocal DistLocal

Randomness Single source. Each vertex has its own randomness.

IDs Are known to the algorithms. Are unknown.

Maximum degree ∆ Known. Unknown .

Vertex labeling Each vertex is labeled.

Port numbering N1(v) of each v are numbered from 1 to deg(v) in an arbitrary but fixed manner.

Structure of the input G Structure of the input graph G = (V, E) is unknown.

Accessing the input G Centrally, via probes.

Each processor communicates with its neighbors
in synchronous rounds: in each round, each
processor sends messages, receives messages,
and performs local computation.

Accessing the Output Via queries. After termination each processor
knows its own part of the output.

Resources State size, random Seed.
computation is “for free” in both models.

Complexity measures # probes, state size, seed length. # rounds.

Table 1: Comparing the DistLocal and the CentLocal models. Typically, the
number of probes in the CentLocal model is o(n), and the number of rounds in
the DistLocal model is o(diameter).

4.1.1 Mutual Simulations between DistLocal and Stateless CentLocal

Simulating one model by the other model is useful both for designing algorithms
(e.g., one favors a central model over a distributed one or vice versa) and for
carrying lower bounds from one to the other. In this section we show how one can
simulate algorithms over graphs in one model by algorithms in the other model.

In this section we focus on CentLocal algorithms that answer queries regard-
ing vertices of a graph (this can be extended to edge queries by simulating the
line-graph of the input graph). We say that a an algorithm in one model simulates
an algorithm in the other model if the local outputs (either the output given by a
query access or the local output of DistLocal algorithm) are the same.

Simulation of DistLocal by CentLocal (see [51]). The definition of the
DistLocal [r] model implies that each vertex v computes, after r rounds, a func-
tion of its Br(v). Hence, in order to simulate a DistLocal [r]- algorithm by a state-
less CentLocal algorithm, the CentLocal algorithm can first “learn” the topology
and IDs of Br(v) for the queried vertex v, and then simulate the DistLocal algo-
rithm in “its head”. Learning a ball Br(v) centered at vertex v takes at most O(∆r)
probes, where ∆ is a bound on the maximum degree of the graph. Note that in case
the maximum degree of Br(v) is 2 (in case of a simple path or a cycle) then learning
Br(v) takes only 2r probes. Reingold and Vardi [54] considered a class of graphs
which they call ∆-light graphs. Roughly speaking, these graphs include bipartite
graphs in which on one side the vertices have degree ∆ and one the other side the
distribution of the degree of the vertices is ∆ on average and it is concentrated
around the mean. For example, in the context of stable matching, a bipartite graph
where one side corresponds to men and the other side corresponds to women and
each man chooses ∆ women uniformly at random is a ∆-light graph. For more
details on the family ∆-light graphs see [54, Sec. 4]. Reingold and Vardi [54,
Thm. 9.3] showed that simulating an r rounds DistLocal-algorithm, when the in-
put graph is a ∆-light graph, results with O(∆)r · log n number of probes while
using O(log n) space with high probability.

Simulation of CentLocal by DistLocal (see [47, 19], [17, Prop. 1]). Simula-
tion of stateless CentLocal algorithms by DistLocal algorithms can be “tricky”.
Recall that a CentLocal algorithm can probe anywhere - what is the radius of
the simulating DistLocal algorithm? In case the stateless CentLocal algorithm
probes within a radius of r of any queried vertex then we can simulate it by, again,
collecting all the topology and IDs in Br(v) in r rounds and then simulate the
CentLocal algorithm locally in vertex v. Since the CentLocal algorithm at hand
is stateless the simulation does not need any more information in order to simu-
late the CentLocal algorithm correctly. We discuss the case where the simulated
CentLocal algorithm can probe anywhere in the graph in Section 4.1.2.

4.1.2 Simulating Far Probes in the DistLocalModel

In this section we deal with the question of whether we can simulate a stateless
CentLocal algorithm by a deterministic DistLocal algorithm so that the number
of rounds is sublinear in the diameter of the graph even if the CentLocal algorithm
can have “far” probes.

Is there a General Simulation Argument? In general, the answer to the above
question is: no! [27] For example, consider the following binary consensus prob-
lem: the local input for each vertex is in {0, 1}, the output of all the vertices is the

same and should equal to the local input of at least one vertex. In the CentLocal
model there is an algorithm that requires a single probe: for every query simply
output the local input of vertex number 1. On the other hand, every DistLocal
algorithm requires at least Ω(n) rounds: any algorithm that performs sublinear in
n rounds errs on a input of a path that its left half has input 1 and the right half has
input 0, that is, the rightmost vertex outputs 0 and the leftmost vertex outputs 1.

Nice Graph Problems. Due to the example of binary consensus [27] limit the
class of problems that are considered for the simulation argument and define the
following class of Nice graph problems. Roughly speaking, a graph problem is in
Nice if (1) every solution to the problem implies that a relabeling of the vertices
of the solution is also a solution for the problem at hand, and (2) every solution
of an input G is also a solution to its maximal connected components (for a more
rigorous definition see [27]. Note, that binary consensus is not in Nice. For exam-
ple, Nice include: maximal independent sets, minimal dominating sets, minimal
vertex covers, (∆ + 1)-coloring of the vertices of the graph, maximal matchings,
and edge colorings, etc. Göös et al. [27, Full ver. Sec. 4.7] also extended Nice to
approximation algorithms for problems such as (1 − ε)-approximated maximum
(weighted) matching.

An implicit simulation of CentLocal algorithms in the DistLocal model.
Göös et al. [27, Thm. 2] showed that for every stateless CentLocal [t(n)]-
algorithm that solves a problem in Nice where t(n) = o(

√
log n), there exists a

deterministic DistLocal
[
t
(
Θ

(
nlog n

))]
-algorithm that simulates the CentLocal al-

gorithm. The proof idea of this simulation argument is as follows. Introduce a vir-
tual graph of Θ

(
nlog n

)
vertices, which is known to all the vertices in the DistLocal

algorithm. The simulation performs a random reshuffling of the IDs, currently the
reshuffling is known to all vertices - this is out of the DistLocal model, since
we cannot coordinate all the vertices instantaneously. We show momentarily how
to lift this IDs reshuffling coordination assumption. Now, if a probe is made by
the simulated CentLocal algorithm it will “land” w.h.p. on the virtual graph,
which does not reveal new information to the simulating DistLocal algorithm. In
turn, only the probes that induce a connected subgraph are “real” probes in the
sense that they explore the input graph (rather than the virtual one). In order, to
lift the reshuffling assumption, it is shown that there is a “good” reshuffling for
all input bounded degree graphs. Due to this last stage the simulation we have
just overviewed is existential, which suffices for carrying lower bounds - see Sec-
tion 4.1.3. Göös et al. [27, Sec. 5, Thm. 3] also showed hot to obtain a constructive
simulation which translates a CentLocal algorithm with far probes to a random-
ized CentLocal algorithm that its probes induce a connected subgraph (including

the query). The constructive simulation has moderate overheads in the required
seed length and in the number of probes.

