
The Logic in Computer Science Column
by

Yuri Gurevich

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

http://research.microsoft.com/
 gurevich@microsoft.com

A General Definition of the O-notation for
Algorithm Analysis

Kalle Rutanen1,3, Germán Gómez-Herrero2, Sirkka-Liisa
Eriksson1, and Karen Egiazarian3

1Department of Mathematics, Tampere University of Technology
2Innovative Travel Ltd

3Department of Signal Processing, Tampere University of
Technology

Abstract

We provide an extensive list of desirable properties for an O-notation —
as used in algorithm analysis — and reduce them to 8 primitive properties.
We prove that the primitive properties are equivalent to the definition of the
O-notation as linear dominance.

Contents
1 Introduction

1.1 Notation .
1.2 Algorithms .
1.3 Computational model and cost-model
1.4 Primitive properties .
1.5 Problem complexity .
1.6 O-notation .
1.7 Example analyses .
1.8 Implicit conventions .

2 Previous work
2.1 Howell’s counterexample .

3 Worst case, best case, average case

4 Characterization of the O-notation
4.1 Linear dominance is sufficient
4.2 Some implied properties .
4.3 Linear dominance is necessary
4.4 Completeness .

5 Conclusion

6 Acknowledgements

1 Introduction

Algorithm analysis is concerned with the correctness and complexity of algo-
rithms. Correctness analysis is about verifying that an algorithm solves the prob-
lem it is claimed to solve, and complexity analysis is about counting the amount
of resources an algorithm takes. The resource can be time, memory, operations,
or comparisons — or anything else that can be quantified with a non-negative real
number. This paper is concerned with algorithm complexity.

Here is an intuitive description of this paper. The resource-consumption of an
algorithm is captured by a function which maps each input of the algorithm to a
non-negative real number. The resource-consumptions are ordered by an order-
relation �, which tells for resource-consumptions f and g whether f � g, g � f ,
both — then f and g are equivalent — or neither. The relation � makes it possi-
ble to simplify, and to compare resource-consumptions. A resource-consumption
can be simplified by replacing it with an equivalent, simpler resource-consump-
tion. The “smaller” the resource-consumption is according to �, the “better” the
algorithm — at least for the measured resource.

The O-notation O(f) is the set of functions g which satisfy g � f . It contains
the same simplification and comparison tools in a slightly different, but equivalent
form.

How should the O-notation be defined? By the above, we may ask an equiva-
lent question: how should the order relation � be defined? We provide 8 intuitive
properties for �, and then show that there is exactly one definition of � which
satisfies these properties.

The rest of this paper formalizes these intuitive ideas. We begin by defining
the notation.

1.1 Notation

We will assume the Zermelo-Fraenkel set-theory with the axiom of choice, abbre-
viated ZFC. The set of natural numbers, integers, and real numbers are denoted
by N = {0, 1, 2, ...}, Z, and R, respectively. Let X be a set. The set of subsets of X
is denoted by P(X). A set C ⊆ P(X) is a cover of X, if

⋃
C = X. Let ∼ ⊆ X2 be a

relation. We define x ∼ y :⇐⇒ (x, y) ∈ ∼, for all x, y ∈ X, and

X∼y := {x ∈ X : x ∼ y}, (1)

for all y ∈ X.

Example 1.1. R≥0 is the set of non-negative real numbers.

Let Y be a set. The set of functions from X to Y is denoted by X → Y , or
alternatively by YX. We are specifically interested in non-negative real-valued
functions; we define

RX :=
(
X → R≥0

)
, (2)

where X is a set. A relation ∼ ⊆ Y2 is extended to functions f , g : X → Y by

f ∼ g :⇐⇒ ∀x ∈ X : f (x) ∼ g(x). (3)

Example 1.2. Let f ∈ RX. Then f ≥ 0.

Example 1.3. Let x, y ∈ Rd, where d ∈ N>0. Then

x ≥ y ⇐⇒ ∀i ∈ d : xi ≥ yi. (4)

We extend a binary function ⊕ : RX × RX → RY to P(RX) × P(RX) → P(RY)
by U ⊕ V = {u ⊕ v}(u,v)∈U×V . Similarly, we extend a unary function · : RX → RY

to P(RX)→ P(RY) by U = {u}u∈U .
If f is a function, we use f −1 to denote both the inverse Y → X and the preim-

age P(Y)→ P(X) under f ; context should make the intent clear. The composition
of g : Y → Z and f : X → Y is (g◦ f) : X → Z such that (g◦ f)(x) = g(f (x)). The
restriction of f : X → Y to D ⊆ X is (f |D) : D→ Y such that (f |D)(x) := f (x).

