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An important theme of automata theory is to study mathematical models of
computing devices with regard to what behavior they can exhibit and what we can
infer about such a device when given a description.

These two types of questions each have their own motivation. The first type
addresses expressiveness. This aspect is important to understand because it ex-
plains what we can compute with limited resources and what systems we can
describe with the respective models. The second type of questions explores the
analyzability of models. This perspective is instrumental when we want to algo-
rithmically verify properties of systems, which, due to the advent of increasingly
complex and concurrent systems, has become a task of significant importance.

The perspectives of expressiveness and analyzability are deeply intertwined:
They are conflicting qualities insofar as the more expressive a model is, the more
difficult it usually is to analyze. For these reasons, it has become a strong driving
force of today’s research in theoretical computer science to understand how we
can provide models that are expressive enough for a given type of systems and yet
are simple enough to be amenable to analysis. This thesis contributes by studying
the relationship between the computational properties of automata with storage
and the employed storage mechanism.

Automata with storage In a tradition initiated by Turing in the introduction of
the eponymous machine, automata theory yielded a rich variety of models that
comprise a finite-state control and a potentially infinite data repository. The mod-
els are obtained by imposing restrictions on how the data can be stored, manipu-
lated, and retrieved, while permitting arbitrary use of the finite-state control.

In terms of hard- and software systems that can be represented by such models,
this means we can precisely reflect arbitrary control flows, but we abstract from
certain aspects of data access. For example, pushdown automata can correctly
imitate the control flow and calling stack of a recursive program, but heap memory
cannot be represented. A form of data respository, together with the permitted
modes of access, is called a storage mechanism. Examples of storage mechanisms
include Turing machine tapes, pushdown storages, and various kinds of counters.



Instead of investigating the properties of an individual model of computation,
the present work attempts to provide general insights into how expressiveness and
analyzability of a model of computation are affected by the structure of the storage
mechanism. To this end, it presents generalizations of results about concrete stor-
age mechanisms to larger classes of storage mechanisms. These generalizations
will characterize those storage mechanisms for which the given result remains true
and for which it fails.

Storage mechanisms as monoids In order to speak of classes of storage mech-
anisms, we need an overarching framework that accommodates each of the con-
crete storage mechanisms we wish to address. Such a framework is provided by
interpreting storage mechanisms as monoids.

Suppose a storage mechanism consists of a (potentially infinite) set of states,
a finite set of functions representing its available operations, an initial state, and
a collection of valid final states. To account for operations that are not always
applicable, such as a pop operation for a stack symbol that is not currently at the
top, the functions can be partial functions. For example, a pushdown storage with
stack alphabet Γ consists of the set Γ∗ as its set of states, the operations pusha
and popa for each a ∈ Γ, and the empty word ε as its initial state and its final state
(assuming that it accepts with an empty stack). As partial functions, the operations
pusha and popa are defined as

pusha : Γ∗ → Γ∗, popa : Γ∗ 9 Γ∗,

w 7→ wa wa 7→ w.

(here, we denote partial functions by 9). Note that popa is defined on precisely
those words that end in a.

Another example is the Minsky counter, which has N, the set of natural num-
bers, as its set of states and has inc (increment), dec (decrement), and zero (zero
test) as its operations:

inc : N→ N, dec : N 9 N, zero : N 9 N,
n 7→ n + 1, n 7→ n − 1, 0 7→ 0.

Note that here, the decrement operation is undefined for state 0 and the zero test
operation is defined only in state 0.

To such a storage mechanism, we can associate the monoid of all compositions
of available operations. Let us examine what this yields in the case of a pushdown
store as above. If we compose pusha and popb for a , b, we obtain the function
0, which is defined nowhere: After pushing an a, popping b cannot be defined.
Moreover, composing 0 with any other operation yields 0 again. If, however, we



only consider compositions where such incompatible push and pop do not occur,
the reader can verify that we always get functions of the form Pu,v for u, v ∈ Γ∗,
where

Pu,v : Γ∗ 9 Γ∗,

wu 7→ wv,

is defined on precisely those words with suffix u. Therefore, the resulting monoid
has the elements {0} ∪ {Pu,v | u, v ∈ Γ∗}.