4.1.3 Carrying Lower bounds from the DistLocal model to the CentLocal
model

The implicit simulation argument implies that lower bounds for algorithms in the
DistLocal model can be applied to the CentLocal model for deterministic and
stateless algorithms that solve problems in Nice. For example, if there is a lower
bounds in the DistLocal model of Ω(log log n) then the same (asymptotic) lower
bounds holds for stateless CentLocal algorithms. Recall that QOO CentLocal
algorithms can be simulated by a stateless CentLocal algorithms (see Section 2)
without any overheads. Hence, lower bounds can be carried to QOO algorithms as
well. As a result, the Ω(log∗ n) lower bound on maximal independent set, maximal
matching, and (∆+1)-coloring by Linial [41] and the lower bounds on approximate
maximum cardinality matching and maximum weighted matching of Ω(log∗ n) by
Czygrinow et al. [14], and by Lenzen and Wattenhofer [34] can be applied on
stateless (or QOO) CentLocal algorithm. Compare this with the state-of-the-art
algorithms in Section 5.

4.2 Relation to Property Testing
In Property Testing typically the task is to distinguish between objects that have a
certain property from objects which are far from having the property. Therefore
it can be considered as a relaxation of a decision problem. Usually, as a result
of this relaxation, the testers give an answer after inspecting only an extremely
small portion of the object. Therefore, the testers answer whether the object have
some global property by inspecting the object locally. Naturally, many techniques
are common for the field of Property Testing and the CentLocal model. In the
following we demonstrate how to borrow lower bounds from Property Testing to
the CentLocal model (as appears in [37]).

A Reduction from testing Cycle-freeness with one-sided error. Goldreich and
Ron showed a lower bound of Ω(

√
n) for the problem of one-sided error testing of

cycle-freeness in bounded-degree graphs [26, Proposition 3.4]. Their construction
holds even if the input graph is promised to be connected. A one-sided tester
must accept all cycle-free graphs and must reject with probability at least 2/3
every graph that is ε-far from being cycle free. In the bounded-degree model, the
distance measure is with respect to the maximum possible number of edges in
the graph. In particular, a graph is said to be ε-far from being cycle-free if it is
required to remove at least εdn edges from the graph in order to remove all cycles.

Specifically, if the graph is connected then this implies that the graph contains at
least (n − 1) + εdn edges. An lssg algorithm, A, with sparsity parameter set
to εd/2, must return YES on at most (1 + εd/2)n edges, with high probability.
Therefore, given a graph which is ε-far from being cycle-free, A answers NO on
a constant fraction of the edges. On the other hand, if the graph is cycle-free, A
always returns YES on all the edges. Therefore, one can distinguish these two
cases by making a constant number (depends only on ε) of queries toA.

4.3 The Relation to Sub-linear approximation

A sublinear approximation algorithm for a certain graph parameter (e.g., the size
of a minimum vertex cover) is given probe access to the input graph and outputs an
approximation of this graph parameter with high constant probability. Many such
algorithms obtain their estimation by invoking a “CentLocal- like” algorithm that
answers queries for the problem that corresponds to the parameter. For example, if
the approximated parameter is the size of the minimum vertex cover of the graph,
then the corresponding problem is the Minimum Vertex Cover, and hence a query
to this CentLocal-like algorithm is “does a given vertex belong to a fixed small
vertex cover?” (see, e.g., [51, 47, 61, 49]). In turn, the sublinear approximation
algorithm estimates the graph parameter by performing queries to this CentLocal-
like algorithm. Usually the success probability of the CentLocal-like algorithms
is constant, which is sufficient in the context of sub-linear approximation because
it is possible to amplify the success probability. In order to obtain the desired
1 − 1/poly(|V |) success probability in the context of the CentLocal model, one
can usually apply amplification as described in Section 3.4). For more details on
this relation see [17, Sec. 1.4].

5 State-of-the-Art Algorithms

In this section we overview studied graph problems, such as: graph coloring,
acyclic orientation, maximal independent set, maximal matching, approximate
maximum (weighted) matching, vertex cover, local sparse spanning graphs, sta-
ble matching, and machine scheduling. For each problem we give the state-of-
the-art results and a brief description of the algorithm and its analysis by using
the above-mentioned techniques, and complement the discussion with a relevant
lower bound, if one is known.

5.1 Graph Coloring Algorithms

We focus in this section on vertex c-coloring of a given graph G = (V, E) (one
extend the discussion to edge coloring by considering the line-graph of G). Es-
sential, a c-coloring of G is a function c : V → [c], where c ∈ N. A coloring is
legal if for each edge {u, v} ∈ E it holds that c(u) , c(v).

In Sections 3.1 and 5.3 we described the connection between CentLocal color-
ing and simulating local-sequential algorithms, in a nutshell, the number of colors
c affects the radius in which the CentLocal algorithm probes so that it can sim-
ulate the greedy algorithm, hence, improvement of the coloring algorithm might
yield and improved simulation of sequential greedy algorithms.

In this section we consider c-graph coloring with c = O(∆2) colors and with
c = ∆ + 1 colors which we call ∆2-Color and (∆ + 1)-Color, respectively.

CentLocal algorithms for ∆2-Color. Applying the simulation of a DistLocal
by a CentLocal algorithm (see Section 4.1.1) on the DistLocal

[
O(log∗ n)

]
-

algorithm by Linial [41] gives a deterministic, stateless CentLocal
[
∆O(log∗ n)

]
-

algorithm for the ∆2-Color. Even, Medina and Ron [18, 17] designed a deter-
ministic, stateless CentLocal

[
O(∆4 · log∗ n)

]
-algorithm. Note, that the number of

probes in this algorithm grows (slightly) slower as a function of n and is poly-
nomial in ∆. How do one reduce the dependency in ∆ a polynomial in ∆? evi-
dently, in the ∆2-Color problem one can reduce the dependency by partitioning
the graph into edge-disjoint subgraphs of degree 2 [8], and then simulating the
DistLocal

[
O(log∗ n)

]
-algorithm for ∆2-Color [41] by applying the simulation of

a DistLocal by a CentLocal algorithm (see Section 4.1.1) on each of these sub-
graphs. Since, the degree in each of this subgraphs is bounded by 2, there is no
exponential blow-up in the probe complexity. Moreover, each subgraph is colored
with constant number of colors. Now, each vertex has “many” colors, e.g., from
each path that traverse the vertex. This palette of colors translates into a color-
ing with exponential number of colors. The exponential coloring can be reduced
to ∆2-coloring by applying color reduction techniques that also appear in [41],
which require a constant number of rounds in the DistLocal model and hence
require polynomial in the maximum degree probes in the CentLocal model. For
more details about this algorithm and the partitioning technique which it employs,
see [17, Sec. 3.1].