A class of sets is an unambiguous collection of sets, which may or may not be
a set itself. A proper class is a class of sets which is not a set.

Example 1.4 (Classes of sets). Every set is a class of sets. The collection of all
sets in ZFC is a proper class.

Remark 1.5 (Proper classes). The proper classes are not formalizable in the ZFC
set-theory. This is not a problem for two reasons. First, everything in this pa-
per can be carried through without forming proper classes, by only referring to
the class elements and their relationships. Alternatively, we may adopt the von
Neumann-Bernays-Gödel set theory [1] — a conservative extension of ZFC which
formalizes proper classes. 4

A universe is a class U of sets such that N ∈ U, ∀X ∈ U : P(X) ⊆ U, and
∀X,Y ∈ U : X × Y ∈ U. If U is a universe, then a sub-universe of U is a subclass
V ⊆ U which is also a universe. If X is a set such that N ⊆ X, then the universe
generated by X is the set

UX =
⋃

d∈N>0

P
(
Xd

)
. (5)

Example 1.6 (Examples of universes). The smallest universe is given by UN;
every universe contains this set as a sub-universe. The class of all sets is a universe
which is a proper class.

An O-notation over the universe U is a class of functions

O := {OX : RX → P(RX)}X∈U . (6)

When the underlying universe is not relevant, we will use the term O-notation. The
O is used as a generic symbol for studying how the different desirable properties
of O interact together. We will use accents for specific versions of the O-notation,
such as Ô for asymptotic linear dominance.

A computational problem is a function P : X → Y , where X,Y ∈ U. The set
of algorithms1 which solve P, under a given model of computation, is denoted by
A(P). The set of all algorithms from X to Y is

X � Y =
⋃

P∈(X→Y)

A(P). (7)

The composition of algorithms G : Y � Z and F : X � Y is the algorithm
G ◦ F : X � Z, which is obtained by using the output of F as the input of
G. We will sometimes use an algorithm F : X � Y as if it were its induced
function instead. The resource-consumption of an algorithm F ∈ A(P) is denoted
by R(F) ∈ RX.

1.2 Algorithms
What is an algorithm? We adopt an extremely liberal, but completely formalized
view: an algorithm is an abstract state machine [2] [3] [4].

A variable in an abstract state machine M is identified with a string, called a
(function) symbol. Each symbol has an arity n ∈ N, which gives the number of
arguments the symbol accepts as input. A (ground) term is defined recursively as
follows:

• a 0-ary symbol is a term, and

• if f is an n-ary symbol, and t1, . . . , tn are terms, then the string f (t1, . . . , tn)
is a term, and

• there are no other terms.

The set of user-defined symbols, together with a small set of predefined symbols
— such as true, false, or, and, not, =, undef — is called the vocabulary of the
abstract state machine M.

Each n-ary symbol f is associated with a function2 f : S n → S . The f is an
interpretation of f . The set S is the base-set, which is common to all interpreta-
tions. The value of a term t, denoted by [t], is defined recursively as follows:

1We will define the term algorithm formally in Section 1.2.
2S 0 = {∅}.

• if x is a 0-ary symbol, then [x] = x(∅),

• if f is an n-ary symbol, for n ∈ N>0, and t1, . . . , tn are terms, then

[f (t1, . . . , tn)] = f ([t1], . . . , [tn]).

As the abstract machine steps through an algorithm, the interpretation of a symbol
changes with each write to its memory. In the following, by f : X → Y — where
f is a symbol, X ⊆ S n, and Y ⊆ S — we mean that f (X) ⊆ Y . In addition, if x is
a 0-ary symbol, then by x ∈ X we mean that x : {∅} → X in the previous sense.

Compared to an ordinary programming language, a 0-ary symbol corresponds
to a variable, while an n-ary symbol, for n ∈ N>0, corresponds to an n-dimensional
array — however, here the index can be an arbitrary set element.

The abstract machine specifies how the interpretations of symbols are to be
modified at each step. The program driving the abstract machine is a finite se-
quence of conditional assignments of the form

if condition then
t1 B s1
...

tn B sn

end if
where condition, t1, . . . , tn, and s1, . . . , sn are terms. The formula ti B si can be
thought of as copying an element from an array to another, [ti] B [si], provided
[condition] = [true]. This sequence of assignments is repeated until (possible)
termination.

All of the assignments in a single step are carried out in parallel — not in
sequence. For example, t1 B s1 followed by s1 B t1 causes t1 and s1 to swap
values in the next step.

