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Abstract

We review recent results regarding DAG automata and regular DAG lan-
guages and point out some open problems that may be interesting to work
on. Moreover, a notion of DAG transducers is suggested.

1 Introduction
The traditional objects studied in formal language theory are string languages,
string transductions, and the devices that define or compute them. However, for
many application areas more general structures than strings need to be considered,
which is why an almost equally rich theory addressing the generation and transfor-
mation of trees and graphs has been developed over the years. The generalization
of regular (or right-linear) string grammars and finite-state string automata to reg-
ular tree grammars and (bottom-up) finite-state tree automata is the easiest step.
There are almost no surprises at all, and all the basic properties, results, and al-
gorithms carry over, without essential losses in efficiency. Tree transductions and
context-free tree grammars are interesting because they provide more challenges,
yet offer interesting results. Their theory is also very well understood today.

Graph languages and graph transformations take this a step further. However,
graphs are somewhat complicated objects. A string has a beginning and an end,
which offers a natural sense of direction for an automaton to process it. Similarly,
a tree can be processed from the root towards the leaves or vice versa. For a graph,
a similar sense of direction is missing, which at the very least makes it difficult to
conceive a reasonable notion of deterministic graph automata. This may explain
why there does not seem to be a widely accepted notion of graph automata.

However, there exists a structure in between trees and graphs that does offer a
similar sense of direction as the tree: the directed acyclic graph (DAG). A DAG
can be seen as a tree (or forest) with sharing of common subtrees allowed. Like a
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Figure 1: DAG capturing (the basic aspects of) the meaning of “John desperately
wants Mary to believe him, and she claims she does”. The first outgoing edge
of ‘want’, ‘believe’ or ‘claim’ (labelled by arg0) represents the agent relation
whereas the second (labelled by arg1) represents the patient relation and manner
modifies the wanting.

tree, a DAG has roots and leaves (nodes without incoming and outgoing edges, re-
spectively), hence it, too, offers obvious directions in which it can be processed by
an automaton: either top down or bottom up. Interestingly, this has hitherto not led
to more than the occasional paper formalizing and studying some notion of DAG
automata. However, now interest in such automata rises, triggered by new devel-
opments in natural language processing, and especially by research on semantic
parsing and the Abstract Meaning Representation (AMR, see [2]). Abstracting
from some details, a semantic representation of a natural language sentence is a
(possibly multi-rooted) DAG whose node labels are the concepts occurring in the
sentence and whose edges represent their “argument” relation. A (simplified) ex-
ample is shown in Figure 1. Note that, while the DAG could be “unfolded” into a
tree, this would be inappropriate because it would not faithfully represent the fact
that John wants Mary to believe him (rather than some other John). Moreover,
what John wants is identical to what Mary claims she does.

DAG automata for semantic representations such as AMR were first proposed
by Quernheim and Knight [19, 20], taking inspiration from early work by Kami-
mura and Slutzki [13]. This work was continued in [3, 4, 7]. Older work on (other
types of) DAG automata can be found in [14, 5, 21, 12, 18, 6, 8, 1, 17, 10].

The remainder of this paper reviews some results of the papers mentioned
above, and proposes potential avenues for future research. In particular, different
options regarding the formalization of DAGs and DAG automata are discussed, a
corresponding notion of regular DAG grammars is defined, and a class of DAG
transducers is suggested.



2 DAGs and DAG Automata
Even more so than in the tree case, a theory of DAG automata may be built upon
different variants of DAGs and DAG automata. To mention some of the most ob-
vious options, one may consider labelled or unlabelled nodes and edges; DAGs
may be ordered in the sense that the incoming and the outgoing edges of each
node form a sequence, or unordered, in which case they simply form a set. DAGs
may be singly rooted or allowed to have any number of roots. A rule of a DAG
automaton may process nodes with a fixed in- and out-degree, or there may be a
mechanism by which arbitrarily many incoming and outgoing edges can be pro-
cessed. Compared to the world of tree automata, the latter distinction corresponds
to the one between ranked and unranked tree automata.

The example illustrated in Figure 1 seems to suggest that, if motivated by
semantic representation similar to AMR, DAGs should be node and edge labelled,
unordered (at least as regards incoming edges), multi-rooted, and unranked. The
latter quite obviously holds for incoming edges, but also for outgoing ones as there
can be a potentially arbitrary number of modifiers such as manner attached to a
concept. However, to study basic formal properties it is useful to choose a simple
model, especially if it can be shown to be able to simulate more complex ones.
Therefore, we shall consider a simplified setting in this paper, taken from [4]:
regular DAG languages consist of node-labelled ordered DAGs of bounded rank,
with no restriction on the number of roots. We shall discuss later which of these
assumptions make a difference and which do not. Most do not.

Let us first compile some basic notation and terminology. For n ∈ N, we let
[n] = {1, . . . , n}. As usual, an alphabet is a finite set Σ whose elements are called
symbols. The set of finite strings over Σ is denoted by Σ∗, the empty string by λ,
and the powerset of Σ by 2Σ. By abuse of notation the canonical extensions of a
function f : Σ→ ∆ to functions from Σ∗ to ∆∗ and from 2Σ to 2∆ are denoted by f
as well. For w ∈ Σ∗, the set of all symbols appearing in w, i.e., the smallest set S
such that w ∈ S ∗, is denoted by [w]. Given a binary relation→ ⊆ A2 on a set A,
we denote its transitive closure by→+.

Definition 2.1 (graph). A Σ-graph is a tuple G = (VG, EG, labG, inG, outG) con-
sisting of

• finite disjoint sets VG and EG of nodes (or vertices) and edges, respectively,
• a node labelling labG : VG → Σ, and
• mappings inG, outG : V → E∗ which assign to each node a sequence of

ingoing and outgoing edges in such a way that each e ∈ EG occurs exactly
once in all the inG(u), u ∈ VG, and exactly once in all the outG(v), v ∈ VG.