CentLocal algorithms for (∆ + 1)-Color. Applying the Localization of Local-
Sequential Algorithms technique (see Section 3.1) on greedy (∆+1)-coloring gives
a deterministic, stateless CentLocal

[
∆O(∆2) · log∗ n

]
-algorithm. Recently, Fraig-

niaud, Heinrich, and Kosowski [23] obtained an improved deterministic, stateless

CentLocal
[
∆O(

√
∆·log2.5 ∆) · log∗ n

]
-algorithm as follows: given a ∆2-coloring of the

graph Fraigniaud et al. [23] designed an algorithm that requires O
(√

∆ · log2.5 ∆
)

rounds in order to transform the ∆2-coloring to a (∆ + 1)-coloring. Now, using the
∆2-Color algorithm described above and applying the simulation of a DistLocal
by a CentLocal algorithm (see Section 4.1.1) on their new color reduction tech-
nique, they obtained the improved probe complexity for the (∆ + 1)-Color prob-
lem. In fact, this new color reduction technique is more general and applies to
conflict-coloring.

5.2 2-Coloring of Bipartite Graphs

Recently, Czumaj, Mansour and Vardi proposed the problem of locally coloring a
bipartite graph in 2 colors [13]. They studied both the problem of exact coloring
where violations are not allowed (namely, monochromatic edges are not allowed)
and the relaxed version where only a small fraction of the edges are allowed to
be monochromatic. They show a CentLocal algorithm for exact 2-coloring with
query complexity Õ(

√
n) for graphs with good mixing time and a lower bound of

Ω(n) for deterministic algorithms which are stateless. The upper bound proceeds
as follows. An anchor vertex is selected, for which the color is determined. On
query v, a pair of random walks from v and from the anchor, of length Õ(

√
n), are

performs. With high probability, there is a collision between the random walks
and hence the color of v can be determined by the length of the path between v
and the anchor.

For the 2-dimensional grid they provide a deterministic algorithm whose probe
complexity is O(

√
n) by taking a difference approach. They show that it is possi-

ble to traverse the grid in a straight line. This leads to a deterministic 2-coloring
algorithm as follows. They traverse the grid in both directions from the queried
vertex, v. Then they traverse the grid from an anchor vertex in one of the direc-
tions. Again, since these paths intersect, the color of v is determined by the length
of the path between v and the anchor and the color of the anchor. The result is
extended to k-dimensional grids where the probe complexity is O(kn

k−1
k).

In general graphs they obtain a tradeoff between the number of anchors and
the size of the memory their algorithm uses. In this case they introduce a pre-
processing step to the algorithm. In the pre-processing step they read the entire
graph and determine the color of all the anchors which are selected uniformly
at random. Then the color of each vertex can be determined by the length of
a shortest path to the nearest anchor, which can be found, on expectation, after
exploring O(|V |/α) vertices.

For trees, they take a similar approach but provide a difference trade-off. Their
algorithm is allowed to err on a small number edges. Specifically they obtain the

following trade-off: For an input graph T = (V, E), which is a tree, there ex-
ists a randomized algorithm (with no preprocessing) which has probe complexity
O(n log n/α) and for which the number of monochromatic edges is at most α − 1.

5.3 Acyclic Orientation with Bounded Reachability (obr)
The Acyclic Orientation with Bounded Reachability problem (obr) [18, 17] is as
follows. An instance of the problem is an undirected graph G = (V, E). A solution
is a directed graph H = (V, A) such that the underlying undirected graph of H is G.
The objective function is to minimize the reachability of H, where the reachability
of H is the maximum number of vertices which are reachable via a directed path
from any vertex.

The results that we overview here are in terms of the size of the obtained
reachability rather than it relation to the optimal one.

In the CentLocal context the goal is to design an algorithm that answers
queries of the form “is the edge from u to v is outgoing?”.

Solving the obr problem serves as the first step in the technique of transform-
ing sequential greedy algorithms to a CentLocal-algorithms (see Section 3.1).

Randomized Algorithms. The randomized ranking technique for obr was first
studied by Nguyen and Onak [47] and Onak [48]. The orientation in the ranking
technique is computed as follows: (1) each vertex v is assigned a uniform number
in the interval [0, 1] which we denote by r(v), (2) an edge is oriented from u to v
if the rank of r(u) > r(v). Nguyen and Onak used this orientation in the context
of sublinear approximation algorithms and showed that the expected reachability
under this randomized orientation is e∆/∆ (see [48, Lemma 2.3.1]). The rank-
ing technique was also applied by Yoshida et al. [61] and Onak et al. [49] in the
context of sublinear approximation algorithms to obtain better algorithms by re-
sorting to pruning the probing of the reachability set (see Section 3.5). Mansour et
al. [45] and Reingold and Vardi [54] studied the orientation problem in the context
of CentLocal algorithms. Reingold and Vardi [54] showed that the reachability
size is 2O(∆) · log n w.h.p. while using O(log n) space (see also [42, Lemma 3]).
In fact, Reingold and Vardi [54, Thm. 8.4] showed that this reachability guarantee
holds for a wider class of graphs which they call ∆-light graphs (see Section 4.1.1
for more details).