The basic definition of abstract state machines is both simple, and extremely
general. The generality derives from the virtue of making the whole of set-theory
available for modeling variables. Further abstraction-tools — such as sequential
composition, sub-machine calls, local variables, and return values — are con-
structed over this basic definition. For example, the Turbo-ASMs in [4] provide
such features. From now on, we will assume that such abstraction tools have
already been defined.

Consider Algorithm 1, which is Newton’s method for finding local zeros of
differentiable functions3. The input-symbols to this algorithm are a 1-ary contin-
uously differentiable function f : R→ R, a 0-ary initial guess x∗ ∈ R, and a 0-ary

3This example generalizes an example from [5], where Newton’s method is formalized as an
algorithm for real rational functions under the real-RAM model .

error threshold ε ∈ R≥0; the input-set is C1(R→ R)×R×R≥0. The output — pro-
vided the algorithm terminates — is a 0-ary point x ∈ R such that | f (x)| ≤ ε; the
output-set is R. Other symbols are a 1-ary symbol ′ : C1(R → R) → C1(R → R)
— differentation —, a 1-ary symbol | · | : R → R≥0 — absolute value — a 2-ary
symbol > : R × R → {0, 1}— greater-than — and 2-ary symbols − : R × R → R
and / : R × R≥0 → R — subtraction and division. We have used infix notation
for subtraction, division, and greater-than; postfix notation for differentiation; and
midfix notation for the absolute value.

Algorithm 1 Newton’s method for finding an element x ∈ X, such that | f (x)| ≤ ε,
for a continuously differentiable function f ∈ C1(R→ R).

1: procedure findZeroOrHang(f, x∗, ε)
2: x B x∗

3: while | f (x)| > ε do
4: x B x − f (x)/ f ′(x)
5: end while
6: return x
7: end procedure

Algorithm 1 reads like pseudo-code, but is a completely formalized abstract
state machine. With abstract state machines, the programmer is free to use the
most fitting abstraction for the problem at hand. It should be clear how using such
an abstract programming language enhances communication between software
engineers and domain experts (e.g. physicists).

Termination is not required for an algorithm; consider for example an operat-
ing system. Depending on the input, Algorithm 1 may terminate, or not. Suppose
we require Algorithm 1 to always terminate. To satisfy this requirement, the pro-
grammer can either restrict the input-set to terminating inputs, or to modify the
algorithm — perhaps by limiting the number of iterations. From now on, we
assume every analyzed algorithm to terminate.

A software development project utilizing abstract state machines starts by cre-
ating the most abstract description of the software as an abstract state machine,
called the ground model [4]. This model captures the requirements, but does not
provide any additional details on how the goals are to be attained. The project
then proceeds to refine the model until it can be implemented in a concrete pro-
gramming language. The model — in all stages — is used for verification and
validation, and may even be used to generate code automatically.

This brief introduction to abstract state machines is to encourage the reader
to look beyond the Church-Turing thesis, and to realize the usefulness of even
the most abstract algorithms — not just those computable algorithms which work
with natural numbers. These are algorithms which take arbitrary sets as input, and

produce arbitrary sets as output. To analyze such abstract algorithms, we need
correspondingly abstract tools4.

1.3 Computational model and cost-model
Before an algorithm can be written, the writer must decide on the model of com-
putation. A model of computation is a mathematical structure, and a set of atomic
operations which manipulate that structure. Some models of computation are the
Turing machine, the random-access machine (RAM) [7], the real-RAM [5], and
the abstract state machine.

The result of complexity analysis — for a given model of computation, a given
algorithm, and a given resource — is a function f : X → R≥0, which provides for
each input of the algorithm a non-negative real number. This number tells how
much of that resource the algorithm consumes with the given input. As discussed
in Section 1.2, the input-set X can be arbitrary.

Before a complexity analysis can be carried out, the analyst must decide on
the cost-model. The cost-model specifies the amount of resources that running an
atomic operation takes on a given input. A given computational model can assume
different cost-models. When the cost-model is unspecified — as it often is — the
cost of each atomic operation is assumed to be one unit irrespective of input.

Example 1.7 (Constant cost-models). The most common cost-model is the unit-
cost model, which counts the number of performed atomic operations. Zero
costs can be used to concentrate the interest to specific resources, such as order-
comparisons.

Example 1.8 (Non-constant cost-models). An example of a non-constant cost-
model is to assign the addition of natural numbers5 a cost which is proportional to
the logarithms of the arguments, so as to be proportional to the number of bits in
their binary representations.