Let us consider the case of a Minsky counter. Any composition of just the
increment and decrement operations yields an element Cr,s such that

Cr,s : N 9 N,
n + r 7→ n + s,

which is defined on all numbers ≥ r. If the composition involves a zero test, then
it is either 0 as above or it is defined on only one element r ∈ N and of the form
Dr,s, for which

Dr,s : N 9 N,
r 7→ s.

Hence, the corresponding monoid comprises the set {0,Cr,s,Dr,s | r, s ∈ N}.

Monoids as storage mechanisms The advantage of interpreting storage mech-
anisms as monoids is that we can go in the other direction and interpret monoids
as storage mechanisms: The elements of the monoid determine the set of states as
well as the set of operations and the identity element is the final state. This allows
us to use algebraic constructions to synthesize similar storage mechanisms and
thus identify what structural traits of the mechanism are responsible for which
computational properties. For example, we will define monoids by graphs that
may contain self-loops. We will then see that graphs with no self-loops or edges
correspond to pushdown storages. If the graph has no self-loops, but is otherwise
a clique, it is equivalent to counters without zero tests (that cannot go below zero).
This is usually called a set of partially blind counters. Moreover, if the graph is a
clique and has self-loops everywhere, we obtain counters that can go below zero
and are only zero tested in the end of the computation, hence a collection of blind
counters.

This means we can regard these individual storage as points on a spectrum and
examine where exactly the computational properties remain true and where they
cease to hold. For example, it is known that automata with a pushdown or with
blind counters accept languages with semilinear Parikh images, which is not true
of partially blind counters. We can now study which graphs exactly guarantee
semilinearity of the accepted languages.



Graph Γ MonoidMΓ Storage mechanism

B(3) Pushdown (with three symbols)

B3 Three partially blind counters

Z3 Three blind counters

B(2) × Z2 Pushdown (with two symbols) and
two blind counters

B(2) × B3 Pushdown and three partially blind counters

B(2) × B(2) Two pushdowns (with two symbols each)

Table 1: Examples of storage mechanisms

Valence automata We investigate monoids as storage mechanisms by deploy-
ing them in the framework of valence automata. A valence automaton over a
monoid M is a finite automaton in which each edge carries an input word and
an element of M. Let us define this formally. Let M be a monoid. A valence
automaton over M is a tuple A = (Q, X,M, E, q0, F), where

• Q is a finite set of states,

• X is an alphabet, called its input alphabet,

• E ⊆ Q × X∗ × M × Q is a finite set of edges or transitions,

• q0 ∈ Q is its initial state, and



• F ⊆ Q is its set of final states.

For triples (q, u, x) and (q′, u′, x′) from Q × X∗ × M, let

(q, u, x)→A (q′, u′, x′) if u′ = uw and x′ = xz
for some (q,w, z, q′) ∈ E.

In this work, we measure the expressive power of valence automata by the class
of languages they can accept. The language accepted by A is defined as

L(A) = {w ∈ X∗ | (q0, ε, 1)→∗A ( f ,w, 1) for some f ∈ F}.

In other words, the automaton accepts all words that label paths from an initial
state to a final state such that the product of the monoid elements is the identity.

Valence automata are not a new concept and have been studied before by sev-
eral authors from various perspectives. What distinguishes this work from earlier
ones is that it systematically generalizes results for individual models of automata
with storage. Specifically, for each of a series of results about concrete storage
mechanisms, it presents a broader class of monoids and identifies those members
of the class to which the result carries over.

As a rich source of monoids to represent well-known storage mechanims, this
work also introduces graph monoids. They are defined by graphs, which often al-
lows us to relate the combinatorial properties of the graphs with the computational
properties of the resulting storage mechanisms.

Main contributions
The following are the main contributions of this work.

Graph monoids Oftentimes, characterizing all monoids with a given compu-
tational property is infeasible; or it would result in a mere reformulation of the
property and thus not be meaningful.

