
The Algorithmics Column
by

Gerhard J Woeginger

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

http://www.win.tue.nl
http://w3.tue.nl/en/
gwoegi@win.tue.nl

Chaining introduction with some computer
science applications

Jelani Nelson∗

Contents
1 What is chaining?

2 Applications in computer science
2.1 Random matrices and compressed sensing
2.2 Empirical risk minimization .
2.3 Dimensionality reduction .
2.4 Data structures and streaming algorithms
2.5 Random walks on graphs .
2.6 Dictionary learning .
2.7 Error-correcting codes .

3 A case study: (sub)gaussian processes
3.1 Method 1: union bound .
3.2 Method 2: ε-net .
3.3 Method 3: Dudley’s inequality (chaining)
3.4 Method 4: generic chaining .

4 A concrete example: the `1 ball

4.1 Method 1: union bound .
4.2 Method 2: ε-net .
4.3 Method 3: Dudley’s inequality
4.4 Method 4: generic chaining .

5 Application details: dimensionality reduction
5.1 Proof of Theorem 1 .
∗Harvard University. minilek@seas.harvard.edu. Supported by NSF CAREER award

CCF-1350670, NSF grant IIS-1447471, ONR Young Investigator award N00014-15-1-2388, and
a Google Faculty Research Award.

1 What is chaining?

Consider the problem of bounding the maximum of a collection of random vari-
ables. That is, we have some collection (Xt)t∈T and want to bound E supt∈T Xt,
or perhaps we want to say this sup is small with high probability (which can be
achieved by bounding E supt∈T |Xt|

p for large p and applying Markov’s inequality).
Such problems show up all the time in probabilistic analyses, including in

computer science, and the most common approach is to combine tail bounds with
union bounds. For example, to show that the maximum load when throwing n
balls into n bins is O(log n/ log log n), one defines Xt as the load in bin t, proves
P(Xt > C log n/ log log n) � 1/n, then performs a union bound to bound supt Xt.
Or when analyzing the update time of a randomized data structure on some se-
quence of operations, one argues that no operation takes too much time by under-
standing the tail behavior of Xt being the time to perform operation t, then again
performs a union bound to control supt Xt.

Most succinctly, chaining methods leverage statistical dependencies between
a (possibly infinite) collection of random variables to beat this naive union bound.

The origins of chaining began with Kolmogorov’s continuity theorem from
the 1930s (see Section 2.2, Theorem 2.8 of [21]). The point of this theorem was
to understand conditions under which a stochastic process is continuous. That is,
consider a random function f : R → X where (X, d) is a metric space. Assume
the distribution over f satisfies the property that for some α, β > 0, E | f (x) −
f (y)|α = O(|x − y|1+β) for all x, y ∈ R. Kolmogorov proved that for any such
distribution, one can couple with another distribution over functions f̃ such that
∀x ∈ R, P(f (x) = f̃ (x)) = 1, and furthermore f̃ is continuous. For the reader
interested in seeing proof details, see for example [29, Section A.2].

Since Kolmogorov’s work, the scope of applications of the chaining method-
ology has widened tremendously, due to contributions of many mathematicians,
including Dudley, Fernique, and very notably Talagrand. See Talagrand’s treatise
[29] for a description of many impressive applications of chaining in mathemat-
ics. See also Talagrand’s STOC 2010 paper [28]. Note that [29] is not exhaustive,
and additional applications are posted on the arXiv on a regular basis.

2 Applications in computer science

Several applications are given in [30, Section 1.2.2]. I will repeat some of those
here, as well as some other ones.

2.1 Random matrices and compressed sensing

Consider a random matrix M ∈ Rm×n from some distribution. A common task
is to understand the behavior of the largest singular value of M. Note ‖M‖ =

sup‖x‖2=‖y‖2=1 xT My, so the goal is to understand the supremum of the random vari-
ables Xt = tT

1 Mt2 for t ∈ T = B`m
2
× B`n

2
. Indeed, for many distributions one can

obtain asymptotically sharp results via chaining.
Understanding singular values of random matrices has been important in sev-

eral areas of computer science. Close to my own heart are in compressed sens-
ing and randomized linear algebra algorithms. For the latter, a relevant object is
a subspace embedding; these are objects used in algorithms for fast regression,
low-rank approximation, and a dozen other applications (see [31]). Analyses then
boil down to understanding the largest singular value of M = (ΠU)T (ΠU) − I. In
compressed sensing, where the goal is to approximately recover a nearly sparse
signal x from few linear measurements S x (the measurements are put as rows of
the matrix S), analyses again boil down to bounding the operator norm of the same
M, but for all U simultaneously that can be formed from choosing k columns from
some basis that x is sparse in.

2.2 Empirical risk minimization

This example is taken from [30]. In machine learning one often is given some
data, drawn from some unknown distribution, and a loss function L. Given some
family of distributions parameterized by some θ ∈ Θ, the goal is to find some θ∗

which explains the data the best, i.e.

θ∗ = argmin
θ∈Θ

EL(θ, X). (1)

The expectation is taken over the distribution of X. We do not know X, how-
ever, and only have i.i.d. samples X1, . . . , Xn. Thus a common proxy is to calculate

θ̂ = argmin
θ∈Θ

1
n

n∑
k=1

L(θ, Xk).

We would like to argue that θ̂ is a nearly optimal minimizer for the actual
problem (1). For this to be true, it is sufficient that supθ Xθ is small, where one
ranges over all θ ∈ Θ with

Xθ =

∣∣∣∣∣∣∣1n
n∑

k=1

L(θ, Xk) − EL(θ, X)

∣∣∣∣∣∣∣ .

2.3 Dimensionality reduction
In Euclidean dimensionality reduction, such as in the Johnson-Lindenstrauss lemma,
one is given a set of vectors P ⊂ `n

2, and wants that a (usually random) matrix Π

satisfies

∀y, z ∈ P, (1 − ε)‖y − z‖22 ≤ ‖Πy − Πz‖22 ≤ (1 + ε)‖y − z‖22. (2)

This is satisfied as long as supy,z Xy,z ≤ ε, where

Xy,z = |
1

‖y − z‖22
‖Πy − Πz‖22 − 1|,

where y, z ranges over all pairs of distinct vectors in P. Gordon’s theorem [15]
states that a Π with i.i.d. gaussian entries ensures this with good probability as
long as it has & (g2(T) + 1)/ε2 rows, where g(T) is the gaussian mean width
of T and T is the set of normalized differences of vectors in P. Later works
gave sharper analysis, and also extended to other types of Π, all using chaining
[19, 24, 2, 6, 9, 25].