Example 1.9 (Cost-models for abstract state machines). An abstract state ma-
chine specifies costs for reading or writing a memory location through a given
symbol. Reading an addition symbol + at (x, y) ∈ N2 — x + y — could be as-
signed a logarithmic cost as described above.

1.4 Primitive properties
Complexity analysis aims to classify and compare algorithms based on their re-
source consumptions; the less an algorithm uses resources to solve a given prob-
lem, the better it is compared to other algorithms which solve the same problem.

4We also note that algorithms in computational geometry are defined over subsets of Rd [6].
5Assuming the computational model supports such an operation.

0 10 20 30 40 50
0

10

20

30

40

50

Figure 1: Here f ∈ RN is such that f (n) = n/2 + 20 (solid line), and g ∈ RN is such
that g(n) = n2/20 + 10 (dashed line). If interpreted as resource-consumptions,
should f �X g, g �X f , f ≈X g, or should f and g be incomparable?

The resource-consumptions of the algorithms to solve a problem P : X → Y are
elements of RX. The most general way to compare them is to define a preorder
�X ⊆ RX × RX. This relation should capture the intuitive concept of a resource-
consumption f ∈ RX being either better or equivalent to the resource-consumption
g ∈ RX — in some sense. For brevity, we use the term dominated by.

Remark 1.10 (Not worse). It is tempting to use the phrase not worse than in-
stead of better or equivalent. However, the former means better, equivalent, or
incomparable, which is not what we want. 4

The most obvious fundamental dominance property is

• order-consistency; if f ≤ g, then f �X g; if f does not use more resources
than g for any input, then f is dominated by g,

for all f , g ∈ RX. In particular, this implies that �X is reflexive: f �X f ; f is
dominated by itself. Since �X is a preorder, we have, by definition, the second
fundamental dominance property:

• transitivity; (f �X g and g �X h) =⇒ f �X h; if f is dominated by g, and
g is dominated by h, then f is dominated by h,

for all f , g, h ∈ RX. How should we define the other properties? If neither f ≤ g,
or g ≤ f , can there still be cases where the other is obviously a better choice?

Consider Figure 1, where f (n) > g(n) for n ∈ [0, 20)N, and f (n) ≤ g(n), for
n ∈ [20,∞)N. We would then be inclined to say that f has a better resource-
consumption, since f (n) is small anyway on the finite interval n ∈ [0, 20)N; f is
“essentially” better than g. How can this intuition be formalized? There are many
possibilities, some of which are:

• local dominance; there exists (an infinite interval / an infinite set / a cofinite
set / a cobounded set / . . .) A ⊆ X, such that (f |A) ≤ (g|A),

• linear dominance; there exists c ∈ R>0, such that f ≤ cg,

• translation dominance; there exists c ∈ R>0, such that f ≤ g + c,

• combinations of the above; local linear dominance (f |A) ≤ c(g|A), affine
dominance f ≤ cg + c, and local affine dominance (f |A) ≤ c(g|A) + c.

All of these choices of �X have order-consistency, and transitivity. But there is an
infinity of other formalizations with these properties. For this reason, pondering
about a plot such as Figure 1 does not help much.

A better approach is to reflect on the fundamental properties that the analyst
needs to complete his/her complexity analysis. Suppose f ∈ RX, and F : X � Z
has resource-consumption f ∈ RX. The fundamental structural properties are:

• locality; if the complexity analysis of F is divided into a finite number of
cases A1, . . . , An ⊆ X such that

⋃n
i=1 Ai = X, and the analyses show that

(f |Ai) �Ai

(
f |Ai

)
, for all i ∈ [1, n]N, then f �X f .

• sub-composability; if it has been shown that f �X f ∈ RX, and s : Y → X,
then F ◦ s has resource-consumption f ◦ s �Y f ◦ s; the mapped upper-
bound of resource-consumption is an upper-bound of mapped resource-
consumption.

• N-sub-homogenuity; if it has been shown that f �X f ∈ RX, then repeat-
edly running F in a loop u ∈ RX times, where u(X) ⊂ N, has resource-
consumption u f �X u f ; the repeated upper-bound of resource-consumption
is an upper-bound of repeated resource-consumption.

• N>0-cancellation; if it has been shown that u f �X u f ∈ RX, where u ∈ RX

is such that u(X) ⊂ N>0, then F has resource-consumption f �X f .

These properties reveal that the preorders in different sets cannot be defined in-
dependently of each other; they are tightly connected by locality and sub-com-
posability. Rather, the problem is to find a consistent class of preorders {�X}X∈U ,
where U is a given universe.