Therefore, it is useful to have a class of monoids that is large enough to ac-
comodate storage mechanisms from the literature, but small enough to permit
meaningful characterizations. To this end, this work introduces the class of graph
monoids, which are defined by graphs. Let us sketch their definition. Suppose
we have an undirected graph Γ = (V, E) that may have self-loops. This means,
E ⊆ {S ⊆ V | |S | ≤ 2}. For brevity, we call a vertex looped if it has a self-loop;
otherwise we call it unlooped. We define the alphabet XΓ = {av, āv | v ∈ V} and
consider the smallest congruence ≡Γ on X∗

Γ
with

avāv ≡Γ ε for each v ∈ V , and (1)
xy ≡Γ yx for each x ∈ {av, āv}, (2)

y ∈ {aw, āw} with {v,w} ∈ E.



In other words, for each vertex v ∈ V , we have a positive element av and a negative
element āv. Then, (1) means that avāv cancels to the identity and (2) tells us that
two elements (whether they are positive or negative) may commute if their vertices
are adjacent. The resulting monoid is now defined as

MΓ = X∗Γ/≡Γ.

It is not hard to see that by choosing appropriate graphs, one can realize pushdown
automata, partially blind counter automata, blind counter automata, and Turing
machines, but also various combinations thereof.

For example, suppose Γ contains just one unlooped vertex. Then XΓ = {av, āv}

and w ≡Γ ε if and only if |w|av = |w|āv and |p|av ≥ |p|āv for every prefix p of w. In
other words, if we interpret av and āv as increment and decrement, respectively,
then this means w is a sequence of counter actions that leads from 0 to 0 and
keeps the counter non-negative. Since [w] = 1 if and only if w ≡Γ ε, this means
MΓ represents a partially blind counter.

Furthermore, if Γ consists of one looped vertex, then w ≡Γ ε if and only if
|w|av = |w|āv . Hence,MΓ represents a blind counter.

Suppose Γ consists of two vertices x, y without any self-loops. If we then
for z ∈ {x, y}, interpret az as a pushz operation and āz as a popz operation, then
w ≡Γ ε if and only if w transforms the empty stack into the empty stack. Thus,
MΓ realizes a pushdown store with a two-letter stack alphabet.

Moreover, if Γ is obtained from the disjoint graphs Γ0 and Γ1 by adding edges
between any vertex from Γ0 and any vertex from Γ1, then w ≡Γ ε if and only if
wi ≡Γi ε for i ∈ {0, 1}, where wi is obtained from w by deleting all symbols corre-
sponding to letters from Γ1−i. Hence,MΓ allows us to use the storage mechanisms
realized byMΓ0 andMΓ1 independently.

Table 1 presents examples of graphs and the corresponding storage mecha-
nisms. Here, the symbol B denotes the monoid MΓ where Γ consists of one un-
looped vertex. Moreover, M(n) denotes the n-fold free product of the monoid M.
Analogously, Mn is the n-fold direct product.

Increasing expressiveness We present an algebraic characterization of those
monoids that increase the expressiveness in the following sense: Without the
storage mechanism, finite automata only accept regular languages. Hence, we
describe those monoids M for which valence automata over M can accept non-
regular languages. In fact, we show that this also characterizes those monoids
for which deterministic valence automata are expressively weaker and those for
which valence grammars can generate non-context-free languages. Valence gram-
mars are a concept related to valence automata and equip context-free grammars
with a monoid storage. While the characterization of monoids that increase ex-
pressiveness in valence automata has been obtained independently by Render [17]



in her thesis, the latter characterization for valence grammars answers an open
question raised by Fernau and Stiebe [3].

These results have been published in [20].

Emptiness problem Afterwards, we turn to the decidability of the emptiness
problem. This is a type of reachability problem and one of the most basic problems
in the algorithmic analysis of system models. Therefore, we are interested in
which storage mechanisms permit a decision procedure.

There is a serious obstacle to a complete characterization: Using graph monoids,
one can realize a pushdown storage with partially blind counters (see Table 1),
for which the deciability of the emptiness problem remains a long-standing open
question [11, 16].

However, if we forbid the subgraphs corresponding to these mechanisms, we
can characterize those with a decidable emptiness problem. The result generalizes
the decidability for pushdown automata and for partially blind counter automata
(or equivalently, Petri nets).