Thus, every edge e has a unique source srcG(e) and a unique target tarG(e),
which are the nodes u and v, respectively, such that e occurs in outG(u) and in



inG(v). Notions such as paths, cycles, directedness of paths, the empty Σ-graph ∅,
and the disjoint union G ]G′ of Σ-graphs are defined in the usual way. For future
use, let us be a bit more precise regarding paths: a path from u ∈ VG to v ∈ VG

is an alternating sequence v0e1v1 · · · envn of edges such that v0 = u, vn = v, and
{vi−1, vi} = {srcG(ei), tarG(ei)} for all i ∈ [n].

A vertex v ∈ VG is a leaf if outG(v) = λ (the empty edge sequence). Deviat-
ing slightly from traditional mathematical terminology, we call v ∈ VG a root if
inG(v) = λ. Thus, the two notions are duals; v being a root does not imply that
every other vertex can be reached from v.

Definition 2.2 (DAG and DAG automaton). A Σ-DAG (or simply DAG) is a Σ-
graph that does not contain any directed cycle. The set of all nonempty connected
Σ-DAGs is denoted by by DΣ. A DAG language is a subset of DΣ, for some
alphabet Σ.

A DAG automaton is a triple A = (Q,Σ,R) consisting of a set of states Q, an
alphabet Σ, and a set R of rules, all finite. Each rule is of the form α

σ
←→ β with

σ ∈ Σ and α, β ∈ Q∗. Such a rule is also called a σ-rule, and the state sequences α
and β are its head and tail, respectively.

A run of A on a Σ-DAG D is a mapping ρ : ED → Q such that the rule

ρ(inD(v))
labD(v)
←→ ρ(outD(v)) 1

is in R for all v ∈ VD. A accepts D if a run on D exists. The DAG language
accepted by A is the set L(A) = {D ∈ DΣ | A accepts D}. A DAG language that
can be accepted by a DAG automaton is called a regular DAG language.

Note that, by the preceding definition, only DAGs consisting of a single (non-
empty) connected component are in DΣ and thus in L(A). This is a convenient
convention because every Σ-DAG D is a disjoint union of DAGs D1, . . . ,Dk ∈ DΣ

for some k ∈ N, and thus D admits a run if and only if each Di does. In other
words, the language all Σ-DAGs accepted by A is simply the closure L(A)] =

{D1]· · ·]Dk | k ∈ N,D1, . . . ,Dk ∈ L(A)} of L(A) under disjoint union. Therefore,
L(A) is the more reasonable object to study, as questions such as the emptiness and
finiteness problem are uninteresting for L(A)] (which is never empty and is finite
iff L(A) = ∅ iff L(A)] = {∅}).

Clearly, trees over Σ “are” those elements of DΣ in which each node has
in-degree at most 1 (the root has in-degree 0 and the others have in-degree 1).
A DAG automaton in which all rule heads are in {λ} ∪ Q is thus nothing else
than an ordinary finite-state tree automaton, and the tree languages accepted by
DAG automata are exactly the regular tree languages. (Note that, since DAG
automata explicitly distinguish rules applying to roots from those applying to

1Recall that ρ is extended to sequences of nodes.



non-roots, no final or initial states are required. If a bottom-up tree automaton
has a rule σ(q1, . . . , qk) → q, then the corresponding DAG automaton contains
the rule q

σ
←→ q1 · · · qk, and if q is a final state it additionally contains the rule

λ
σ
←→ q1 · · · qk.)

The reader may have noticed that the definitions of DAGs and DAG automata
are entirely symmetric with respect to the direction of edges: the dual of a DAG is
obtained by reversing all edges, thus turning its DAGs “upside down”, and the dual
of a DAG automaton A is obtained by turning every rule α

σ
←→ β into β

σ
←→ α.

Obviously, the dual of A accepts the dual of L(A), and thus the class of regular
DAG languages is invariant under taking duals.

Let us briefly discuss some of the alternatives mentioned earlier.

Edge Labels and Unordered DAGs

Edge labels can easily be simulated by representing an `-labelled edge from u to
v by an intermediate node w with label `, and turning the original edge into two
unlabelled edges from u to w and from w to v. Moreover, if we regard a rule
α

σ
←→ β as a shorthand for all rules α′

σ
←→ β′ with α′ and β′ being reorderings

of α and β, respectively, we effectively view DAGs as unordered DAGs.
Thus, essentially no power is lost by considering ordered DAGs. Instead,

something is gained, namely a meaningful notion of determinism: a DAG automa-
ton A is top-down deterministic if it does not contain any distinct rules α

σ
←→ β

and α′
σ′

←→ β′ with (α, σ) = (α′, σ′). A is bottom-up deterministic if its dual is
top-down deterministic. Clearly, these notions coincide with the usual ones when
restricted to tree automata (in their disguise as a special case of DAG automata). It
is well-known that, in contrast to bottom-up deterministic tree automata, top-down
deterministic ones cannot accept all regular tree languages, a counterexample be-
ing the finite tree language {σ(a, b), σ(b, a)}. Viewed as a DAG language, this
means that it is not a top-down deterministic regular DAG language, and thus its
dual is not bottom-up deterministic and their union σ

a b ,

σ

b a , σ

a b

, σ

b a


is neither. In other words, there are (finite) regular DAG languages which are
neither top-down nor bottom-up deterministically regular [3].