Another application of chaining in the context dimensionality reduction was
in regard to nearest neighbor (NN) preserving embeddings [17]. In this problem,
one is given a database X ⊂ `d

2 of n points and must create a data structure such
that for any query point q ∈ Rd, one can quickly find a point x ∈ X such that
‖q − x‖2 is nearly minimized. Of course, if all distances are preserved between q
and points in X, this suffices to accomplish our goal, but it is more powerful than
what is needed. It is only needed that the distance from q to its nearest neighbor
does not increase too much, and that the distances from q to much farther points
do not shrink too much (to fool us into thinking that they are approximate nearest
neighbors). An embedding satisfying such criteria is known as a NN-preserving
embedding, and [17] used chaining methods to show that certain “nice” sets X
have such embeddings into low dimension. Specifically, the target dimension can
be O(∆2ε−2 γ2(X)

diam(X))
2, where ∆ is the aspect ratio of the data and γ2 is a functional

defined by Talagrand (more on that later). All we will say now is that γ2(X)
is always O(

√
log λX), where λX is the doubling constant of X (the maximum

number of balls of radius r/2 required to cover any radius-r ball, over all r).

2.4 Data structures and streaming algorithms
The potential example to data structures was already mentioned in the previous
section. To make it more concrete, consider the following streaming data struc-
tural problem in which one sees a sequence p1, . . . , pm with each pk ∈ {1, . . . , n}.
For example, when monitoring a search query stream, pk may be a word in a dic-
tionary of size n. The goal of the heavy hitters problem is to identify words that

occur frequently in the stream. Specifically, if we let fi be the number of occur-
rences of i ∈ [n] in the stream, in the `2 heavy hitters problem the goal is to find
all i such that f 2

i ≥ ε
∑

i f 2
i (think of ε as some given constant). The CountSketch

of Charikar, Chen, and Farach-Colton solves this problem using O(log n) machine
words of memory.

A recent work of [5] provides a new algorithm that solves the same problem
using only O(log log n) words of memory, and even more recently it has been
shown how to achieve the optimal O(1) words of memory [4]. These are random-
ized algorithms that maintain certain random variables in memory that evolve over
time, and their analyses require controlling the largest of their deviations. With-
out getting into technical details here, we describe a related streaming problem:
`2 estimation. The goal here is to use small memory while, after any query, being
able to output an estimate Q satisfying P(|Q − ‖ f ‖2| > ε‖ f ‖2) < 1/3 (the proba-
bility is over the randomness used by the algorithm). It turns out this problem can
be solved in O(1/ε2) words of memory by a randomized data structure known as
the “AMS sketch” [3]. The failure probability can be decreased to δ by running
Θ(log(1/δ)) instantiations of the algorithm in parallel with independent random-
ness, then returning the median estimate of ‖ f ‖2 during a query. This yields space
O(ε−2 log(1/δ)) words, which is optimal [18].

Recently the following question has been studied: what if we want to track
‖ f ‖2 at all times? Recalling the stream contains m updates, one could do as above
and set δ < 3/m and union bound, so with an O(ε−2 log m)-space algorithm, with
probability 2/3 all queries throughout the entire stream are correct. The work [16]
showed this bound can be asymptotically improved when the number of distinct
indices in the stream and 1/ε are both subpolynomial in m. This restriction was
removed in subsequent works [5, 4].

2.5 Random walks on graphs

Ding, Lee, and Peres [11] a few years ago gave the first deterministic constant-
factor approximation algorithm to the cover time of a random graph. Their work
showed that the cover time of any connected graph is, up to a constant, equal to
the supremum of a certain collection of random variables depending on that graph:
the gaussian free field. This is a collection of gaussian random variables whose
covariance structure is given by the effective resistances between the graph’s ver-
tices. Work of Talagrand (the “majorizing measures theory”) and Fernique have
provided us with tight, up to a constant factor, upper and lower bounds for the ex-
pected supremum of a collection of random variables. Furthermore, these bounds
are constructive and efficient. See also the works [23, 8, 32] for more on this topic.

2.6 Dictionary learning

In dictionary learning one assumes that some data of p samples, the columns of
some matrix Y ∈ Rn×p, is (approximately) sparse in some unknown “dictionary”.
That is, Y = AX + E where A is unknown, X is sparse in each column, and E is an
error matrix. If E = 0, A is square, and X has i.i.d. entries with s expected non-
zeroes per column, with the non-zeroes being subgaussian, then Spielman, Wang,
and Wright gave the first polynomial-time algorithm which provably recovers A
(up to permutation and scaling of its columns) using polynomially many samples.
Their proof required O(n2 log2 n) samples, but they conjectured O(n log n) should
suffice.

It was recently shown that their precise algorithm needs roughly n2 samples,
but O(n log n) does suffice for a slight variant of their algorithm. As per [27], the
analysis of the latter result boiled down to bounding the supremum of a collection
of random variables. See [22, 1, 7].

2.7 Error-correcting codes

A q-ary linear error-correcting code C is such that the codewords are all vectors of
the form xM for some row vector x ∈ Fm

q and M ∈ Fm×n
q . M is called the “generator

matrix”. Such a code is list-decodable up to some radius R, if, informally, if one
arbitrarily corrupts any codeword C in at most an R-fraction of coordinates to
obtain some C′, then the list of candidate codewords in C which could have arisen
in this way (i.e. are within radius R of C′) is small.

Recent work of Rudra and Wootters [26] showed, to quote them, that “any
q-ary code with sufficiently good distance can be randomly punctured to obtain,
with high probability, a code that is list decodable up to radius 1−1/q−εwith near-
optimal rate and list sizes”. A “random puncturing” means simply to randomly
sample some number of columns of M to form a random matrix M′, which is the
generator matrix for the new “punctured” code. Their proof relies on chaining.

In the remainder, we show the details of how chaining works, we play with
a toy example (bounding the gaussian mean width of the `1 ball in Rn), then de-
scribe an application of chaining to a real computer science problem: Euclidean
dimensionality reduction.

3 A case study: (sub)gaussian processes
To give an introduction to chaining, I will focus our attention on a concrete sce-
nario. Suppose we have a bounded (but possibly infinite) collection of vectors

T ⊂ Rn. Furthermore, let g ∈ Rn be a random vector with its entries being inde-
pendent, mean zero, and unit variance gaussians. We will consider the collection
of variables (Xt)t∈T with Xt defined as 〈g, t〉. In what follows, we will only ever
use one property of these Xt:

∀s, t ∈ T, P(|Xs − Xt| > λ) . e−λ
2/(2‖s−t‖22). (3)

This provides us with some understanding of the dependency structure of the Xt.
In particular, if s, t are close in `2, then it’s very likely that the random variables
Xs and Xt are also close.