Deterministic Algorithms. Even et al. [18, 17] designed and analyzed a
stateless, and deterministic CentLocal algorithm for obr. They observed that
the obr problem can be reduced to a coloring problem, as follows. Given a c-
coloring of the vertices of the graph one can simply orient the edges from a

higher color to a lower one (essentially, colors serve as ranks). The orienta-
tion induced by the c-coloring is acyclic (since edges are only directed down-
wards). Moreover, the length of the longest directed path is c. Hence, the ob-
tained reachability size is O(∆c). Now, one can apply any of the CentLocal al-
gorithms for c-coloring from Section 5.1 to obtain a CentLocal-algorithm for
obr as follows: given an edge (u, v) query the CentLocal-algorithm for obr
first query whether {u, v} ∈ E, and then queries the colors of each vertex.
Plugging in the ∆2-Color algorithm by [18, 17] (see also Section 5.1) yields
a CentLocal

[
O(∆4 · log∗ n)

]
-algorithm for obr that obtains reachability of size

∆O(∆2). One can obtain an even better reachability by using the (∆ + 1)-Color
deterministic, stateless CentLocal

[
∆O(

√
∆·log2.5 ∆) · log∗ n

]
-algorithm by Fraigni-

aud, Heinrich, and Kosowski [23] (this algorithm uses the ∆2-Color algorithm
by [18, 17] as a “black-box”, see Section 5.1) and obtain a reachability of ∆O(∆).
Although, at first this look like a too high price to pay to get this reduced reach-
ability, we will see in Section 5.4 that this lower reachability with higher probe-
complexity is beneficial.

5.4 Maximal Independent Set (mis) and Maximal Matching
(mm)

Given a graph G = (V, E) a maximal independent set (mis) of G is a set of vertices
such that each pair of vertices does not constitute an edge, i.e., they are indepen-
dent, and that adding any vertex which is not in the mis violates the independence
requirement, i.e., the set is maximal w.r.t. inclusion. In the CentLocal model,
an algorithm answers a query of the form “is vertex v is the mis ?” (note that
CentLocal algorithms gives answers to queries which are consistent which a spe-
cific mis). The goal in the maximal matching (mm) problem is to find a subset of
edges of G such that the induced subgraph w.r.t. to these edges is of degree 1,
i.e, it is a matching, and that adding any edge which is not in the matching vio-
lates the matching requirement, i.e., the matching is maximal w.r.t. set inclusion.
The two problems are closely related as the mm problem is simply mis on the line
graph of G.1 In turn, a query for a CentLocal algorithm for the mm problem is “is
edge e is an mm ?”. We overview the state-of-the-art deterministic and randomized
algorithms for mis in the following paragraphs.

Deterministic Algorithms. There is a local-sequential (greedy) algorithm for
mis: scan the vertices according to an arbitrary order and add a vertex v to the mis if

1In the line graph of G each edge is mapped to a vertex, and edges connect vertices which
correspond to adjacent edges in G.

none of its neighbors, that appear before v in this arbitrary order, are already in the
mis. Now, by applying the Localization of Local-Sequential Algorithms technique
(see Sec. 3.1) with an underlying CentLocal

[
p
]

algorithm for the obr problem
that achieves reachability r, we obtain a stateless, deterministic CentLocal

[
p · r

]
-

algorithm. Note that we are interested in minimizing the product p · r. Plug-
ging in the induced obr deterministic, stateless CentLocal

[
∆O(

√
∆·log2.5 ∆) · log∗ n

]
-

algorithm by Fraigniaud, Heinrich, and Kosowski [23] (see Section 5.1) which
obtains a reachability of ∆O(∆) gives a CentLocal

[
∆O(∆) · log∗ n

]
-algorithm for mis.

Randomized Algorithms. Ghaffari [25] provides a randomized algorithm for
mis. The algorithm proceeds in ` rounds. In each round, t, each vertex has a
desired level, denoted by pt(v) to join the mis. Initially the desire of all the vertices
to join the mis is the same. Specifically, p0(v) = 1/2 for all v ∈ V . In each round
t, each vertex is marked with probability pt(v). Every vertex which is marked and
all its neighbors are un-marked, joins the mis. All the vertices that join the mis and
their neighbors are removed from the graph. To proceed to the next iteration the
desired level of all the vertices in the graph is updated as follows. The effective
degree of a vertex v at round t, is defined to be the sum of the desire of its neighbors
to get into the mis, namely, dt(v) =

∑
u∈N(v) pt(u). The desire of a vertex to get into

the mis is decreased by a factor of 2 if its effective degree is greater or equal to 2
and otherwise it is increased by a factor of 2 (unless it becomes greater than 1/2,
in which case it is set to 1/2, which is the maximum level of desire). Intuitively, if
the desire of the neighbors of a vertex, v, to join the mis is low, then v increases its
desire to get into the mis and vice versa. This makes sense since if the desire of its
neighbors to get into the mis, namely, the effective degree of v, is low, then v has a
good chance of getting into the mis. One the other hand, if v has a high effective
degree, but a constant fraction of its neighbors has a low effective degree the there
is a good chance that one of the neighbors of v will get into the mis, and hence, v
will be removed. Therefore, the only problem is when v has a high effective degree
but the same is true for most of its neighbors. The main Lemma in [25] shows that
this situation can not happen for too many rounds. Intuitively, the reason is that
if most of v’s neighbors have high effective degree then v’s effective degree is
decreasing (because desired levels of most of its neighbors are decreasing). This
leads to the following theorem.

Theorem 1 ([25]). For each node v, the probability that v has not made its deci-
sion within the first Ω(log dv + log 1/ε) rounds, is at most ε. This hold even if the
coin tosses outside N+

2 (v) are determined adversarially.

Building on this, with the shattering technique (see Section 3.2), the algo-
rithm in [25] obtains an improved time and space complexity of 2O(log2 ∆) log3 n
and 2O(log2 ∆) log2 n, compared to 2O(log3 ∆) log3 n and 2O(log3 ∆) log2 n of [40].

5.5 Approximate Maximum (Weighted) Matching (mcm, mwm)

Given a graph G = (V, E) a maximum cardinality matching (mcm) is a subset of the
edges of G such that each vertex in the graph is incident to at most one edge, i.e.,
a matching, which has the highest number of edges among the possible matchings
in G. An α-approximate mcm where 0 < α < 1, is a matching which its cardinal-
ity is at least α fraction of the mcm. In the maximum weighted matching (mwm)
problem each edge is assigned a positive weight. Now, the goal in mwm is to out-
put matching with the highest total weight, and analogously in the α-approximate
mwm the goal is to output a weighted matching which its weight is at least an α
fraction from the mwm. As in the mm problem a query for a CentLocal algorithm
for the mcm or mwm problems is “Does edge e belong to the matching?”. In this
section we overview the state-of-the-art deterministic and randomized algorithms
for these problems.

Deterministic Algorithms. A (1 − ε)-approximate mcm

CentLocal
[
(log∗ n)O(1/ε) · 2O(∆1/ε)

]
-algorithm is presented in [18, 17, Thm, 19].