Unranked DAG Automata

The definition of DAG automata may be generalized to the unranked case in a
similar way as for tree automata; see also [17, 7], where this is done in the un-
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Figure 2: Binarizing a node of in-degree 3 and out-degree 2

ordered setting. One simply generalizes rules by letting their heads and tails be
regular expressions over Q.2 Then ρ : ED → Q is a run if for all v ∈ VD there is a

rule α
labD(v)
←→ β in R such that ρ(inD(v)) ∈ L(α) and ρ(outD(v)) ∈ L(β).

As in the tree case, there is a close correspondence between ranked and un-
ranked DAG automata via an encoding that replaces every node by a sub-DAG in
which no node has more than two incoming or outgoing edges. A simple encod-
ing of this type is illustrated in Figure 2. Now, an unranked DAG automaton can

be binarized accordingly. To see this, consider a rule α
labD(v)
←→ β (where α and β

are now regular expressions over Q). For γ ∈ {α, β}, let Aγ = (Qγ,Q, δγ, qγ, Fγ) be
a nondeterministic finite-state automaton (NFA) accepting L(γ).3 Then the bina-
rized (ranked) DAG automaton contains the following rules simulating Aα and Aβ

on the binarized sub-DAG:

1. λ
σ
←→ qα (start in initial state of Aα), qp

σ
←→ q′ for all q′ ∈ δα(q, p)

(process the next incoming edge, labelled p ∈ Q), and q
σ
←→ qβ for all

q ∈ Fα (switch from final state of Aα to initial state of Aβ), and
2. q

σ
←→ q′p for all q′ ∈ δβ(q, p) (process the next outgoing edge, labelled

p ∈ Q) and q
σ
←→ λ for all q ∈ Fβ (finish successfully).

2[17, 7] do this for the unordered case and require that the regular expressions used specify
commutative regular languages.

3Thus, Aγ consists of the set Qγ of states, the input alphabet Q, the transition function δγ : Qγ×

Q→ 2Qγ , the initial state qγ ∈ Qγ, and the set Fγ ⊆ Qγ of final states.



Let bin(D) denote the binarized version of a DAG D, and let A be the orig-
inal unranked DAG automaton. Then it should be clear that the binarized DAG
automaton accepts the DAG language bin(L(A)). As a consequence, almost all
conceivable decidability and undecidability results and many other properties can
be transferred from ranked to unranked DAG automata and vice versa.

In [7] an additional, more general binarization is presented, which can be use-
ful from an efficiency point of view. Rather than replacing every node by a spine
of a fixed form, it creates the sub-DAG to be used on the basis of a given (binary)
tree decomposition of the DAG. This results in a more efficient membership test,
provided that a good tree decomposition of the input DAG is known.

3 DAG Grammars
As is the case for finite-state tree automata, a corresponding grammar type can
be defined in a straightforward way. By duality, regular DAG grammars can be
defined from a top-down or bottom-up perspective. Here we use the former, in
order to maintain the analogy with regular tree grammars.

Definition 3.1 (regular DAG grammar). A (top-down) regular DAG grammar is
a triple G = (Ξ,Σ,R) consisting of disjoint finite alphabets Ξ and Σ of nontermi-
nals and terminals, and a finite set R of rules. Each rule is of the form α

σ
−→ β,

where α, β ∈ Ξ∗ and σ ∈ Σ.
Let D be a (Σ ∪ Ξ)-DAG in which all nodes with labels in Ξ are leaves of

in-degree 1. If R contains a rule ξ1 · · · ξk
σ
−→ ξ′1 . . . , ξ

′
` and u1, . . . , uk ∈ VD are

pairwise distinct nodes with labD(ui) = ξi for all i ∈ [k], then D →R D′ where D′

is obtained from D by

1. merging u1, . . . , uk into a single node u with labD′(u) = σ and inD′(u) =

inD(u1 · · · uk), and
2. adding fresh edges e1, . . . , e` and leaves v1, . . . , v` with outD′(u) = e1 · · · e`,

inD′(vi) = ei, and labD′(vi) = ξ′i for i ∈ [`].

The DAG language generated by G is L(G) = {D ∈ DΣ | ∅ →
+
R D}.

The three components of regular DAG grammars are, disregarding the slight
differences in names and notations, the same as those of DAG automata. Thus,
a DAG automaton A may alternatively be viewed as a regular DAG grammar G
(consisting of the same components), and vice versa. Moreover, it is straightfor-
ward to show that L(A) = L(G), because every run of A on a DAG D gives rise to
a corresponding derivation ∅ →+

R D, and every such derivation gives rise to a run.
Thus, we have the following:



Observation 3.2. Regular DAG grammars accept precisely the regular DAG lan-
guages.

Disregarding the actual DAG being generated, a regular DAG grammar may
be viewed as a producer-consumer system in which each rule α

σ
−→ β consumes a

finite number of nonterminals (those in α) and produces some new nonterminals
(those in β). A derivation starts with no nonterminals at all and terminates, after
one or more steps, in the same situation. Thus we have a vector addition system or
Petri net, where places are elements of Ξ and the transitions consume and produce
tokens representing occurrences of nonterminals.

Let us briefly recall Petri nets. An element of Nξ, i.e., a finite multiset with
elements in Ξ or a vector indexed by Ξ, is a configuration. The zero configuration
is the zero vector 0. The order ≤ on configurations as well as their addition and
subtraction is defined componentwise. Now, a Petri net is a finite set N of tran-
sitions being pairs of input and output configurations. The semantics of a Petri
net is the following binary relation→N over configurations: C →N C′ if there is a
transition t = (I,O) ∈ N such that I ≤ C and C′ = C − I + O.