Why does this property hold? Well,

Xs − Xt = 〈g, s − t〉 =

n∑
i=1

gi · (s − t)i.

We then use the property that adding independent gaussians yields a gaussian in
which the variances add. If you haven’t seen that fact before, it follows easily
from looking at the Fourier transform of the gaussian pdf. Adding independent
random variables convolves their pdfs, which pointwise multiplies their Fourier
transforms. Since the Fourier transform of a gaussian pdf is a gaussian whose
variance is inverted, it then follows that summing independent gaussians gives
a gaussian with summed variances. Thus Xs − Xt is a gaussian with variance
‖s−t‖22, and (3) then follows by tail behavior of gaussians. Note (3) would hold for
subgaussian distributions too, such as for example g being a vector of independent
uniform ±1 random variables.

Now I will present four approaches to bounding g(T) := Eg supt∈T Xt. These
approaches will be gradually sharper. For simplicity I will assume |T | < ∞, al-
though it is easy to circumvent this assumption for methods 2, 3, and 4.

3.1 Method 1: union bound

Remember that, in general for a scalar random variable Z,

E |Z| =
∫ ∞

0
P(Z > u)du.

Let ρX(T) denote the diameter of T under norm X. Then

E sup
t∈T

Xt =

∫ ∞

0
P(sup

t∈T
Xt > u)du

≤

∫ 2ρ`2 (T)
√

2 log |T |

0

≤1︷ ︸︸ ︷
P(sup

t∈T
Xt > u) du +

∫
ρ`2 (T)
√

2 log |T |
P(sup

t∈T
Xt > u)du

≤ ρ`2(T)
√

2 log |T | +
∫ ∞

ρ`2 (T)
√

2 log |T |

∑
t∈T

P(Xt > u)du (union bound)

≤ ρ`2(T)
√

2 log |T | + |T | ·
∫ ∞

ρ`2 (T)
√

2 log |T |
e−u2/(2ρ`2 (T)2)du

= ρ`2(T)
√

2 log |T | + ρ`2(T) · |T | ·
∫ ∞

√
2 log |T |

e−v2/2dv (change of variables)

. ρ`2(T) ·
√

log |T | (4)

3.2 Method 2: ε-net

Let T ′ ⊆ T be an ε-net of T under `2. That is, for all t ∈ T there exists t′ ∈ T ′ such
that ‖t − t′‖2 ≤ ε. Now note 〈g, t〉 = 〈g, t′ + (t − t′)〉 so that

Xt = Xt′ + Xt−t′ .

Therefore
g(T) ≤ g(T ′) + E sup

t∈T
〈g, t − t′〉 .

We already know g(T ′) . ρ`2(T
′) ·

√
log |T ′| ≤ ρ`2(T) ·

√
log |T ′| by (4). Also,

〈g, t − t′〉 ≤ ‖g‖2 · ‖t − t′‖ ≤ ε‖g‖2, and

E ‖g‖2 ≤ (E ‖g‖22)1/2 ≤
√

n.

Therefore

g(T) . ρ`2(T) ·
√

log |T ′| + ε
√

n
= ρ`2(T) · log1/2

N(T, `2, ε) + ε
√

n (5)

where N(T, d, u) denotes the entropy number or covering number, defined as the
minimum number of radius-u balls under metric d centered at points in T required
to cover T (i.e. the size of the smallest u-net). Of course ε can be chosen to
minimize (5). Note the case ε = 0 just reduces back to method 1.

3.3 Method 3: Dudley’s inequality (chaining)
The idea of Dudley’s inequality [13] is to, rather than use one net, use a countably
infinite sequence of nets. That is, let S r ⊂ T denote an εr-net of T under `2, where
εr = 2−r · ρ`2(T). Let tr denote the closest point in S r to some t ∈ T . Note T0 = {0}
is a valid ε0-net. Then

〈g, t〉 = 〈g, t0〉 +

∞∑
r=1

〈g, tr − tr−1〉 ,

so then

g(T) ≤
∞∑

r=1

E sup
t∈T
〈g, tr − tr−1〉

.
∞∑

r=1

ρ`2(T)
2r · log1/2(N(T, `2,

ρ`2(T)
2r)2) (by (4)) (6)

.
∞∑

r=1

ρ`2(T)
2r · log1/2

N(T, `2,
ρ`2(T)

2r) (7)

where (6) used the triangle inequality to yield

‖tr − tr−1‖2 ≤ ‖t − tr‖2 + ‖t − tr−1‖2 ≤
3
2r · ρ`2(T).

The sum (7) is perfectly fine as is, though the typical formulation of Dudley’s
inequality then bounds the sum by an integral over ε (representing ρ`2(T)/2r) then
performs the change of variable u = ε/ρ`2(T). This yields the usual formulation
of Dudley’s inequality:

g(T) .
∫ ∞

0
log1/2

N(T, `2, u)du (8)

It is worth pointing out that Dudley’s inequality is equivalent to the following
bound. We say T0 ⊂ T1 ⊂ . . . ⊂ T is an admissible sequence if |T0| = 1 and
|Tr| ≤ 22r

. Then Dudley’s inequality is equivalent to the bound

g(T) .
∞∑

r=0

2r/2 · sup
t∈T

d`2(t,Tr). (9)

To see this most easily, compare with the bound (7). Note that to minimize
supt∈T d`2(t,Tr), we should pick the best quality net we can using 22r

points. From
r = 0 until some r1, the quality of the net will be, up to a factor of 2, equal to

ρ`2(T), and for the r in this range the summands of (9) will be a geometric series
that sum to O(2r1/2 · ρ`2(T)). Then from r = r1 to some r2, the quality of the best
net will be, up to a factor of 2, equal to ρ`2(T)/2, and these summands then are a
geometric series that sum to O(2r2/2 · ρ`2(T)/2), etc. In this way, the bounds of (7)
and (9) are equivalent up to a constant factor.

Note, this is the primary reason we chose the Tr to have doubly exponential
size in r: so that the sum of log1/2

|Tr| in any contiguous range of r is a geometric
series dominated by the last term.