Similarly to previous work (both in the DistLocal and CentLocal mod-
els) [47, 43, 46], this algorithm for mcm is based on the augmenting paths
framework of Hopcroft and Karp [30]. The augmenting path framework proceeds
in iterations, where in each iteration it constructs a new matching based on
the matching from the previous iteration (starting from the empty matching).
Each iteration computes an mis over a subset of paths with special properties
(which are a function of the matching from the previous iteration) called
augmenting paths. A CentLocal algorithm is obtained by applying the local
improvement technique by Nguyen and Onak [47] (see Section 3.6) together
with a deterministic CentLocal algorithm for mis from Section 5.4. Roughly
speaking, in each iteration of the local improvement technique a CentLocal
oracle is designed for the corresponding matching, where a query oracle for this
matching is given. Then, simulating the set of augmenting paths can also be
done locally followed by an application of a deterministic mis on these paths, and
updating the matching to the current iteration’s matching. An (1−ε)-approximate

mwm CentLocal
[
(log∗ n)O(1

ε log 1
ε) ·

(
(wmin(ε))−1

)O(∆1/ε)
]
-algorithm is presented

in [17, Thm. 24], where wmin(ε) denote the smallest weight which is bigger than
ε/n. Similarly to the (1 − ε)-approximate mcm the mwm algorithm is obtained
by applying the local improvement technique by Nguyen and Onak [47] (see
Section 3.6) together with a deterministic CentLocal algorithm for (a variant
of) mis. The algorithm which this CentLocal algorithm builds on is the parallel
approximation algorithm of Hougardy and Vinkemeir [31].

Fischer and Ghaffari [22] presented a deterministic

CentLocal
[
2O(log3 ∆) · log∗ n

]
algorithm for Θ(1)-approximate mcm.2 The

idea is as follows. First, transform the graph to a bipartite graph by (1) consider-
ing an arbitrary orientation of the edges,(2) have two copies for each vertex which
correspond to out-edges and in-edges, (3) map each edge of the original graph to
an edge between the corresponding “out to in” vertices. The obtained graph is
bipartite. Now, they compute a fractional approximate mcm and round it to obtain
an integral approximate mcm in O(log2 ∆) rounds in the DistLocal model over the
bipartite graph. Going back to the input graph “corrupts” the matching at hand
and results with an induced subgraph of degree 2. On this they compute a mis in
O(log∗ ∆) rounds [50] this incurs a factor of 1

3 to the approximation. Moreover,
this mis algorithm requires a ∆2-Color coloring of the graph. Hence, the total
number of probes follows from the ∆2-Color algorithm from Sec 5.1 and by
simulating the DistLocal algorithm of O(log2 ∆) by a CentLocal algorithm (see
Section 4.1.1).

Mansour, Patt-Shamir, and Vardi [44, Sec. 5] showed how to reduce the prob-
lem of computing an approximate mwm to computing an approximate mcm as fol-
lows: given a CentLocal [t(n)]-algorithm for α-approximate mcm, then there is a
CentLocal [∆ · t(n)]-algorithm for α

8 -approximate mwm. The idea is to partition
the edges of the graph into disjoint parts of edges, which have the same weight
up to a multiplicative constant factor, and to compute an α-mcm on each of them.
Now, an edge is in the output weighted matching if it is in the matching of its
part, and if its weight is the maximum among the adjacent edges which are in the
matchings of the other parts.

Randomized Algorithms. Yoshida, Yamamoto, and Ito [61] studied the (1−ε)−
mcm problem in the context of sublinear approximation algorithms. Building on
their result, Levi, Rubinfeld and Yodpinyanee [40] provide a (1−ε)-approximation
CentLocal algorithm for mcm. The complexities of their algorithm are polynomial
in ∆, exponential in 1/ε and poly-logarithmic in n. To obtain their algorithm they
use amplification as described in Section 3.4.

5.6 Minimum Vertex Cover (vc)

In the Minimum Vertex Cover problem (vc) the goal is to compute a minimum
cardinality subset of the vertices such that each edge is incident to a vertex in the
cover. Analogously, in the weighted variant, there is a weight function that assigns
nonnegative weights for each vertex. Now, the goal is to compute a minimum

2The actual result of [22, Thm. 1.1] is a (2 + ε)-approximate mcm. To obtain this stronger
approximation, an additional factor of O(log 1

ε
) is introduced to the number of rounds of the

DistLocal model.

weight subset of the vertices such that it covers the edges. A query to a CentLocal
algorithm for vc is “is vertex v is in a vc?”.

Vertex cover approximation algorithms in the DistLocal model are abun-
dant. For a summary of results see [6, 4]. Current state-of-the-are for (2 + ε)-
approximation weighted vc in the DistLocal model is by Bar-Yehuda, Censor-
Hillel, and Schwartzman [6] which obtained a deterministic DistLocal algorithm
with O

(
log ∆

ε log log ∆

)
rounds. In turn, simulating this algorithm in the CentLocal

model (see Sec. 4.1.1) results with a probe complexity which is superpolynomial
in the maximum degree ∆.

Feige, Mansour, and Schapire [20, Sec. 6] showed that in the case where the
input graph is bipartite (where each vertex knows in which “side” it is) a (1 + ε)-
approximation vc can be computed in the CentLocal model by reducing it to
the (1 − ε)-mcm problem. The reduction is randomized and the obtained ap-
proximation is in expectation. More formally, given an (1 − ε)-mcm there is a
CentLocal

[
O

(
∆1/ε

)]
randomized algorithm. Given a query v the vertex cover

CentLocal algorithm probes the B1/ε(v), and invokes the (1 − ε)-mcm CentLocal
algorithm on each of the edges within this ball. Actually, the radius of the probed
ball is a random variable that attains odd values in [1, 1/ε]. Feige, Mansour, and
Schapire [20, App. D] also obtained the same approximation in he weighted set-
ting.

5.6.1 Lower Bounds

Trevisan proved that any algorithm that outputs, with constant probability, a
(2 − γ, ε)-estimate of the size of the Minimum Vertex Cover, for constant γ and
ε, requires Ω(

√
n) probes to the graph (see proof sketch in [51]). Parnas and

Ron showed that for approximation with multiplicative factor α and additive fac-
tor (constant) ε the query complexity of the problem grows at least linearly with
respect to the average degree as long as it is bounded by O(n/α). These lower
bounds can be adapted to show corresponding lower bounds in the CentLocal
model.

Recently, Feige, Patt-Shamir and Vardi [21] showed the following lower
bound for a variety of approximation ratios. Their lower bound applies even with
respect to strong probes, namely, when probing a vertex v, the list of all the neigh-
bors of v is returned.