To turn a regular DAG grammar into a Petri net, just convert every rule α
σ
−→ β

into the transition (α, β), where γ (γ ∈ {α, β}) is obtained from γ by forgetting
about the order of its symbol occurrences. Clearly, in this Petri net N we have
0 →+

N 0, a zero cycle, if and only if G generates at least one DAG.4 It was shown
in [9] that the existence of zero cycles is decidable in polynomial time, and hence
the emptiness problem for DAG automata and regular DAG grammars is [7].

Another consequence of this construction, detailed in [4], is that useless rules
can efficiently be removed from regular DAG grammars, as a rule is useful (in the
sense that it appears in at least one derivation of a DAG in L(G)) if it occurs in
some zero cycle. Once useless rules have been removed, it is furthermore possible
to decide in polynomial time whether L(G) is finite by searching the set of rules
for an (undirected) cycle of matching states. Let us illustrate the argument, which
is from [3, 4].

An example of a cycle involving three rules is illustrated in Figure 3. Each
rule ri (i ∈ [3]) is involved in the cycle with two distinct edges ei, e′i in such a way
that e′i and ei mod 3+1 (connected by dashed arrows) point into the same direction
and carry the same state. Now, choose for each of the three rules a DAG in L(G)
which can be generated using the rule, with their associated runs (now considering
G as a DAG automaton). Since there are no useless rules this is possible. Then
their disjoint union is an accepted DAG consisting of three connected components.
For the sake of illustration, we assume here that this DAG has only twelve nodes,
i.e., all nodes except those involved in the rules of the cycle are roots and leaves.

4The DAG corresponding to such a transition sequence can be disconnected, but we already
know that this means that each of its connected components is in L(G).
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Figure 4: Connecting the three rules yields a component with an undirected path
between e1 and e′3 (i.e., between the two edges labelled with the state q)

Suppose that we swap the targets e′i and ei+1 for i ∈ [2] (note that we do not close
the cycle). This operation does not affect the validity of the run, and it results in a
DAG containing an undirected path from e1 to e′3, as shown in Figure 4. It follows
that, if there is a cycle involving k ≥ 1 rules r1, . . . , rk, then L(G)] contains a DAG
D having an undirected simple path of length k + 1. Thus D contains a connected
component which is in L(G) and has at least k+1 edges. Further, if r1 · · · rk forms a
rule cycle, then r1 · · · rkr1 · · · rk does so, too, and hence L(G) is infinite. Altogether,
this yields the following theorem combining results of [7] and [3, 4].

Theorem 3.3. The emptiness problem and the finiteness problem for DAG au-
tomata and regular DAG grammars are decidable in polynomial time.

4 Multiple versus Single Roots
A seemingly innocent detail regarding the definition of DAG automata and regular
DAG grammars is whether they provide a mechanism to control the set of roots.
Those in Definition 2.2 do not. Taking into account the earlier remarks regard-
ing unordered and unranked DAG automata, this seems to be the most essential
difference between them and those studied by Priese [17]. In the latter, runs pro-
vide each root with an incoming state and each leaf with an outgoing one. The
collection of states on roots (and leaves) can furthermore be checked for regular
properties. To study whether this makes a difference, rather than adding such a



mechanism, it essentially suffices to consider the setting in which DAGs are re-
quired to possess a unique root, i.e., to study Lu = {D ∈ L | D has a unique root}
where L is a regular DAG language. The fact that this provides runs (or deriva-
tions in regular DAG grammars) with a unique starting point has consequences
regarding their expressive power that may be unexpected at first.

Consider, for simplicity, the case where a regular DAG grammar G has a
unique rule with the head λ, say r = (λ

σ
−→ β), and construct the Petri net N

from G as in the previous section, but excluding the transition (0, β). Since every
derivation of a DAG in L(G)u starts with r and must not use it ever again, the
configuration sequences corresponding to derivations of DAGs in L(G)u are those
which start with the configuration β and result in 0. If we want to decide emptiness
of L(G)u, we thus have to ask whether β →+

N 0. This is a special case of Petri net
reachability, which is decidable [11, 15], but without a known primitive recursive
bound on its complexity. One may thus wonder how special the special case is.

For this, consider any Petri net N and two distinct configurations C,C′. We
want to construct a regular DAG grammar G such that L(G)u , ∅ iff C →+

N C′.
Enrich Ξ by a fresh symbol ξ0, which is added once to the input and output of each
transition in N as well as to C and C′. This makes sure that there are no transitions
with empty input or output. Now, we choose a dummy symbol σ and invert the
construction of Petri nets from regular DAG grammars, turning every transition
of N into a transition α

σ
−→ β (where the order of symbols in α and β does not

matter). Note that α, β , λ. Finally, we add rules λ
σ
−→ γ and γ′

σ
−→ λ where γ

and γ′ are obtained by arbitrarily ordering C and C′, respectively. In a derivation
of a DAG in L(G)u, the rule λ

σ
−→ γ is applied exactly once, and every rule except

γ′
σ
−→ λ preserves the invariant that there is exactly one occurrence of ξ0. Hence

the rule γ′
σ
−→ λ can only be applied once, too, thus terminating the derivation. It

follows that L(G)u is empty if and only if C →+
N C′, which proves the following

theorem:

Theorem 4.1. Deciding the emptiness of L(G)u for regular DAG grammars G is
logspace equivalent to the reachability problem for Petri nets.

It seems to be unclear whether a similar result can be shown regarding the
finiteness problem. Clearly, the finiteness problem is not easier than the emptiness
problem: to reduce the latter to the former, simply modify the input grammar in
such a way that it appends, below every leaf of a generated DAG, an arbitrarily
long chain of edges.

Open Problem 1. Prove or disprove that the finiteness problem for L(G)u, given
a regular DAG grammar G as input, is decidable.