3.4 Method 4: generic chaining
Here we will show the generic chaining method, which yields the bound of [14],
though we will present an equivalent bound that was later given by Talagrand (see
his book [29]):

g(T) . inf
{Tr}

∞
r=0

sup
t∈T

∞∑
r=0

2r/2 · d`2(t,Tr). (10)

where the infimum is taken over admissible sequences.
Note the similarity between (9) and (10): the latter bound moved the supre-

mum outside the sum. Thus clearly the bound (10) can only be a tighter bound.
For a metric d, Talagrand defined

γp(T, d) := inf
{Tr}r

sup
t∈T

∞∑
r=0

2r/p · d(t,Tr),

where again the infimum is over admissible sequences. We now we wish to prove

g(T) . γ2(T, `2).

You are probably guessing at this point that had we not been working with sub-
gaussians, but rather random variables that have decay bounded by e−|x|

p
, we would

get a bound in terms of the γp-functional — your guess is right. I leave it to you
as an exercise to modify arguments appropriately!

For nonnegative integer r and for t ∈ T , define πrt = argmint′∈Tr
d(t, t′). For

r ≥ 1 define ∆rt = πrt − πr−1t. Then for any t ∈ T

t = π0t +

∞∑
r=1

∆rt

so that

E sup
t∈T
〈g, t〉 = E sup

t∈T

∞∑
r=1

〈g,∆rt〉︸ ︷︷ ︸
Yr(t)

.

since E supt∈T 〈g, π0t〉 = E 〈g, π0t〉 = 0, with the first equality using that |T0| = 1.
Note for fixed t, by gaussian decay

P(|Yr(t)| > 2u2r/2‖∆rt‖) < 2e−u22r
.

Therefore

P(∃t ∈ T, r > 0 s.t. |Yr(t)| > 2u2r/2‖∆rt‖) .
∞∑

r=1

|Tr| · |Tr−1| · e−u22r

≤

∞∑
r=1

42r
· e−u22r

(11)

since |Tr|, |Tr−1| ≤ 22r
. The above sum is convergent for u ≥ 2.

Now, again using that E |Z| =
∫ ∞

0
P(|Z| > w)dw, we have

g(T) ≤
∫ ∞

0
P(sup

t∈T

∞∑
r=1

Yr > w)dw

=

2 sup
t∈T

∞∑
r=1

2r/2‖∆rt‖)


×

∫ ∞

0
P(sup

t∈T

∞∑
r=1

Yr > u · 2 sup
t∈T

∞∑
r=1

2r/2‖∆rt‖)du (change of variables)

.

sup
t∈T

∞∑
r=1

2r/2‖∆rt‖)


× [2 +

∫ ∞

2
P(sup

t∈T

∞∑
r=1

Yr > u · 2 sup
t∈T

∞∑
r=1

2r/2‖∆rt‖)du]

.

sup
t∈T

∞∑
r=1

2r/2‖∆rt‖)


× [2 +

∫ ∞

2
P(∃t ∈ T, r > 0 s.t. |Yr(t)| > 2u2r/2‖∆rt‖)du]

. sup
t∈T

∞∑
r=1

2r/2‖∆rt‖. (12)

Now note ‖∆rt‖ = ‖tr − tr−1‖ ≤ 2d`2(t,Tr) by the triangle inequality, and thus (12)
is at most a constant factor larger than γ2(T, `2), as desired.

Surprisingly, Talagrand showed that not only is γ2(T, `2) an asymptotic upper
bound for g(T), but it is also an asymptotic lower bound (at least when the entries
of g are actually gaussians — the lower bound does not hold for subgaussian

entries). That is, g(T) ' γ2(T, `2) for any T . This is known as the “majorizing
measures theorem” for reasons we will not get into. In brief: the formulation
of [14] did not talk about admissible sequences, or discrete sets at all, but rather
worked with measures and provided an upper bound in terms of an infimum over
a set of probability measures of a certain integral — this formulation is equivalent
to the formulation discussed above in terms of admissible sets, and a proof of the
equivalence appears in [29].

4 A concrete example: the `1 ball

Consider the example T = B`n
1

= {t ∈ Rn : ‖t‖1 = 1}, i.e. the unit `1. I picked
this example because it is easy to already know g(T) using other methods. Why?
Well, supt∈B`n1

〈g, t〉 = ‖g‖∞, since the dual norm of `∞ is `1! Thus g(B`n
1
) = E ‖g‖∞,

which one can check is Θ(
√

log n). Thus we know the answer is Θ(
√

log n).

So now the question: what do the four methods above give?

4.1 Method 1: union bound

This method gives nothing, since T is an infinite set.

4.2 Method 2: ε-net

To apply this method, we need to understand the size of an ε-net of the `1 unit ball
under `2. One bound comes from Maurey’s empirical method.

Lemma 1 (Maurey’s empirical method). N(B`n
1
, `2, u) ≤ (2n)4/u2

Proof. Consider any t ∈ B`n
1
. It can be written as a convex combination t =∑2n

i=1 αixi where x1, . . . , xn = e1, . . . , en and xn+1, . . . , x2n = −e1, . . . ,−en. Now,
consider a distribution over Rn in which we pick a random vector v which equals
ti with probability αi. Then E v = t. Now pick Z1, . . . ,Zq,Z′1, . . . ,Z

′
q i.i.d. from this

distribution. Define the vectors Z = (Z1, . . . ,Zq) and Z′ = (Z′1, . . . ,Z
′
q). Then

E
Z
‖t −

1
q

q∑
i=1

Zi‖2 =
1
q
E
Z
‖E

Z′

q∑
i=1

(Zi − Z′i)‖2

=
1
q
E
Z
‖ E
σ,Z′

q∑
i=1

σi(Zi − Z′i)‖2

≤
1
q
E

Z,Z′,σ
‖

q∑
i=1

σi(Zi − Z′i)‖2 (Jensen)

≤
2
q
E
Z
E
σ
‖

q∑
i=1

σiZi‖2

≤
2
q
E
Z

(E
σ
‖

q∑
i=1

σiZi‖
2
2)1/2

=
2
√

q
.

where the σi are independent uniform ±1 random variables. Thus, in expectation,
t is u-close to an average of q such random Zi for q ≥ 4/u2. Thus in particular,
every t in B`n

1
is u-close in `2 to some average of 4/u2 of the vectors ±ei, and thus

the set of all such averages is a u-net in `2, of which there are at most (2n)q. �

One can also obtain a bound on the covering number via a simple volumetric
argument, which implies N(Bn

`1
, `2, ε) = O(2 + 1/(u

√
n))n. Without giving the

precise calculations, the argument is to first upper bound the maximum number
of disjoint radius (u/2)-`2 balls one can pack in B`n

1
. Then if one takes those balls

and considers the union of radius-u balls from their centers, these balls must cover
of B`n

1
by the triangle inequality and maximality of the original packing. Since all

the original packed balls are fully contained in the `1 ball of radius 1 + (u/2)
√

n
by Cauchy-Schwarz, the number of balls in the packing could not have been more
than the ratio of the volume of the `1 ball of radius (1 + (u/2)

√
n), and the volume

of an `2 ball of radius u/2. Thus, combining Maurey’s lemma and this argument,

∀ε ∈ (0,
1
2

), log1/2
N(Bn

`1
, `2, ε) . min{ε−1

√
log n,

√
n · log(1/ε)}. (13)

By picking ε = ((log n)/n)1/4, (5) gives us g(T) . (n log n)1/4. This is exponen-
tially worse than true bound of g(T) = Θ(

√
log n).