The complete statement requires some terminology. A graph Γ is said to be a
PPN-graph if it is isomorphic to one of the following three graphs:

One can show that every such storage mechanisms allows us to simulate automata
with a pushdown and one partially blind counter: PPN stands for pushdown Petri
net. A graph Γ is called PPN-free if it has no PPN-graph as an induced subgraph.
The comparability graph of a tree t is a simple graph with the same vertices as t,
but has an edge between two vertices whenever one is a descendant of the other in
t. A simple graph is a transitive forest if it is the disjoint union of comparability
graphs of trees. Let Γ− denote the graph obtained from Γ by deleting all self-loops.

Theorem 1. Let Γ be PPN-free. Then the following conditions are equivalent:

1. Emptiness is decidable for valence automata overMΓ.

2. Γ− is a transitive forest.

Moreover, we present an intuitive, more mechanical, description of (a) the
mechanisms shown to be decidable and (b) the storage mechanisms where decid-
ability remains open.

These mechanisms instances of stacked counters. Stacked counter storage
mechanisms are obtained by alternating two transformations of storage mecha-
nisms: building stacks (of configurations of an existing mechanism) and adding
counters (to an existing mechanism). Building stacks works as follows: Given



one storage mechanism, we construct a new one whose configurations are stacks
(i.e. sequences) of configurations of the old one. During a computation, one
can then start a new entry, manipulate the topmost entry (as prescribed by the
old mechanism) and pop the topmost entry if empty1. On the level of monoids,
this corresponds to transforming M into B ∗ M. Adding counters is a simpler
transformation: In the new mechanism, we have a counter in addition to the old
mechanism. On the monoid level, this means we turn M into Z × M (adding a
blind counter) or into B × M (adding a partially blind counter).

The mechanisms of (a) are obtained from partially blind counters by building
stacks and adding blind counters. Formally, SC± is the smallest class of monoids
that contains Bn for every n ≥ 0 and has the property that if M belongs to SC±,
then both B ∗ M and Z × M belong to SC± as well. Note that the monoids in
SC± are not precisely those satisfying the conditions of Theorem 1, but they are
expressively equivalent and serve to provide an intuition.

The mechanisms of (b) are defined similarly: They are obtained from par-
tially blind counters by building stacks and adding partially blind counters. As
monoids, these mechanisms are represented by the class SC+, which is the small-
est class containing Bn for n ≥ 0 such that if M belongs to SC+, we also have
B ∗ M and B × M in SC+. Again, these mechanisms are expressively equivalent
to those where Theorem 1 leaves the decidability status open.

The mechanisms corresponding to SC+ are a natural generalization of Rein-
hardt’s priority counter machines but also of pushdown storages with partially
blind counters. In particular, they are a promising candidate for a quite powerful
model where reachability might still be decidable.

Theorem 1 extends a result of Lohrey and Steinberg [13], which characterizes
those graph groups with a decidable rational subset membership problem. Where
Lohrey and Steinberg rely on semilinearity arguments, we use a reduction to the
reachability problem of priority multicounter machines, which has been proven
decidable by Reinhardt [16].

This result has been published in [22].

Boolean closure We are also concerned with closure properties of the languages
accepted by valence automata. Since it is well-known that the regular languages
are closed under the Boolean operations (union, intersection, and complementa-
tion), we ask for which monoids M, the class of languages accepted by valence
automata over M is closed under the Boolean operations.

Aside from understanding closure properties of automata models, this question

1Note that this is akin to (but not quite the same as) the step from order-n pushdowns to order-
(n+1) pushdowns. However, in contrast to higher-order pushdown automata, there is no operation
to copy the topmost entry.



is relevant to the decidability of the first-order theory of structures: Identifying
new monoids that admit these closure properties and decidability of the emptiness
problem would yield an extended notion of automatic structures [10], whose first-
order theory would be decidable.

Our result is a rather negative answer and goes beyond valence automata. It is
shown here that every language class that is closed under the Boolean operations
and rational transductions and contains an arbitrary non-regular language already
includes the whole arithmetical hierarchy. The crucial idea is an encoding of
counter values of a Minsky machine by Myhill-Nerode classes of the non-regular
language.