Another significant difference between regular DAG languages in the sense of
Definition 2.2 and rooted ones concerns their path languages. For a DAG D ∈ DΣ,



let dpaths(D) be the set of all directed paths v0e1 · · · envn from a root v0 to a leaf
vn. The path language of D is π(D) = {labD(v0 · · · vn) | v0e1 · · · envn ∈ dpaths(D)},
and the path language of L ⊆ DΣ is π(L) =

⋃
D∈L dpaths(D).

We argue that π(L) is regular for all regular DAG languages L. For this, con-
sider a DAG automaton A = (Q,Σ,R) such that R does not contain any use-
less rule (where a rule is useless if it cannot be used in any run). Build the
NFA A′ = (Q′,Σ, δ, q0, {qf}), where Q′ = Q ∪ {q0, qf} (for some q0, qf < Q) in
the most straightforward imaginable way, nondeterministically travelling down a
DAG without looking left or right: δ is defined to be the smallest relation such
that, for all rules (α

σ
←→ β) ∈ R,

• if α = λ then [β] ⊆ δ(q0, σ),
• [β] ⊆ δ(q, σ) for all q ∈ [α], and
• if β = λ then qf ∈ δ(q, σ) for all rules q ∈ [α].

We claim that A′ accepts π(L(A)). It should be clear that π(L(A)) ⊆ L(A′), but
the converse is not equally obvious. Consider a string u = σ1 · · ·σn+1 ∈ L(A′).
Then there are states q1, . . . , qn ∈ Q such that qi ∈ δ(qi−1, σi) for all i ∈ [n], and
qf ∈ δ(qn, σi+1). Let us first consider the proper prefixes σ1 · · ·σi, i ∈ [n]. We
show by induction on i that there exist a run ρ on a DAG D ∈ DΣ and a path
v1e1 . . . em−1vm ∈ dpaths(D) with m > i such that labD(v1 · · · vi) = σ1 · · ·σi and
ρ(ei) = qi. Suppose that the statement holds for i < n. The situation is illustrated
in Figure 5 on the left. Now, since qi+1 ∈ δ(qi, σi+1), we know that there is a
rule of the form · · · qi · · ·

σi+1
←→ · · · qi+1 · · · in R, and since this rule is not useless,

there is another DAG D′ ∈ L(A) admitting a run as indicated in the right part of
Figure 5. Swapping the targets of ei and the corresponding edge in D′ yields a
run on the (now possibly disconnected) DAG illustrated in Figure 6, because both
edges carry the same state. Clearly, the connected component containing ei has the
form claimed, and by definition it is in L(A). We have thus shown that there exists
a run ρ on a DAG D ∈ DΣ and a path v1e1 . . . em−1vm ∈ dpaths(D) with m > n such
that labD(v1 · · · vn) = σ1 · · ·σn and ρ(en) = qn. Now recall that qf ∈ δ(qn, σn+1).
By the construction of δ, this means that R contains a rule · · · qn · · ·

σn+1
←→ λ. Again,

there is a DAG D′ ∈ L(A) with a run using this rule. This time, however, the
corresponding node labelled with σn+1 in D′ is a leaf. Thus, applying the very
same swapping trick once again to D and D′ yields a DAG D′′ ∈ L(A) such that
σ1 · · ·σn+1 ∈ π(D).

Since every regular string language “is” also a regular DAG language, we get
the following theorem.

Theorem 4.2 ([7, 3]). The class of all string languages π(L) such that L is a regular
DAG language, is equal to the class of all regular string languages.
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Figure 6: Swapping edges in the DAGs of Figure 5

The theorem was first shown in [7], though with a non-constructive proof.
In [4] it is obtained as a corollary of another result: the “unfolding” of a regular
DAG language is a regular tree language. Since unfolding preserves path lan-
guages, the theorem follows. Moreover, also shown in [4], useless rules can be
detected in polynomial time, which makes the theorem effective.

Now, what about the case of rooted DAGs? As observed in [17], π(Lu) is not



even necessarily context-free. Consider, for example, the regular DAG grammar
G with the following rules:

λ
a
−→ νaξa νa

a
−→ νaξa ξa

�
−→ ξ′a

νaξ
′
a

b
−→ νbξb νbξ

′
a

b
−→ νbξb ξb

�
−→ ξ′b

νbξ
′
b

c
−→ νcξc νcξ

′
b

c
−→ νcξc ξc

�
−→ ξ′c νcξ

′
b

c
−→ λ .

In a generated DAG with only one root, reading along its left spine yields strings
of the form akblcm. However, the generation of each a creates a ξa which can
only give rise to a � and a ξ′a. The latter can vanish only if a b is generated. This
ensures that k = l. Similarly, l = m. Hence, π(L(G)u) ∩ a∗b∗c∗ = {anbncn | n > 0},
a non-context-free language. Thus, π(L(G)u) is not context-free either. It seems to
be unknown exactly which string languages are of the form π(L(G)u):

Open Problem 2. Characterize the class of string languages of the form π(Lu), for
regular DAG languages L.

It does not seem to be very unlikely that there actually is no “nice” characteri-
zation of this class, in which case one may instead consider the following problem:

Open Problem 3. Characterize the class of string languages π(Lu)∩R, where L is
a regular DAG language and R is a regular string language.

A related question is whether the Parikh images ψ(L) of regular DAG lan-
guages L are semilinear.5 We conjecture that this is indeed the case, but the re-
sults above seem to indicate that it may not be an easy result to prove. This is
because, if ψ(L) is semilinear for all regular DAG languages L, then so is ψ(Lu).
To see this, let {σ1, . . . , σk} be the alphabet of node labels. Modify L by attaching
an artificial root, labelled with a fresh symbol σ0, above each original root. The
DAG language L′ obtained in this way is still regular, and ψ(Lu) = {(n1, . . . , nk) ∈
ψ(L′) | (1, n1, . . . , nk) ∈ ψ(L′)}, which is semilinear if ψ(L′) is.