4.3 Method 3: Dudley’s inequality
Combining (13) with (8),

g(T) .
∫ 1/

√
n

0

√
n · log(1/u)du +

∫ 1

1/
√

n
u−1

√
log ndu . log3/2 n.

This is exponentially better than method 2, but still off from the truth. We can
though wonder: perhaps the issue is not Dudley’s inequality, but perhaps the en-
tropy bounds of (13) are simply loose? Unfortunately this is not the case. To
see this, take a set R of vectors in Rn that are each 1/ε2-sparse, with ε2 in each
non-zero coordinate, and so that all pairwise `2 distances are 2ε. A random col-
lection R satisfies this distance property with high probability for |R| = nΘ(1/ε2) and
ε � 1/

√
n. Then note R ⊂ B`n

1
and furthermore one needs at least |R| radius-ε

balls in `2 just to cover R.
It is also worth pointing out that this is the worst case for Dudley’s inequality:

it can never be off by more than a factor of log n. I’ll leave it to you as an exercise
to figure out why (you should assume the majorizing measures theorem, i.e. that
(10) is tight)! Hint: compare (9) with (10) and show that nothing interesting
happens beyond r > log n + c log log n.

4.4 Method 4: generic chaining
By the majorizing measures theorem, we know there must exist an admissible se-
quence giving the correct g(T) .

√
log n, thus being superior to Dudley’s inequal-

ity. Once as an exercise, I tried with Eric Price and Mary Wootters to construct
an explicit admissible sequence demonstrating that γ2(B`n

1
, `2) = O(

√
log n). Eric

and I managed to find a sequence yielding O(log n), and Mary found a sequence
that gives the correct O(

√
log n) bound. Below I include Mary’s construction.

Henceforth, to be concrete log denotes log2. Let Ns be a 1/2s-net of the 2s-
sparse vectors in B`n

2
. Thus

|Ns| ≤

(
n
2s

)
(3 · 2s)2s

.

Then defining sk = k − dlog log(3en)e,

|Nsk | ≤ 22k
.

Then we define T0 = T1 = · · · = Tdlog log(3en)e−1 = {0}, and Tk = Nsk for dlog log(3en)e ≤
k ≤ `max for `max = log n + dlog log(3en)e. For k ≥ `max, we set Tk to be an εk-net
of B`n

2
of size 22k

for the smallest εk possible. If k = `max + j, then

ε ≤ n−2 j
.

We now wish to upper bound the supremum over all x ∈ B`n
1

of

∞∑
k=0

2k/2d`2(x,Tk). (14)

We henceforth focus on a particular x ∈ B`n
1

and show that (14) is O(
√

log n).
We split the sum into three parts:

(1) 0 ≤ k < dlog log(3en)e

(2) dlog log(3en)e ≤ k < `max

(3) `max ≤ k < ∞

For the summands in (1), each d`2(x,Tk) equals ‖x‖2 ≤ 1, and thus these terms in
total contribute at most 2 · 2dlog log(3en)e = O(

√
log n) to (14). The summands in (3)

are also easy to handle: writing k = `max + j, the summand with index k is at most

2(`max+ j)/2 · n−2 j
≤

√
n log n · 2 j/2n−2 j

,

and thus the sum over j ≥ 0 is o(1) for any n ≥ 2.
We now proceed with the most involved part of the argument: bounding the

contribution of summands in the range (2). For this, we will use a technique that
is often referred to in the compressed sensing community as shelling. Consider
sorting the indices i ∈ [n] by magnitude |xi|, i.e. |xi1 | ≥ |xi2 | ≥ . . . ≥ |xin |. Define the
vector |x| by |x|i = |xi|. Let A0 ⊂ [n] denote the coordinates of the 20 largest entries
of |x|, then A1 the next 21 largest entries, then A2 the next 22 largest entries, etc.
(if less than 2s entries remain in x, then As is simply the set of remaining entries).
The As partition [n]. Let xA ∈ R

n denote the projection of x onto coordinates in A.

log n+dlog log(3en)e∑
k=dlog log(3en)e

2k/2 · d`2(x,Nsk) .
√

log n ·
log n∑
s=0

2s/2 · d`2(x,Ns)

.
√

log n ·
log n∑
s=0

2s/2 ·
(
d`n

2
(xAs ,Ns) + ‖x − xAs‖2

)
.

√
log n +

√
log n ·

log n∑
s=0

2s/2 · ‖x − xAs‖2︸ ︷︷ ︸
α

We now wish to show α = O(1).

α ≤

log n∑
s=0

2s/2

 log n∑
j=s+1

‖xA j‖2


≤

log n∑
s=0

2s/2 ·

 log n∑
j=s+1

2 j/2‖xA j‖∞


=

log n∑
j=1

2 j/2‖xA j‖∞ ·

 j−1∑
s=0

2s/2


.

log n∑
j=1

2 j · ‖xA j‖∞ (15)

The largest entry of |x|A j is at most the smallest entry of |x|A j−1 by construction, and
hence is at most the average entry of |x|A j−1 . Thus

(15) ≤
log n∑
j=1

2 j ·
‖xA j−1‖1

2 j−1

≤ 2 ·
log n−1∑

j=0

‖xA j‖1

≤ 2 · ‖x‖1,

which is at most 2 = O(1), as desired.

5 Application details: dimensionality reduction
We again use the definitions of πr,∆r from Section 3.4. Also, throughout this
section we let ‖ · ‖ denote the `2→2 operator norm in the case of matrix arguments,
and the `2 norm in the case of vector arguments. Recall ρX(T) denotes diameter
of T under norm ‖ · ‖X. We use ‖ · ‖F to denote Frobenius norm.

Krahmer, Mendelson, and Rauhut showed the following theorem [20].