Theorem 2 ([21]). For any ε < 1/2, any randomized CentLocal-algorithm that
computes a vertex cover whose size is a (1

2n1−2ε)-approximation to the size of the
minimum vertex cover requires at least εnε strong probes.

Roughly speaking, to prove their lower bound they construct a family of
graphs in which for a large subset of vertices, all the vertices in the subset have

a similar view, and therefore are indistinguishable, but only a single vertex in the
subset needs to be added to the vertex cover. They obtain this property by iden-
tifying vertices with low degree polynomials, which ensure that vertices do not
share too many neighbors, as the intersection of the neighbors corresponds to the
roots of a low degree polynomial.

5.7 Local Sparse Spanning (Sub-)Graphs (lssg)
When dealing with large graphs, it is often important to work with a sparse sub-
graph that maintains essential properties of the original input graph. In a series
of papers [38, 35, 39, 33], the problem of locally constructing (ultra-)sparse sub-
graph while maintaining connectivity was considered (see also survey by Rubin-
feld [56]). Namely, given an edge of the original graph, the algorithm quickly
determines whether this edge belongs to the sparse spanning subgraph without
computing the entire sparsification.

Definition 3. An algorithmA is a Local Sparse Spanning Graph (lssg) algorithm
if, given n, d ≥ 1, a parameter ε ≥ 0, and query access to the incidence-lists
representation of a connected graph G = (V, E) over n vertices and degree at most
d, it provides oracle access to a subgraph G′ = (V, E′) of G such that:

1. G′ is connected.

2. |E′| ≤ (1 + ε) ·n with probability at least 1−1/Ω(n), where E′ is determined
by G and the internal randomness ofA.

By “providing oracle access to G′” we mean that on input (u, v) ∈ E, A returns
whether (u, v) ∈ E′, and for any sequence of edges, A answers consistently with
the same G′.

An algorithm A is an lssg algorithm for a family of graphs C if the above
conditions hold, provided that the input graph G belongs to C.

Note that Item 2 implies that the answers of an lssg algorithm to queries cannot
depend on previously asked queries.

Levi et al. [38] show a lower bound of Ω(
√
|V |) probes per user query for this

problem. With respect to the upper bound they made progress for specific fami-
lies of graphs, but determining the complexity of the problem in general remains
open. For families of graphs with very high expansion, they provide an almost
tight upper bound [38]. For families of graphs which are, roughly speaking, non-
expanding everywhere, and in particular for hyper-finite graphs, Levi et al. [35]
provide an upper bound with probe complexity which is independent of |V |. On
the negative side, they provide a construction of a family of graphs with relatively
weak expansion properties in which the complexity of the problem grows with

n. For the family of graphs with an excluded fixed minor (which in particular
includes planar graphs), [39] provide an algorithm whose probe and time com-
plexities are polynomial in 1/ε and in d. Their algorithm is also useful in the
distributed message-passing setting, in fact, it can be easily adapted to yield an
efficient algorithm in this setting as well. Moreover, subgraph that their algorithm
provides access to is also a good spanner, i.e., distances are approximately pre-
served. Both algorithms in [38] and [39] uses random centers (see Section 3.3.2)
as an initial step to partition the graph.

Recently, Lenzen and Levi [33] provided an lssg algorithm for general
bounded degree graphs with sublinear probe complexity.

Theorem 3 ([33]). There exists an lssg algorithm such that for any graph G over n
vertices of maximum degree at most ∆ and ε > 0, its query complexity, space com-
plexity (length of the random seed), and running time are Õ(n2/3) · poly(1/ε,∆).

Moreover, the algorithm has the additional property that it outputs a spanner.
Specifically, with high probability, for each deleted edge there is a path of O(log n·
(∆ + log n)/ε) hops in the spanning subgraph that connects its endpoints.

Loosely speaking, the idea in [33] is to run two different algorithms for ex-
panding parts and for non-expanding parts of the graph. For the non-expanding
parts, one can borrow techniques from distributed algorithms, since in this case it
is possible to gather all the information on the local neighborhood (specifically,
the O(log n) hop neighborhood) of every vertex. the main focus is thus in design-
ing an algorithm for the expanding parts. The algorithm in [33] is quite different
from the algorithm in [38], as the expansion properties are much weaker than
required by the latter algorithm.

In [38] there is also an algorithm for the weighted case, namely, in the case
where the spanning subgraph the algorithm outputs also has low weight. The
algorithm is designed for graphs with an excluded fixed minor and proceeds by
contracting edges (see Section 3.3.1).

5.8 Approximation to the Maximum (Weight) Spanning Tree
Mansour et al. [44] study the problem of approximated Maximum Spanning Tree.
They provide the following result.

Theorem 4 ([44]). There exists a deterministic CentLocal algorithm, that for any
graph G whose degree is bounded by ∆ and every ε > 0, computes a forest whose
weight is a (1 − ε)-approximation to the maximum spanning tree of G in time
complexity ∆O(1/ε)/ε and probe complexity ∆O(1/ε).

Their algorithm proceeds in 1/ε iterations, where in each iteration all the ver-
tices, in parallel, add another edge to their growing component. Specifically, the

heaviest edge in the respective edge cut is added. An Adaptation of this parallel
algorithm to the CentLocalmodel gives the complexities as stated in Theorem 4.

5.9 CentLocalMechanism Design
In the context of CentLocal mechanism design we consider two problems:
(1) stable matching, and (2) machine scheduling.

In the stable matching problem there are two sets of agents, men and women,
each of cardinality n. Each man and woman have an ordered preference list of
women and men which they would like to be matched. The lists are ordered from
the most preferred match to the least preferred match. The goal is to compute a
matching such that there is no man or woman that prefer each other over their
partners in the computed matching, e.g., the matching is stable. Hassidim, Man-
sour, and Vardi [29, Sec. 3] considered the case in which the lists of the men are
bounded by ∆, and that each woman is picked uniformly at random. Hence, the
input graph is a ∆-light graph. For this case they simulate the Gale-Shapley algo-
rithm [24] for 2∆/ε rounds and obtained a randomized CentLocal-algorithm that
performs O(∆)2∆/ε · log n probes (see Section 4.1.1 for simulation of DistLocal by
CentLocal algorithms where the input graph a is ∆-light graph) and uses a seed
of size O(log n) w.h.p. Moreover, the obtained matching has at most 2n/∆ + εn
unmatched men.