It follows in particular that every language class induced by valence automata
beyond the regular languages either fails to be closed under the Boolean opera-
tions or lacks virtually all decidability properties.

This result has been published in [14, 23].

Context-freeness We compare the expressiveness of storage mechanisms with
that of context-free grammars. Specifically, we ask which monoids cause va-
lence automata to only accept context-free languages. We characterize those graph
products M of monoids for which valence automata over M accept only context-
free languages. This means, in particular, that we extend a group-theoretic re-
sult of Lohrey and Sénizergues [12], which characterizes those graph products of
groups where the resulting group is virtually free.

This result has been published in [1].

Semilinearity We study generalizations of Parikh’s Theorem [15], which states
that the Parikh image of each context-free language is semilinear. This result is
an extraordinarily useful tool, both for proving non-expressibility result and in the
algorithmic analysis of formal languages. It has been extended to so many other
language classes that the term ‘a Parikh theorem’ has come to mean a statement
guaranteeing effective semilinearity. This type of results has countless applica-
tions. Especially in cooperation with Presburger arithmetic, it facilitates a number
of decision procedures.

Therefore, understanding what storage mechanisms admit a Parikh theorem is
useful for clarifying expressiveness, but especially in order to analyze automata.
Hence, we study which monoids guarantee semilinearity of the accepted language
class. The first presented result is a characterization of those graph monoids that
guarantee semilinear Parikh images. As explained above, this generalizes the
semilinearity results for pushdown automata and blind multicounter automata.

A looped clique is a graph where every vertex is looped and any two vertices
are adjacent.



Theorem 2. Valence automata overMΓ have effectively semilinear Parikh images
if and only if:

1. Γ− is a transitive forest and

2. the neighborhood of every unlooped vertex in Γ is a looped clique.

Moreover, we identify another type of stacked counters as expressively com-
plete among those mechanisms with semilinearity. They are similar to the mech-
anisms in the results on the emptiness problem. Namely, they are obtained by
alternatingly building stacks and adding blind counters. Furthermore, stacked
counters exhibit a range of properties desirable for analysis and they offer a way
to model recursive programs with numeric data types (Hague and Lin [6] have
applied a model that is subsumed by stacked counter automata).

More precisely, SC− is the smallest class of monoids that contains the trivial
monoid 1 and has the property that if M belongs to SC−, then both B ∗ M and
Z × M belong to SC− as well. To summarize, we have three types of stacked
counters: (i) SC−, where we only have blind counters, (ii) SC±, where we start
with partially blind counters, but after building stacks, we can only add blind
counters, and (iii) SC+, where we start with partially blind counters and can add
them even after building stacks.

These results have been published in [1].

Silent transitions For each storage mechanism, an important question is whether
silent transitions (i.e. those which read no input but can manipulate the storage)
are necessary to accept all languages. Indeed, if silent transitions can be elim-
inated, we can decide the membership status of a given input word by exam-
ining a finite number of paths through the automaton. Therefore, we ask for
which monoids we can avoid silent transitions. We show that among a class
of storage mechanisms, stacked counters of the type SC− are those where this
is possible. Again, this generalizes the corresponding fact for (i) pushdown au-
tomata, (ii) blind multicounter automata, and (iii) automata with access to a push-
down storage and blind counters. Results (i) and (ii) had been established by
Greibach [4, 5] and (iii) is due to Hoogeboom [9].

These results have been published in [21].

Computing downward closures We also consider the computation of down-
ward closures. It is well-known that the downward closure, i.e. the set of (not
necessarily contiguous) subwords, of every language is regular [7, 8]. Moreover,
computing a finite automaton for the downward closure of a given language would
make a range of analysis techniques applicable. However, this cannot be done in



general. In fact, there are only few known methods for computing downward
closures for languages. It is shown here that for all those graph monoids that
guarantee semilinearity (equivalently, for stacked counters), downward closures
can be computed. This generalizes the computability of downward closures for
context-free languages, as obtained by van Leeuwen [18] and Courcelle [2].

This result has been published in [19].
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