Theorem 1. LetA ⊂ Rm×n be arbitrary. Let σ1, . . . , σn be independent subgaus-
sian random variables of mean 0 and variance 1. Then

E
σ

sup
A∈A

∣∣∣‖Aσ‖2 − E ‖Aσ‖2∣∣∣ . γ2
2(A, ‖ · ‖) + γ2(A, ‖ · ‖) · ρF(A) + ρF(A) · ρ`2→2(A).

We now show that Theorem 1, combined with the majorizing measures theo-
rem, can be used to prove the theorem of Gordon [15] as described in Section 2,

and in fact a theorem that is slightly stronger. Gordon’s original proof did not use
chaining at all. Recall from (2) that we have a point set P ⊂ Rd, and we want to
show that a random matrix Π ∈ Rm×n satisfies

∀x, y ∈ P, (1 − ε)‖x − y‖22 ≤ ‖Πx − Πy‖22 ≤ (1 + ε)‖x − y‖22.

for m not too large. In other words, for T = {(x− y)/‖x− y‖ : x , y ∈ P}, we want

sup
x∈T
‖‖Πx‖2 − 1| < ε. (16)

We below show that Theorem 1 implies that the expectation of the left hand side
of (16) is less than ε for m & (g2(T) + 1)/ε2, when the entries of Π are i.i.d. sub-
gaussian with mean 0 and variance 1/m. Gordon showed the same result but only
when the Πi, j were independent gaussians and not subgaussians. Note bounding
the expectation by ε in (16) implies the actual sup is at most 3ε with probabil-
ity 2/3, by Markov’s inequality. Much stronger concentration analyses have been
given by bounding the Lp norm of the left hand side then performing Markov’s
inequality on a high moment [24, 9, 10]; we do not cover those approaches here.

We only show the theorem when T is finite. In many applications we care
about infinite T (e.g. all the unit norm vectors in a d-dimensional subspace, for
applications in numerical linear algebra [31]). In fact, for T ⊂ `n

2 bounded it is
without loss of generality to consider only finite T . This is because we can take
T ′ a finite α-net of T , i.e. ∀x ∈ T ∃x′ ∈ T ′ : ‖x − x′‖ ≤ α. Then

g(T) = E
g

sup
x∈T
〈g, x′〉 + 〈g, x − x′〉 = g(T ′) ± E

g
sup
x∈T
〈g, x′ − x〉 = g(T ′) ± α

√
n

since | 〈g, x′ − x〉 | ≤ ‖g‖ · ‖x − x′‖ and Eg ‖g‖ ≤ (Eg ‖g‖2)1/2 =
√

n. Then we can
choose α arbitrarily small so that g(T ′) is as close to g(T) as we want.

Theorem 2. Let T ⊂ Rn be a finite set of vectors each of unit norm, and let ε ∈
(0, 1/2) be arbitrary. Let Π ∈ Rm×n be such that Πi, j = σi, j/

√
m for independent

subgaussian variables σi, j of mean 0 and variance 1, where m & (g2(T) + 1)/ε2.
Then

E
σ

sup
x∈T

∣∣∣‖Πx‖2 − 1
∣∣∣ < ε.

Proof. For x ∈ T let Ax denote the m × mn matrix defined as follows:

Ax =
1
√

m
·


x1 · · · xn 0 · 0
0 · · · 0 x1 · · · xn 0 · · · · · · · · · · · · 0
...

...
... ·

0 · 0 x1 · · · xn

 .

Then ‖Πx‖2 = ‖Axσ‖
2, so lettingA = {Ax : x ∈ T },

E
σ

sup
x∈T

∣∣∣‖Πx‖2 − 1
∣∣∣ = E

σ
sup
A∈A

∣∣∣∣∣‖Aσ‖2 − Eσ ‖Aσ‖2
∣∣∣∣∣ .

We have ρF(A) = 1. Also A∗xAx is a block-diagonal matrix, with m blocks each
equal to xx∗/m, and thus the singular values of Ax are 0 and ‖x‖/

√
m, implying

ρ`2→2(A) = 1/
√

m. Similarly, since Ax − Ay = Ax−y, for any vectors x, y we have
‖Ax − Ay‖ = ‖x − y‖, and thus γ2(A, ‖ · ‖) ≤ γ2(T, ‖ · ‖)/

√
m. Thus by Theorem 1,

E
σ

sup
x∈T

∣∣∣‖Πx‖2 − 1
∣∣∣ . γ2

2(T, ‖ · ‖)
m

+
γ2(T, ‖ · ‖)
√

m
+

1
√

m
,

which is at most ε for m & (γ2
2(T, ‖ · ‖) + 1)/ε2 as in the theorem statement. This

inequality holds by setting m & (g2(T) + 1)/ε2, since γ2(T, ‖ · ‖) . g(T) by the
majorizing measures theorem. �

We now prove Theorem 1. We only prove it in the case that the σi are
Rademacher, i.e. uniform ±1, since this setting already contains the main ideas
of the proof. Before we can continue with the proof though, we need a few stan-
dard lemmas. The proofs given below are also standard. Recall that for a scalar
random variable Z, ‖Z‖p denotes (E |Z|p)1/p. It is known that ‖ · ‖p is a norm for
p ≥ 1.

Lemma 2 (Khintchine’s inequality). Let x ∈ Rn be arbitrary and σ1, . . . , σn be
independent Rademachers. Then

∀p ≥ 1, ‖ 〈σ, x〉 ‖p ≤
√

p · ‖x‖.

This is equivalent, up to constant factors in the exponent, to the following:

∀λ > 0, P
σ

(| 〈σ, x〉 | > λ) ≤ 2e−λ
2/(2‖x‖2).

Proof. For the first inequality, consider 〈g, x〉 for g a vector of independent stan-
dard normal random variables. The random variable 〈g, x〉 is distributed as a
gaussian with variance ‖x‖2, and thus ‖ 〈g, x〉 ‖p <

√
p · ‖x‖ by known moment

bounds on gaussians. Meanwhile, for positive even integer p, one can expand
E | 〈g, x〉p | = E 〈g, x〉p as a sum of expectations of monomials. If one similarly ex-
pands 〈σ, x〉p, then we find that these monomials’ expectations are term-by-term
dominated in the gaussian case, since any even Rademacher moment is 1 whereas
all even gaussian moments are at least 1. �

Lemma 3 (Decoupling [12]). Let x1, . . . , xn be independent and mean zero, and
x′1, . . . , x

′
n identically distributed as the xi and independent of them. Then for any

(ai, j) and for all p ≥ 1

‖
∑
i, j

ai, jxix j‖p ≤ 4‖
∑

i, j

ai, jxix′j‖p

Proof. Let η1, . . . , ηn be independent Bernoulli random variables each of expecta-
tion 1/2. Then