Remark 1.11 (N>0-cancellation). The N>0-cancellation reverts N-sub-homoge-
nuity, so that a resource-consumption of a repeated algorithm can be used to de-
duce the resource-consumption of the algorithm that was repeated. Under a given
computational model, and a cost-model, all of the possible cases provided byN>0-
cancellation may not occur in this way. However, it does not seem plausible to
restrict N>0-cancellation individually based on the computational model and the
cost-model; we prefer something that works without exceptions. 4

A problem with the listed properties thus far is that the trivial preorder �X =

RX × RX, for all X ∈ U, is able to fulfill them all; then the functions in RX are
all equivalent. Therefore, for the comparison to be useful, we need to require
�X to distinguish at least some functions in RX, at least for some X ∈ U. The
fundamental non-triviality property is:

• one-separation; n �N>0 1.

Note that 1 �N>0 n already holds by order-consistency; one-separation prevents
the order from collapsing due to equivalence.

Finally, there is the question of robustness. Writing an algorithm is an iter-
ative process, which causes the resource-consumption of an algorithm to change
constantly. If every change is reflected in the ordering, then each change inval-
idates an existing complexity analysis of the algorithm. Worse, the change in-
validates all the analyses of the algorithms which use the changed algorithm as
a sub-algorithm. Since an algorithm may face hundreds or thousands of changes
before stabilising into something usable in practice, such an approach is infeasi-
ble. Therefore, the ordering needs to introduce identification, to make it robust
against small changes in the algorithms. But what is a small change?

The key realization is that for a given algorithm F ∈ A(P) it is often easy, with
small changes, to produce an algorithm G ∈ A(P), for which the improvement-
ratio R(F)/R(G) stays bounded6 7. In contrast, obtaining an unbounded improve-
ment-ratio often requires considerable insight and fundamental changes to the way
an algorithm works — a new way of structuring data and making use of it. This
definition of interesting provides the desired robustness against small changes in
algorithms. Correspondingly, the fundamental abstraction property is:

• scale-invariance; if f �X f , then f �X α f , for all α ∈ R>0.

We will show that the listed 8 fundamental properties, which we call primitive,
determine a class of preorders {�X}X∈U uniquely.

A preorder �X induces an equivalence relation ≈X ⊆ RX × RX, defined by
f ≈X g ⇐⇒ f �X g and g �X f . We may then define a strict comparison

6Assuming R(F) > 0.
7For example, change to use Single Instruction Multiple Data (SIMD) instructions

≺X ⊆ RX × RX such that f ≺X g ⇐⇒ f �X g and f 0X g. While we are at it, let
�X ⊆ RX × RX be such that f �X g ⇐⇒ g ≺X f , and �X ⊆ RX × RX be such that
f �X g ⇐⇒ g �X f .

1.5 Problem complexity

Apart from analyzing the resource-consumption of a specific algorithm, complex-
ity analysts also have a greater underlying goal: that of analyzing the resource-
consumption of the underlying problem P : X → Y itself — for a given computa-
tional model, a given cost-model, and a given resource. This activity divides into
two sub-activities.

First, one wishes to find a lower-bound for the resource-consumption of P.
A resource-consumption f ∈ RX is a lower-bound for P, if f �X R(A), for all
A ∈ A(P). A resource-consumption f ∈ RX is optimal for P, if f is a lower-bound
for P, and g �X f for each g ∈ RX a lower-bound for P. The ultimate goal of
lower-bound analysis is to find the optimal resource-consumption for P.

Second, one wishes to find an upper-bound for the resource-consumption of P.
A resource-consumption f ∈ RX is an upper-bound for P, if R(A) �X f , for some
A ∈ A(P). This is done by finding an actual algorithm for solving P. While there
are computational problems which cannot be solved at all8, establishing at least
one upper-bound for a solvable problem is often easy. These are the brute-force
algorithms, which compute or check everything without making any use of the
underlying structure in the problem.

An algorithm A ∈ A(P) is optimal, if R(A) is optimal for P. The ultimate goal
of upper-bound analysis is to find an optimal algorithm A ∈ A(P) for solving P.

An optimal resource-consumption may not exist for P, as shown in Theo-
rem 4.24. In this case the lower- and upper-bound analyses never meet their goals.

When it exists, the optimal resource-consumption for P, inf�X R(A(P)), is
unique up to equivalence. Even then there may not exist an optimal algorithm
for P. In this case the lower-bound analysis may meet its goal, but the upper-
bound analysis does not. However, optimality may not be that important, if the
upper-bound can be brought close to the optimal lower-bound.