In the machine scheduling problem there are n uniform jobs, and m machines.
Each machine has a positive integral constant (i.e., does not depend on n or m)
speed. The load of a machine is the number of jobs that are allocated to the ma-
chine over its speed. The utility of a machine is the payment it received from the
mechanism minus its load. The machines are the players and their private informa-
tion is their speeds. Each machine declares its bid, which is supposedly its speed.
The first part of the mechanism design is to compute a payment scheme that en-
courages the players to be truthful about their speeds. These “honest” bids enable
the mechanism to compute an allocation that minimizes the maximum load, which
is its goal. Hassidim, Mansour, and Vardi [29, Sec. 5] considered the case where
m = Θ(n) and in which each job selects uniformly at random (w.r.t. the bids) ∆

machines and commit to one of them. Hassidim, Mansour, and Vardi [29] consid-
ered two variants of the machine scheduling problem where in each of them the
set of allowable machines for each job is defined differently. For each case they
simulated an online algorithm (e.g., [5, 10, 60]) to obtain a CentLocal allocation
algorithm (see Section 3.1 for simulation of (online) Local-Sequential Algorithms
in the CentLocal model) and obtained a probe complexity of 2O(∆) · log n, and a
seed length of O(log n) w.h.p. They also showed how to implement a CentLocal
algorithm for the payment scheme in [29, Lemma 5.6, Lemma 5.18]. In the two
studied variants of the problem, Hassidim, Mansour, and Vardi [29, Thm. 5.10,

Thm. 5.20] obtained a truthful mechanism which is a O(log log n)-approximation.
Note that in both problems the underlying graph is a bipartite graph G = (L ∪

R, E). On one side there are selfish agents L each of which picks uniformly at
random ∆ items (or other set of selfish agents) from the other side R. In turn, the
degrees of the vertices in R are distributed binomially with expected degree of ∆.
This input graph is in the family of graphs called ∆-light graphs [54], and admit
fast simulation of local-sequential algorithms as well as DistLocal algorithms in
the CentLocal model (see Sections 3.1, 4.1.1).

6 Local Generator for Evolving Graphs

Random-graph generators are ubiquitous and their importance for simulations and
extrapolations is well established. For many applications we might want to access
just a small portion of an enormous random graph, in which case it would be
preferable to avoid constructing it entirely. In the standard approach, the whole
graph is chosen randomly according to the distribution of the model before an-
swering user queries to the adjacency lists of the graph. In a recent work, Even
et al. [16] proposed to answer queries by generating the graphs on-the-fly while
respecting the probability space of the random graph model. They call this the
problem of local generation of random graphs. Their focus is on evolving ran-
dom graph models and in particular they considered the Barabási-Albert Preferen-
tial Attachment model (BA-graphs) [7] and the random recursive tree (RR-trees)
model [53]. They provide a randomized graph generator, that generates answers
to adjacency list queries of BA-graphs (and RR-trees) in time complexity which is
only poly-logarithmic in the size of the graph. Such a generator outputs answers
to adjacency list queries as if it first picked the graph at random (according to the
respective distribution) and only then answers the queries.

Many evolving random graph models have RR-trees as an underlying struc-
ture, therefore, it could be interesting to extend the results of [16] for a large fam-
ily of evolving graphs. As an even broader objective, one can consider designing
random access generators for other Markov-Chain and stochastic processes.

References
[1] N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-efficient local computation

algorithms. In SODA, pages 1132–1139, 2012.

[2] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, V. Mirrokni, and S.-H. Teng. Local
computation of pagerank contributions. Internet Mathematics, 5(1-2):23–45, 2008.

[3] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vec-
tors. In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Sym-
posium on, pages 475–486. IEEE, 2006.

[4] M. Åstrand and J. Suomela. Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In SPAA 2010: Proceedings of the 22nd
Annual ACM Symposium on Parallelism in Algorithms and Architectures, Thira,
Santorini, Greece, June 13-15, 2010, pages 294–302, 2010.

[5] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM
journal on computing, 29(1):180–200, 1999.

[6] R. Bar-Yehuda, K. Censor-Hillel, and G. Schwartzman. A distributed (2+ε)-
approximation for vertex cover in o(logδ/ε log log δ) rounds. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, pages 3–8, 2016.

[7] A. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

[8] L. Barenboim, M. Elkin, and F. Kuhn. Distributed (∆+1)-coloring in linear (in ∆)
time. SIAM Journal on Computing, 43(1):72–95, 2014.

[9] J. Beck. An algorithmic approach to the lovász local lemma. I. Random Struct.
Algorithms, 2(4):343–366, 1991.

[10] P. Berenbrink, A. Brinkmann, T. Friedetzky, and L. Nagel. Balls into non-uniform
bins. Journal of Parallel and Distributed Computing, 74(2):2065–2076, 2014.

[11] P. Berkhin. Bookmark-coloring algorithm for personalized pagerank computing.
Internet Mathematics, 3(1):41–62, 2006.

[12] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[13] A. Czumaj, Y. Mansour, and S. Vardi. Sublinear graph augmentation for fast query
implementation. Technical report, 2017.

[14] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak. Fast distributed approxima-
tions in planar graphs. In Distributed Computing, pages 78–92. Springer, 2008.

[15] A. Edelman, A. Hassidim, H. N. Nguyen, and K. Onak. An efficient partitioning
oracle for bounded-treewidth graphs. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques - 14th International Workshop,
APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ,
USA, August 17-19, 2011. Proceedings, pages 530–541, 2011.

[16] G. Even, R. Levi, M. Medina, and A. Rosén. Sublinear random access generators
for preferential attachment graphs. CoRR, abs/1602.06159, 2016.

[17] G. Even, M. Medina, and D. Ron. Best of two local models: Local centralized and
local distributed algorithms. CoRR, abs/1402.3796, 2014.

[18] G. Even, M. Medina, and D. Ron. Deterministic stateless centralized local algo-
rithms for bounded degree graphs. In Algorithms - ESA 2014 - 22th Annual Eu-
ropean Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, pages
394–405, 2014.

[19] G. Even, M. Medina, and D. Ron. Distributed maximum matching in bounded
degree graphs. In Proceedings of the 2015 International Conference on Distributed
Computing and Networking, ICDCN 2015, Goa, India, January 4-7, 2015, pages
18:1–18:10, 2015.

[20] U. Feige, Y. Mansour, and R. E. Schapire. Learning and inference in the presence
of corrupted inputs. In Proceedings of The 28th Conference on Learning Theory,
COLT 2015, pages 637–657, 2015.