‖
∑
i, j

ai, jxix j‖p = 4 · ‖E
η

∑
i, j

ai, jxix j|ηi||1 − η j|‖p

≤ 4 · ‖
∑
i, j

ai, jxix jηi(1 − η j)‖p (Jensen) (17)

Hence there must be some fixed vector η′ ∈ {0, 1}n which achieves

‖
∑
i, j

ai, jxix jηi(1 − η j)‖p ≤ ‖
∑
i∈S

∑
j<S

ai, jxix j‖p

where S = {i : η′i = 1}. Let xS denote the |S |-dimensional vector corresponding to
the xi for i ∈ S . Then

‖
∑
i∈S

∑
j<S

ai, jxix j‖p = ‖
∑
i∈S

∑
j<S

ai, jxix′j‖p

= ‖ E
xS
E
x′

S̄

∑
i, j

ai, jxix′j‖p (E xi = E x′j = 0)

≤ ‖
∑

i, j

ai, jxix′j‖p (Jensen)

�

5.1 Proof of Theorem 1
We now prove Theorem 1 in the case the σi are independent Rademachers. With-
out loss of generality we can assume A is finite (else apply the theorem to a
sufficiently fine net, i.e. fine in `2 → `2 operator norm). Define

E = E
σ

sup
A∈A

∣∣∣‖Aσ‖2 − E ‖Aσ‖2∣∣∣
and let Ai denote the ith column of A. Then by decoupling

E = E
σ

sup
A∈A

∣∣∣∣∣∣∣∑i, j

σiσ j

〈
Ai, A j

〉∣∣∣∣∣∣∣

≤ 4 · E
σ,σ′

sup
A∈A

∣∣∣∣∣∣∣∑i, j

σiσ
′
j

〈
Ai, A j

〉∣∣∣∣∣∣∣
= 4 · E

σ,σ′
sup
A∈A
|〈Aσ, Aσ′〉| .

Let {Tr}
∞
r=0 be admissible forA. Direct computation shows

〈Aσ, Aσ′〉 = 〈(π0A)σ, (π0A)σ′〉+
∞∑

r=1

〈(∆rA)σ, (πr−1A)σ′〉︸ ︷︷ ︸
Xr(A)

+

∞∑
r=1

〈(πrA)σ, (∆rA)σ′〉︸ ︷︷ ︸
Yr(A)

.

We have T0 = {A0} for some A0 ∈ A. Thus Eσ,σ′ |〈(π0A)σ, (π0A)σ′〉| equals

E
σ,σ′

∣∣∣σ∗A∗0A0σ
′
∣∣∣ ≤ (

E
σ,σ′

(
σ∗A∗0A0σ

′)2
)1/2

= ‖A∗0A0‖F ≤ ‖A0‖F‖A0‖ ≤ ρF(A)·ρ`2→2(A).

Thus,

E
σ,σ′

sup
A∈A
|〈Aσ, Aσ′〉| ≤ ρF(A) · ρ`2→2(A) + E

σ,σ′
sup
A∈A

∞∑
r=1

|Xr(A)| + E
σ,σ′

sup
A∈A

∞∑
r=1

|Yr(A)|.

We focus on the second summand; handling the third summand is similar.
Note Xr(A) = 〈(∆rA)σ, (πr−1A)σ′〉 = 〈σ, (∆rA)∗(πr−1A)σ′〉. Thus by the Khint-

chine inequality (namely ‖ 〈σ, x〉 ‖p .
√

p · ‖x‖),

P(|Xr(A)| > t2r/2 · ‖(∆rA)∗(πr−1A)σ′‖) . e−t22r/2.

Let E(A) be the event that for all r ≥ 1 simultaneously, |Xr(A)| ≤ t2r/2 · ‖∆rA‖ ·
supA∈A ‖Aσ

′‖. Then

P(∃A ∈ A s.t. ¬E(A)) .
∞∑

r=1

|Tr| · |Tr−1| · e−t22r/2

≤

∞∑
r=1

22r+1
· e−t22r/2.

Therefore

E
σ,σ′

sup
A∈A

∞∑
r=1

|Xr(A)| = E
σ′

∫ ∞

0
P
σ

sup
A∈A

∞∑
r=1

|Xr(A)| > t

 dt,

which by a change of variables is equal to

E
σ′

(
sup
A∈A
‖Aσ′‖ ·

sup
A∈A

∞∑
r=1

2r/2‖∆rA‖



× ·

∫ ∞

0
P
σ

sup
A∈A

∞∑
r=1

|Xr(A)| > t sup
A∈A

2r/2 · ‖∆rA‖ · sup
A∈A
‖Aσ′‖

 dt
)

≤

(
E
σ′

sup
A∈A
‖Aσ′‖

)
·

sup
A∈A

∞∑
r=1

2r/2‖∆rA‖

 · 3 +

∞∑
r=1

∫ ∞

3
22r+1

e−t22r/2dt


.

(
E
σ′

sup
A∈A
‖Aσ′‖

)
· sup

A∈A

∞∑
r=1

2r/2‖∆rA‖

.

(
E
σ′

sup
A∈A
‖Aσ′‖

)
· sup

A∈A

∞∑
r=1

2r/2 · ρ2→2(A,Tr),

since ‖∆rA‖ ≤ ρ2→2(A,Tr−1) + ρ2→2(A,Tr) via the triangle inequality. Choosing
admissible T0 ⊆ T1 ⊆ . . . ⊆ T to minimize the above expression,

E . ρF(A) · ρ`2→2(A) + γ2(A, ‖ · ‖) · E
σ′

sup
A∈A
‖Aσ′‖.

Now observe

E
σ′

(
sup
A∈A
‖Aσ′‖

)
≤

(
E
σ′

sup
A∈A
‖Aσ′‖2

)1/2

≤

(
E
σ′

(
sup
A∈A

∣∣∣∣∣‖Aσ′‖2 − Eσ′ ‖Aσ′‖2
∣∣∣∣∣ + E

σ′
‖Aσ′‖2

))1/2

=

(
E
σ′

sup
A∈A

(∣∣∣∣∣‖Aσ′‖2 − Eσ′ ‖Aσ′‖2
∣∣∣∣∣ + ‖A‖2F

))1/2

≤
√

E + ρF(A)

Thus in summary,

E . ρF(A) · ρ`2→2(A) + γ2(A, ‖ · ‖) · (
√

E + ρF(A)).

This implies E is at most the square of the larger root of the associated quadratic
equation, which gives the theorem.