Remark 1.12 (Optimality). Why is it that an optimal algorithm for a practical
problem often seems to exist? Are there existing problems for which there is no
optimal algorithm, or not even an optimal resource-consumption? Could matrix
multiplication under the unit-cost real-RAM be an example of one or both? These
questions are open. 4

8e.g. the halting problem under Turing machines.

1.6 O-notation
An O-notation in a set X is a function OX : RX → P(RX), such that

OX(f) = {g ∈ RX : g �X f }. (8)

An O-notation is the class {OX}X∈U , where U is a given universe.
It is equivalent to define either the functions {OX}X∈U , or the preorders {�X}X∈U ;

one can be recovered from the other. We shall give the theorems in terms of
{OX}X∈U , since this is more familiar to computer scientists. However, we find that
intuition works better when working with {�X}X∈U .

Apart from the primitive properties, there are various other desirable proper-
ties for an O-notation, which are summarized in Table 1. It can be shown that
they are all implied by the primitive properties. We skip their proofs due to space-
constraints, save for those needed to prove the necessity of linear dominance. Each
property is given for OX, where X ∈ U. A given property holds for O if it holds
for OX for all X ∈ U.

We define the related notations ΩX, ωX, oX,ΘX : RX → P(RX) as follows:

ΩX(f) = {g ∈ RX : g �X f },
ωX(f) = {g ∈ RX : g �X f },
oX(f) = {g ∈ RX : g ≺X f },
ΘX(f) = {g ∈ RX : g ≈X f }.

(9)

Remark 1.13 (Definition of oX). The way oX is used, it is probably agreed that

g ∈ oX(f) =⇒ g ∈ OX(f) and g 0X f , (10)

for all f , g ∈ RX. Here we also affirm the converse:

g ∈ oX(f) ⇐= g ∈ OX(f) and g 0X f , (11)

for all f , g ∈ RX. Missing this latter property — because of using some other
definition — would make it impossible to transfer the analyses done in terms of
O and Θ to the analyses done in terms of o. The related notations must reflect
different viewpoints of the same invariant concept — namely of the underlying
preorder. 4

Remark 1.14 (Study of the O-notation suffices). It suffices to study the O-nota-
tion, since the related notations are completely determined by the O-notation. 4

In the following we will sometimes abbreviate a function in the parameter of
OX with an expression, such as in ON(n), where we actually mean ON(f), with f ∈

Name Property
order-consistency f ≤ g =⇒ f ∈ OX(g)
reflexivity f ∈ OX(f)
transitivity (f ∈ OX(g) and g ∈ OX(h)) =⇒ f ∈ OX(h)
the membership rule f ∈ OX(g) ⇐⇒ OX(f) ⊆ OX(g)
zero-separation 1 < ON>0(0)
one-separation n < ON>0(1)
zero-triviality OX(0) = {0}
scale-invariance OX(α f) = OX(f)
bounded translation-invariance (∃β ∈ R>0 : f ≥ β) =⇒ OX(f + α) = OX(f)
power-homogenuity OX(f)α = OX(f α)
additive consistency uOX(f) + vOX(f) = (u + v)OX(f)
multiplicative consistency OX(f)uOX(f)v = OX(f)u+v

maximum consistency max(OX(f),OX(f)) = OX(f)
locality (∀D ∈ C : (f |D) ∈ OD(g|D)) =⇒ f ∈ OX(g)
scalar homogenuity αOX(f) = OX(α f)
R≥0-sub-homogenuity uOX(f) ⊆ OX(u f)
Q≥0-sub-homogenuity uOX(f) ⊆ OX(u f) (u(X) ⊂ Q≥0)
N-sub-homogenuity uOX(f) ⊆ OX(u f) (u(X) ⊂ N)
N>0-cancellation uOX(f) ⊆ OX(u f) (u(X) ⊂ 1/N>0)
super-homogenuity uOX(f) ⊃ OX(u f)
sub-multiplicativity OX(f)OX(g) ⊆ OX(f g)
super-multiplicativity OX(f)OX(g) ⊃ OX(f g)
sub-restrictability (OX(f)|D) ⊆ OD(f |D)
super-restrictability (OX(f)|D) ⊃ OD(f |D)
additivity OX(f) + OX(g) = OX(f + g)
the summation rule OX(f + g) = OX(max(f , g))
the maximum rule max(OX(f),OX(g)) = OX(max(f , g))
the maximum-sum rule max(OX(f),OX(g)) = OX(f) + OX(g)
sub-composability OX(f) ◦ s ⊆ OY(f ◦ s)
injective super-composability OX(f) ◦ s ⊃ OY(f ◦ s) (s injective)
the subset-sum rule