Open Problem 4. Prove or disprove the following conjecture: For every regular
DAG language L, ψ(L) is semilinear (and hence so is ψ(Lu)).

5 Transforming Trees and DAGs
DAG-to-tree transductions, transductions that turn DAGs into trees, were pro-
posed long ago by Kamimura and Slutzki [14], though in a setting quite different
from the one discussed in this paper. A variant of this type of transduction has

5If L is a DAG language over Σ = {σ1, . . . , σk}, let ψ(D) = (n1, . . . , nk) for a DAG D ∈ L if D
contains ni nodes labelled with σi, for all i ∈ [k]. Then ψ(L) = {ψ(D) | D ∈ L} is the Parikh image
of L. See [16] for Parikh’s original paper on Parikh images of regular string languages.



been implemented in Dagger [19]. However, the opposite direction, tree-to-DAG
transductions, does not seem to have been pursued in the literature at all. This
is surprising because such transductions could be particularly useful in natural
language processing where they could be used to turn a syntactic parse of a sen-
tence into a semantic representation. In general, one may look for ways to turn
tree languages into DAG languages, either by creating a DAG automaton from
a tree automaton, or by using a tree-to-DAG transduction. In this section, some
preliminary ideas regarding this topic are presented.

As mentioned above, it is shown in [4] that the unfolding of a regular DAG
language yields a regular tree language. Unfolding is defined in a straightfor-
ward way, as follows. Given a DAG D and a root r of D, define treer(D) =

(V, E, lab, in, out) where

• V contains a node vp, called a residual of v, for every v ∈ VD and every
directed path p from r to v,

• E contains an edge ep for every directed path p from r to some v ∈ VD \ {r},

and, for all vp ∈ V ,

• lab(vp) = labD(v),
• in(vp) is equal to ep if p is nonempty and λ otherwise,
• out(vp) = ep.e1 · · · ep.en , where outG(v) = e1 · · · en.

Here, for a path p from u to v and an edge e from v to v′, p.e denotes the path
obtained by appending e v′ to p. The unfolding of a DAG language L is tree(L) =

{treer(D) | D ∈ L, r a root of D}. From a DAG automaton A without useless rules
one can easily obtain a DAG automaton A′ with L(A′) = tree(L(A)) by keeping all
rules whose head is λ and replacing every other rule p1 · · · pk

σ
←→ q1 · · · q` by all

rules pi
σ
←→ q1 · · · q`, i ∈ [k].

However, how about the converse? Of course, every regular tree language
is a regular DAG language, but are there interesting nontrivial ways to turn a
regular tree language into a regular DAG language? This seems to be another
open problem.

Open Problem 5. Find interesting ways to construct a regular DAG language L′

from a regular tree language L, for example in such a way that tree(L′) = L.

In order to illustrate one possible direction such results may take, let us have a
look at an idea briefly mentioned in the concluding section of [4], working it out
in slightly greater detail. It provides a way to construct L′ such that tree(L′) = L,
starting from a regular tree grammar G = (Ξ,Σ,R) that accepts L (i.e., G is a
regular DAG grammar such that all heads of rules are either empty or consist of
exactly one state). To keep the presentation simple, assume that the trees in L are



binary ones, i.e., the tail of each rule is either empty or of length two. The DAGs
in L′ will in addition have nodes with two incoming edges, intuitively correspond-
ing to two subtrees that have been folded into one sub-DAG. Imagine that, after a
few steps of a derivation in G, there are two nonterminal nodes labelled ξ and ξ′.
If we want to combine them into a single node with two incoming edges, assum-
ing for the moment that the sub-DAG generated from this nonterminal is just a
tree, it must be a tree belonging to the intersection of the tree languages generated
by ξ and ξ′. If the same thing happens recursively at several levels, intersections
signified by any subset of Ξ are needed. Therefore, we shall incorporate such
intersections into the regular tree grammar before turning it into a regular DAG
grammar. For this, let G′ = (2Ξ,Σ,R′) use the powerset of Ξ as its set of nonter-
minals, the intention being that each Ξ′ ⊆ Ξ generates the intersection of the tree
languages G generates from the individual nonterminals ξ ∈ Ξ′. Intuitively, every
ξ ∈ Ξ′ can be viewed as a constraint. The rules in R′ are given as follows for every
σ ∈ Σ and Ξ0,Ξ1,Ξ2 ⊆ Ξ:

(a) If there are ξ1 ∈ Ξ1, ξ2 ∈ Ξ2 such that R contains the rule λ
σ
−→ ξ1ξ2 then

λ
σ
−→ Ξ1Ξ2 is in R′. (When generating a root, we may allow for any addi-

tional constraints to be added nondeterministically.)
(b) If, for every ξ0 ∈ Ξ0, there are ξ1 ∈ Ξ1, ξ2 ∈ Ξ2 such that R contains the rule

ξ0
σ
−→ ξ1ξ2 then Ξ0

σ
−→ Ξ1Ξ2 is in R′.

(c) If, for every ξ0 ∈ Ξ0, the rule ξ0
σ
−→ λ is in R, then Ξ0

σ
−→ λ is in R′.