Acknowledgments
I thank Oded Regev for pointing out that Dudley’s inequality cannot yield a bound
on the mean width of B`n

1
that is better than O(log3/2 n) (see Section 4.3), and I

thank Mary Wootters for allowing me to include her argument for the admissible
sequence for the `1 ball in Section 4. A preliminary version of this note appeared
on the “Windows on Theory” blog. I thank commenters there, in addition to
Assaf Naor and David Woodruff, for pointing out typographical errors and for
other suggestions.

References
[1] Radosław Adamczak. A note on the sample complexity of the Er-SpUD al-

gorithm by Spielman, Wang and Wright for exact recovery of sparsely used
dictionaries. CoRR, abs/1601.02049, 2016.

[2] Nir Ailon and Edo Liberty. An almost optimal unrestricted fast Johnson-
Lindenstrauss transform. ACM Transactions on Algorithms, 9(3):21, 2013.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of ap-
proximating the frequency moments. J. Comput. Syst. Sci., 58(1):137–147,
1999.

[4] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson,
Zhengyu Wang, and David P. Woodruff. BPTree: an `2 heavy hitters algo-
rithm using constant memory. CoRR, abs/1603.00759, 2016.

[5] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P.
Woodruff. Beating CountSketch for Heavy Hitters in Insertion Streams. In
Proceedings of the 48th Annual ACM Symposium on Theory of Computing
(STOC), pages 740–753, 2016. Full version at arXiv abs/1511.00661.

[6] Jean Bourgain, Sjoerd Dirksen, and Jelani Nelson. Toward a unified theory
of sparse dimensionality reduction in Euclidean space. Geometric and Func-
tional Analysis (GAFA), 25(4):1009–1088, July 2015. Preliminary version in
STOC 2015.

[7] Jaroslaw Blasiok and Jelani Nelson. An improved analysis of the er-spud
dictionary learning algorithm. In 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), pages 44:1–44:14, 2016. Full version
at arXiv abs/1602.05719.

[8] Jian Ding. Asymptotics of cover times via Gaussian free fields: Bounded-
degree graphs and general trees. Annals of Probability, 42(2):464–496, 2014.

[9] Sjoerd Dirksen. Dimensionality reduction with subgaussian matrices: a uni-
fied theory. Found. Comput. Math., pages 1–30, 2015. Full version at arXiv
abs/1402.3973.

[10] Sjoerd Dirksen. Tail bounds via generic chaining. Electron. J. Probab.,
20(53):1–29, 2015.

[11] Jian Ding, James R. Lee, and Yuval Peres. Cover times, blanket times, and
majorizing measures. Annals of Mathematics, 175:1409–1471, 2012.

[12] Victor de la Peña and Evarist Giné. Decoupling: From dependence to in-
dependence. Probability and its Applications. Springer-Verlag, New York,
1999.

[13] Richard M. Dudley. The sizes of compact subsets of Hilbert space and conti-
nuity of Gaussian processes. J. Functional Analysis, 1:290–330, 1967.

[14] Xavier Fernique. Regularité des trajectoires des fonctions aléatoires gaussi-
ennes. Lecture Notes in Math., 480:1–96, 1975.

[15] Yehoram Gordon. On Milman’s inequality and random subspaces which es-
cape through a mesh in Rn. Geometric Aspects of Functional Analysis, pages
84–106, 1988.

[16] Zengfeng Huang, Wai Ming Tai, and Ke Yi. Tracking the frequency moments
at all times. CoRR, abs/1412.1763, 2014.

[17] Piotr Indyk and Assaf Naor. Nearest-neighbor-preserving embeddings. ACM
Transactions on Algorithms, 3(3), 2007.

[18] T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-
Lindenstrauss transforms and streaming problems with subconstant error.
ACM Trans. Algorithms, 9(3):26, 2013.

[19] Bo’az Klartag and Shahar Mendelson. Empirical processes and random pro-
jections. J. Funct. Anal., 225(1):229–245, 2005.

[20] Felix Krahmer, Shahar Mendelson, and Holger Rauhut. Suprema of chaos
processes and the restricted isometry property. Comm. Pure Appl. Math.,
2014.

[21] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic cal-
culus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, 1991.

[22] Kyle Luh and Van Vu. Random matrices: l1 concentration and dictionary
learning with few samples. In Proceedings of the 56th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 1409–1425, 2015.

[23] Raghu Meka. A PTAS for computing the supremum of gaussian processes. In
53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 217–222, 2012.

[24] Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Recon-
struction and subgaussian operators in asymptotic geometric analysis. Geo-
metric and Functional Analysis, 17:1248–1282, 2007.

[25] Samet Oymak, Benjamin Recht, and Mahdi Soltanolkotabi. Isometric sketch-
ing of any set via the restricted isometry property. CoRR, abs/1506.03521,
2015.

[26] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has
abundant near-optimal rate puncturings. In Proceedings of the 46th ACM
Symposium on Theory of Computing (STOC), pages 764–773, 2014.

[27] Daniel A. Spielman, Huan Wang, and John Wright. Exact recovery of
sparsely-used dictionaries. In Proceedings of the 25th Annual Conference
on Learning Theory (COLT), pages 37.1–37.18, 2012.

[28] Michel Talagrand. Are many small sets explicitly small? In Proceedings of
the 42nd ACM Symposium on Theory of Computing (STOC), pages 13–36,
2010.

[29] Michel Talagrand. Upper and lower bounds for stochastic processes: modern
methods and classical problems. Springer, 2014.

[30] Ramon van Handel. Probability in high dimensions. Manuscript, 2014. Avail-
able at https://www.princeton.edu/~rvan/ORF570.pdf. Version from
June 30, 2014.

[31] David P. Woodruff. Sketching as a tool for numerical linear algebra. Founda-
tions and Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

[32] Alex Zhai. Exponential concentration of cover times. CoRR, abs/1407.7617,
2014.

https://www.princeton.edu/~rvan/ORF570.pdf

	BEATCS_120___algorithm_column__first_
	chaining
	What is chaining?
	Applications in computer science
	Random matrices and compressed sensing
	Empirical risk minimization
	Dimensionality reduction
	Data structures and streaming algorithms
	Random walks on graphs
	Dictionary learning
	Error-correcting codes

	A case study: (sub)gaussian processes
	Method 1: union bound
	Method 2: -net
	Method 3: Dudley's inequality (chaining)
	Method 4: generic chaining

	A concrete example: the 1 ball
	Method 1: union bound
	Method 2: -net
	Method 3: Dudley's inequality
	Method 4: generic chaining

	Application details: dimensionality reduction
	Proof of Theorem 1