∑
i∈[0,n(y)) a(y, i)̂h(S (y, i), i) ∈

OY

(∑
i∈[0,n(y)) a(y, i)h(S (y, i), i)

)
Table 1: Desirable properties for an O-notation. Here X,Y ∈ U, f , g, u, v ∈ RX,
α ∈ R>0, D ⊆ X, s : Y → X, n : Y → N, S : Y × N → X, a : Y × N → R≥0,
B = {(y, i) ∈ Y × N : i ∈ [0, n(y))}, h ∈ RB, ĥ ∈ OB(h), and C ⊆ P(X) is a finite
cover of X. Primitive properties marked with a bold face.

RN : f (n) = n. When the expression contains multiple symbols, as in ON2

(
n2m

)
,

we interpret the symbols to be assigned to the input-tuple in alphabetical order, as
in ON2

(
(m, n) 7→ n2m

)
. This is to acknowledge that (m, n) 7→ n2m and (n,m) 7→

n2m are different functions.

1.7 Example analyses
In this section we provide some example analyses of algorithms, using several
different definitions. As for our main result — the characterization of the O-
notation — this section can be skipped.

Asymptotic linear dominance is defined by

g ∈ ÔX(f) ⇐⇒ ∃c ∈ R>0, y ∈ Nd :
(
g|X≥y

)
≤ c

(
f |X≥y

)
, (12)

for all f , g ∈ RX, and all X ∈ U, where U =
⋃

d∈N>0 P
(
Nd

)
. This definition is from

[8] (second edition), from an exercise on page 50.
Coasymptotic linear dominance is defined by

g ∈ ÔX(f) ⇐⇒ ∃c ∈ R>0, y ∈ Nd :
(
g|
(
X \ X<y)) ≤ c

(
f |
(
X \ X<y)). (13)

This definition is from the third edition of the same book [9], from the same
exercise on page 53. The books [8] and [9] mention that these definitions can
be extended to Rd — by replacing y ∈ Nd with y ∈ Rd — but refer to doing this as
an abuse.

Cofinite linear dominance is defined by

g ∈ ÓX(f) ⇐⇒ ∃c ∈ R>0, A ∈ P(X) : (g|A) ≤ c(f |A), (14)

for all f , g ∈ RX, and all sets X, where P(X) is the set of subsets of X with finite
complement. We are not aware of any book using this definition.

Linear dominance is defined by

g ∈ OX(f) ⇐⇒ ∃c ∈ R>0 : g ≤ c f , (15)

for all f , g ∈ RX, and all sets X. This is the definition we prove to be equivalent to
the primitive properties.

Remark 1.15 (A computational model for examples). The examples are to be
interpreted as abstract state machines — appropriately enriched to support struc-
tured programming. The symbol + is interpreted as addition in the set of its
operands. Similarly for the other operators. When analyzing the time-complexity
of the example-algorithms, we will assume that each algorithm takes one unit of
time for initialization, and that calling an algorithm takes no time. A simple step
— such as an increment, an assignment, or a comparison — takes one unit of time.
A for-loop which iterates n ∈ N times checks its condition n + 1 times. 4

Algorithm 2 An algorithm which takes as input (m, n) ∈ N2, and returns n(1 −
sgn(m)).

1: procedure computeOnPlane(m, n)
2: j B 0
3: if m = 0 then
4: for i ∈ [0, n) do
5: j B j + 1
6: end for
7: end if
8: return j
9: end procedure

Algorithm 3 An algorithm which takes as input n ∈ N, and returns n.
1: procedure mapNaturalsToPlane(n)
2: return computeOnPlane(0, n)
3: end procedure

Example 1.16 (Using a strip in N2). Consider Algorithm 2, which takes two
input parameters m, n ∈ N. When m , 0, this algorithm takes 1 + 1 + 1 + 1 = 4
operations. When m = 0, this algorithm takes 1+1+1+ (3n+1)+1 = (3n+1)+4
operations. That is, (3n + 1)(1 − sgn(m)) + 4 operations. By the definitions,
Algorithm 2 has time complexity ÔN2(1), and ON2

(
n(1 − sgn(m)) + 1

)
for the other

definitions.
Consider Algorithm 3, which takes a single input parameter n ∈ N, and then

makes a single call to Algorithm 2 after mapping the input n through s : N → N2

such that s(n) = (0, n). By injective sub-composability, the resource-consumption
of the called sub-algorithm is an element of ÔN(1), and ON(n + 1) for the other
definitions.