[21] U. Feige, B. Patt-Shamir, and S. Vardi. On the probe complexity of local computa-
tion algorithms. arXiv preprint arXiv:1703.07734, 2017.

[22] M. Fischer and M. Ghaffari. Deterministic distributed matching: Simpler, faster,
better. arXiv preprint arXiv:1703.00900, 2017.

[23] P. Fraigniaud, M. Heinrich, and A. Kosowski. Local conflict coloring. In Founda-
tions of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
625–634. IEEE, 2016.

[24] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[25] M. Ghaffari. An improved distributed algorithm for maximal independent set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 270–277,
2016.

[26] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

[27] M. Göös, J. Hirvonen, R. Levi, M. Medina, and J. Suomela. Non-local probes do not
help with many graph problems. In International Symposium on Distributed Com-
puting, pages 201–214. Springer Berlin Heidelberg, 2016. Full version is available
on arXiv.

[28] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions
for approximation and testing. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages
22–31, 2009.

[29] A. Hassidim, Y. Mansour, and S. Vardi. Local computation mechanism design. ACM
Trans. Economics and Comput., 4(4):21, 2016.

[30] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM Journal on computing, 2(4):225–231, 1973.

[31] S. Hougardy and D. E. Vinkemeier. Approximating weighted matchings in parallel.
Inf. Process. Lett., 99(3):119–123, 2006.

https://arxiv.org/abs/1512.05411
https://arxiv.org/abs/1512.05411

[32] G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th
international conference on World Wide Web, pages 271–279. ACM, 2003.

[33] C. Lenzen and R. Levi. A local algorithm for the sparse spanning graph problem.
CoRR, abs/1703.05418, 2017.

[34] C. Lenzen and R. Wattenhofer. Leveraging Linial’s locality limit. In Distributed
Computing, pages 394–407. Springer, 2008.

[35] R. Levi, G. Moshkovitz, D. Ron, R. Rubinfeld, and A. Shapira. Constructing near
spanning trees with few local inspections. Random Structures & Algorithms, pages
n/a–n/a, 2016.

[36] R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Trans. Algorithms, 11(3):24:1–24:13, 2015.

[37] R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs.
CoRR, abs/1402.3609, 2014.

[38] R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs. In
Proc. APPROX/RANDOM, pages 826–842. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014.

[39] R. Levi, D. Ron, and R. Rubinfeld. A local algorithm for constructing spanners in
minor-free graphs. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, pages 38:1–38:15, 2016.

[40] R. Levi, R. Rubinfeld, and A. Yodpinyanee. Local computation algorithms for
graphs of non-constant degrees. Algorithmica, pages 1–24, 2016.

[41] N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[42] P. London, N. Chen, S. Vardi, and A. Wierman. Distributed optimization via local
computation algorithms. 2017.

[43] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate match-
ing. J. ACM, 62(5):38:1–38:17, 2015.

[44] Y. Mansour, B. Patt-Shamir, and S. Vardi. Constant-time local computation algo-
rithms. In Approximation and Online Algorithms - 13th International Workshop,
WAOA 2015, Patras, Greece, September 17-18, 2015. Revised Selected Papers,
pages 110–121, 2015.

[45] Y. Mansour, A. Rubinstein, S. Vardi, and N. Xie. Converting online algorithms to
local computation algorithms. In Automata, Languages, and Programming, pages
653–664. Springer, 2012.

[46] Y. Mansour and S. Vardi. A local computation approximation scheme to maximum
matching. In APPROX-RANDOM, pages 260–273, 2013.

[47] H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local im-
provements. In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th An-
nual IEEE Symposium on, pages 327–336. IEEE, 2008.

[48] K. Onak. New sublinear methods in the struggle against classical problems, Septem-
ber 2010.

[49] K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. A near-optimal sublinear-time al-
gorithm for approximating the minimum vertex cover size. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
Kyoto, Japan, January 17-19, 2012, pages 1123–1131, 2012.

[50] A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks.
Distributed computing, 14(2):97–100, 2001.

[51] M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear
time and a connection to distributed algorithms. Theoretical Computer Science,
381(1):183–196, 2007.

[52] D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

[53] B. Pittel. Note on the heights of random recursive trees and random m-ary search
trees. Random Struct. Algorithms, 5(2):337–348, 1994.

[54] O. Reingold and S. Vardi. New techniques and tighter bounds for local computation
algorithms. J. Comput. Syst. Sci., 82(7):1180–1200, 2016.

[55] R. Rubinfeld. Sublinear time algorithms. In Proc. International Congress of Math-
ematicians, volume 3, pages 1095–1111, 2006.

[56] R. Rubinfeld. Can we locally compute sparse connected subgraphs? In International
Computer Science Symposium in Russia, pages 38–47. Springer, Cham, 2017.

[57] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local computation algorithms. In
ICS, pages 223–238, 2011.

[58] T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz. To randomize or
not to randomize: space optimal summaries for hyperlink analysis. In Proceedings
of the 15th international conference on World Wide Web, pages 297–306. ACM,
2006.

[59] J. Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40,
2013.

[60] U. Wieder. Balanced allocations with heterogenous bins. In Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms and architectures, pages
188–193. ACM, 2007.

[61] Y. Yoshida, M. Yamamoto, and H. Ito. Improved constant-time approximation algo-
rithms for maximum matchings and other optimization problems. SIAM J. Comput.,
41(4):1074–1093, 2012.

	Introduction
	The Model
	Techniques
	Localization of Local-Sequential Algorithms
	Shattering
	Partitioning
	Partition via Contraction of Edges
	Partition via Centers

	Amplification via Far Probes
	Partial Exploration of Reachability Set
	Simple Pruning of the Reachability Set
	Efficient Exploration of the Reachability Set

	Local Improvement

	Connections to other Models
	Relation to the Distributed Local Model ()
	Mutual Simulations between and Stateless
	Simulating Far Probes in the Model
	Carrying Lower bounds from the model to the model

	Relation to Property Testing
	The Relation to Sub-linear approximation

	State-of-the-Art Algorithms
	Graph Coloring Algorithms
	2-Coloring of Bipartite Graphs
	Acyclic Orientation with Bounded Reachability (obr)
	Maximal Independent Set (mis) and Maximal Matching (mm)
	Approximate Maximum (Weighted) Matching (mcm, mwm)
	Minimum Vertex Cover (vc)
	Lower Bounds

	Local Sparse Spanning (Sub-)Graphs (lssg)
	Approximation to the Maximum (Weight) Spanning Tree
	 Mechanism Design

	Local Generator for Evolving Graphs
	Summary
	Overview of Talks