It should be clear that, in G′, every nonterminal Ξ′ indeed generates the intersec-
tion of the sets of trees generated by the individual nonterminals ξ ∈ Ξ′ in G. In
particular, L(G′) = L(G). Thus, a tree that can be generated from both Ξ1 and
Ξ2 can also be generated from Ξ1 ∪ Ξ2. Now we can turn G′ into a regular DAG
grammar G′′ = (2Ξ,Σ,R′′) as follows: for Ξ1,Ξ2,Ξ

′
1,Ξ

′
2 ⊆ Ξ

(a′) if λ
σ
−→ Ξ′1Ξ

′
2 is in R′ then it is in R′′ as well;

(b′) if both Ξ1
σ
−→ Ξ′1Ξ

′
2 and Ξ2

σ
−→ Ξ′1Ξ

′
2 are in R′, then Ξ1Ξ2

σ
−→ Ξ′1Ξ

′
2 is in

R′′;
(c′) if both Ξ1

σ
−→ λ and Ξ2

σ
−→ λ are in R′, then Ξ1Ξ2

σ
−→ λ is in R′′.

Proposition 5.1. The above construction yields tree(L(G′′)) = L(G).

Proof sketch. Since L(G) = L(G′) we only need to prove tree(L(G′′)) = L(G′).
‘⊆’ We show the following by induction on the length of derivations: if ∅ →+

R′′

D and T = treer(D) for a root r of D, then ∅ →+
R′ T . For derivations of length 1

this is trivial by (a′). Now, assume that ∅ →+
R′′ D0 →R′′ D and T ∈ treer(D), and

let v1, v2 ∈ VD0 be the two nonterminal nodes in D0 which the rule in the last step,
say Ξ1Ξ2

σ
−→ Ξ′1Ξ

′
2, is applied to. Let T0 = treer(D0). Then T is obtained from T0



by replacing all residuals of v1 and v2 by nodes labelled σ, which children labelled
Ξ′1 and Ξ′2. By (b′) the rules Ξi

σ
−→ Ξ′1Ξ

′
2 are in R′ for i = 1, 2 and thus, together

with the induction hypothesis, ∅ →+
R′ T0 →

+
R′ T . The case where the rule applied

to v1 and v2 is a terminating rule Ξ1Ξ2
σ
−→ λ is similar.

‘⊇’ Consider A = (2Ξ,Σ,R′ ∪ R′′), which we may view as a DAG automaton
rather than a regular DAG grammar. Let D0 ∈ L(G′) and consider a run ρ0 of A on
D0. Since D0 is a tree, ρ0 uses only rules in R′. If d is the largest distance of any
node of D0 from the root, let the level of a node v ∈ VD0 be d − d′, where d′ is the
distance of v itself from the root. In other words, the leaves deepest down in the
tree are at level 0, the nodes one step nearer toward the root are at level 1, and so
on. Now, for ` = 1, . . . , d, construct D` from D`−1 by

• copying all nodes at levels ≥ ` together with their incident edges (i.e., the
incoming and outgoing edges of the copy of a node v are the copies of the
incoming and outgoing edges of v) and

• defining inD`
(v) = ee′ for every node v at level `−1 with inD`−1(v) = e, where

e′ is the copy of e.

Moreover, ρ`−1 is extended to a run ρ` on D` by assigning each copied edge the
same state as the original edge. By (b′) and (c′) ρ` is indeed a run if ρ`−1 is.
Moreover, by construction we have treer(D`) = treer(D`−1).

Thus, we eventually obtain a run ρd of A on Dd with treer(Dd) = treer(D0).
However, Dd does not contain any node with a single incoming edge, which means
that ρd is actually a run of (the DAG automaton corresponding to) G′′, showing
that L(G′) ⊆ tree(L(G′′)). �

Another open problem is to come up with natural notions of transducers.

Open Problem 6. Devise useful notions of tree-to-DAG and DAG-to-DAG trans-
ducers with good properties.

In the following, a class of DAG transducers is proposed that may turn out to
be of interest in this regard.

Let us say that a Σ-DAG section S is defined in the same way as a Σ-DAG (see
Section 2) except that the labelling labS is defined only on VS \ (top(S )∪ bot(S )),
where top(S ) ⊆ VS contains only nodes v with [inS (v)] = ∅ , [outS (v)] and
bot(S ) ⊆ VS contains only nodes v with [inS (v)] , ∅ = [outS (v)]. In other words,
a node may be in top(S ) if it is a root but not a leaf, and it may be in bot(S ) if it
is a leaf but not a root. Thus top(S ) and bot(S ) are disjoint sets that are uniquely
determined by the domain VS \ (top(S ) ∪ bot(S )) of labS . In the following, we
denote VS \ (top(S ) ∪ bot(S )) by inner(S ). Moreover, E>S = {e ∈ ES | srcS (e) ∈
top(S )} and E⊥S = {e ∈ ES | tarS (e) ∈ bot(S )} are the top and bottom edges of



S , respectively. Note that, as DAGs are DAG sections with inner(S ) = VS , all
definitions regarding DAG sections apply to DAGs as well.

For a DAG section S and a DAG D, we call a mapping m : (VS ∪ ES ) →
(VD ∪ ED) that injectively maps nodes to nodes and edges to edges a bottom-up
morphism6 and denote it as m : S → D if

(a) labD(m(u)) = labS (u) for all u ∈ inner(S ) and
(b) for all v ∈ VS the canonical extension of m to sequences satisfies

m(outS (v)) is a subsequence7 of outD(m(v)) if v ∈ top(S )
m(outS (v)) = outD(m(v)) if v ∈ inner(S )
m(inS (v)) = inD(m(v)) if v ∈ VS \ top(S ).

With these conditions, m|VS uniquely determines m|ES , i.e., m only needs to be
specified on nodes. Note the asymmetry of the definition. For nodes v ∈ bot(S ) it
requires that the entire sequence of incoming edges of m(v) in D is “matched” by
the sequence of incoming edges of v in S . For nodes v ∈ inner(S ) this is required
to hold for both incoming and outgoing edges. However, for v ∈ top(S ) only some
of outgoing edges of m(v) actually need to be matched by edges in S . We denote
the image of S under m, which is a sub-DAG of D, by m(S ).

Given a set Q of states understood from the context, an E-labelled DAG sec-
tion S 〈q〉 consists of a DAG section S with E ⊆ ES and a mapping q : E → Q that
assigns states to the edges in E. A ∅-labelled DAG section S 〈q〉 is identified with
S itself.

Definition 5.1 (bottom-up DAG transducer). A bottom-up DAG transducer is a
system τ = (Q,Σ,∆,R) consisting of a finite set Q of states, alphabets Σ and ∆ of
input and output labels, and a finite set R of bottom-up rules. Each bottom-up rule
has the form S 〈b〉 → S ′〈t〉 where S 〈b〉 is a bot(S )-labelled Σ-DAG section, S ′〈t〉
is a top(S ′)-labelled ∆-DAG section, top(S ) = top(S ′), E>S = E>S ′ , and bot(S ) =

bot(S ′).
Consider an E-labelled (Σ ∪ ∆)-DAG D〈q〉, a bottom-up rule S 〈b〉 → S ′〈t〉

in R, and a bottom-up morphism m : S → D such that q(m(e)) = b(e) for all
e ∈ bot(S ).8 Then D〈q〉 →R D′〈q′〉 where

• D′ is obtained from D by replacing m(S ) by m(S ′), and
• q′ = q|E\m(E⊥S ) ∪ {e 7→ t(e) | e ∈ E>S ′}.

The bottom-up DAG transduction computed by τ is the set of all pairs (D,D′) such
that D is a Σ-DAG, D′ is a ∆-DAG, and D→+

R D′.

6A top-down morphism, which we do not define explicitly here, can be defined in the dual way.
7A subsequence of e1 · · · ek is any sequence ei1 · · · ei` such that 1 ≤ i1 < · · · < i` ≤ k.
8In particular, m(e) ∈ E for all e ∈ bot(S ).



A dual notion of top-down DAG transducers can easily be obtained by revers-
ing rules and using the dual notion of top-down morphisms.

Note that we do not restrict DAG transductions toDΣ ×D∆ (i.e., to connected
DAGs), because the transduction can turn connected DAGs into disconnected ones
and vice versa. It may, however, also be meaningful to study alternatives, such
as the “forgetful” transduction consisting of all (D,D′) ∈ DΣ × D∆ such that
D→+

R D′ ] D′′ for a ∆-DAG D′′.
It follows by a straightforward induction on the length of derivations that the

definition above is consistent in the sense that, after any number of steps, the
structure D〈q〉 derived from a Σ-DAG D0 is indeed an E-labelled (Σ ∪ ∆)-DAG.
More precisely, E forms a cut set cutting D into a ∆-DAG D⊥ and a Σ-DAG D>

such that, for every e ∈ E, srcD(e) belongs to D> and tarD(e) is a root of D⊥.
Further, let us say that a derivation step as in the definition processes the nodes
in m(inner(S )). Then D> is the sub-DAG of D0 consisting of all still unprocessed
nodes and their incident edges save those in E.

By a standard search procedure, it is decidable for DAGs D,D′ whether D→+
R

D′, but the complexity of the problem remains to be studied.
Clearly, tree-to-DAG transductions and DAG-to-tree transductions9 are ob-

tained as special cases of DAG transductions. Let us consider an example of a
bottom-up tree-to-DAG transduction that involves some folding.

Example 5.2 (bottom-up tree-to-DAG transduction). We consider input trees
whose leaves are labelled by b and g, representing ‘boys’ and ‘girls’. Binary
nodes are labelled by c and represent groups of ‘children’. In addition, there can
be leaves labelled by r. Such a leaf is a ‘reference’ that can refer to any group
provided that all members of the group share the same gender. The transduction
shall allow to fold pairs of equal subtrees into one, turn c into u at the roots of
subtrees representing groups of one unique gender, and redirect any references to
appropriate groups. We use states b, g, and m to remember whether the subtree
consists of boys or girls only, or of children of mixed genders. Some typical rules
of this transducer are shown in Figure 7, but several more would be needed to
cover all major cases. Figure 8 shows an example of a computation.

6 Conclusion
Various ideas and properties of DAG languages have been discussed, most of them
known from the literature and especially from [17, 7, 3, 3]. However, equally
many interesting results had to be left out. In particular, the complexity of the

9Perhaps these should rather be called forest-to-DAG transductions and DAG-to-forest trans-
ductions because they actually process (finite) forests.
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Figure 7: Rules of a bottom-up tree-to-DAG transducer. Various rules, especially
many of those applying to roots, are omitted. The last row, obtained from the
leftmost rule in the third row by deleting one or both of the nodes in top(S ) =

top(S ′), shows an example of how they can be obtained.
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Figure 8: A computation of the tree-to-DAG transducer in Example 5.2

membership problem for regular DAG languages was not discussed. It is shown
in [7] that even the non-uniform membership problem is, in fact, NP-complete:
there are fixed NP-complete regular DAG languages. The problem becomes eas-
ier but not necessarily practical if restricted to DAGs of bounded treewidth and,
of course, much easier for deterministic DAG automata. Finding further restric-
tions that result in a manageable membership problem remains another open prob-
lem. Weighted DAG automata, as defined in [7], are another interesting topic that
should be explored further.



Moreover, as indicated by the discussion in the previous section, establish-
ing further relations between regular tree languages and regular DAG languages,
e.g. by folding and unfolding, and studying DAG transducers of various kinds
seem to be potentially rewarding tasks not only from the theoretical perspective,
but also in view of their possible applications in natural language processing and
other areas. The reader is invited to contribute!
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