If the call to Algorithm 2 in Algorithm 3 is replaced with the algorithm body
itself, then the algorithm takes (3n + 1) + 2 operations9. For all definitions, this is
ON(n + 1) \ ON(1).

We notice that for Ô these two results are contradictory. Tracing back, we see
that our assumption of injective sub-composability does not hold for Ô under this
specific s.

From now on we consider Ô and Ô to be defined on Rd, as discussed, to study
them in their strongest forms.

9Initialization and return are elided; 2 operations are saved.

Algorithm 4 An algorithm which takes as input z ∈ Z, and returns max(−z, 1).
1: procedure computeOnIntegers(z)
2: j B 0
3: if z < 0 then
4: for i ∈ [0,−z) do
5: j B j + 1
6: end for
7: end if
8: return j
9: end procedure

Algorithm 5 An algorithm which takes as input n ∈ N, and returns max(n, 1).
1: procedure mapNaturalsToIntegers(n)
2: return computeOnIntegers(−n)
3: end procedure

Example 1.17 (Using negative numbers in Z). Consider Algorithm 4, which
takes one input parameter z ∈ Z. When z ≥ 0, this algorithm takes 1+1+1+1 = 4
operations. When z < 0, this algorithm takes

1 + 1 + 1 + (3z + 1) + 1 = (3z + 1) + 4 (16)

operations. By the definitions, Algorithm 4 has time-complexity ÔZ(1), ÔZ(1),
and OZ(max(−z, 1)) for the other definitions.

Consider Algorithm 5, which takes a single input parameter n ∈ N, and then
makes a single call to Algorithm 4 after mapping the input n through s : N → Z
such that s(n) = −n. By injective sub-composability, the resource-consumption
of Algorithm 5 is an element of ÔN(1), ÔN(1), and ON(max(n, 1)) for the other
definitions.

If the call to Algorithm 4 in Algorithm 5 is replaced with the algorithm body
itself, then for all definitions, the resource-consumption of Algorithm 5 is an ele-
ment of ON(max(n, 1)) \ ON(1).

We notice that for Ô and Ô these two results are contradictory. Tracing back,
we see that we our assumption of injective sub-composability does not hold for Ô
and Ô under this specific s.

In both examples, we wish to analyze the complexity of an algorithm, while
treating a sub-algorithm as a black-box, whose complexity is given by an O-
notation. This complexity is “imported” into the caller’s context by sub-compos-
ability. However, if the mapping function s is such that the O-notation does not

satisfy sub-composability for s, then either the sub-algorithm has to be expanded
into the call-site, or the analysis has to be stopped. Since neither of these is a
satisfying solution, we instead require sub-composability to hold for all mapping
functions.

What about cofinite linear dominance Ó, which seems to work well? The
following example provides a tricky case for sub-composability.

Example 1.18 (Ô, Ô, and Ó fail sub-composability in N). Let O be one of Ô, Ô,
or Ó, and s : N→ N be such that

s(n) :=

0, n ∈ 2N,
n, n ∈ 2N + 1.

(17)

Let f̂ : N → N be such that f̂ (0) = 1 and f : N → N be such that f (0) = 0 and
f̂ ∈ ON(f). Then

(
f̂ ◦ s

)
< ON(f ◦ s). The problem is that (f ◦ s)(2k) = 0 cannot

be multiplied to linearly dominate (f̂ ◦ s)(2k), where k ∈ N, and that the number of
such points is not finite. Linear dominance O avoids this problem: from f̂ (0) = 1
and f (0) = 0, it follows that f̂ < ON(f).

It can be shown that ÔX(f) = ÓX(f), for all f ∈ RX and X ⊂ Nd. It can
also be shown that injective sub-composability holds for cofinite linear dominance
Ó in any set, and that sub-composability holds for positive functions. That is,
ÓX(f) ◦ s ⊂ ÓY(f ◦ s), for all f ∈ RX such that f > 0, where X and Y are arbitrary
sets. Therefore, the following complexity analyses are guaranteed to be correct:

• Those which assume coasymptotic linear dominance Ô, remain in subsets
of Nd, and assume positive resource-consumptions.

• Those which assume cofinite linear dominance Ó, and assume positive re-
source-consumptions.

To our knowledge, the first item covers the analyses in [9]. An analysis of a
graph algorithm uses the domain N2 — corresponding to a worst-case / best-case
/ average-case analysis under the number of vertices and the number of edges.

Since zeros occur naturally in resource-consumptions (e.g. by concentrating
on the number of comparisons), we would like the O-notation to also work in
these cases. Therefore, the last step is to require sub-composability to hold for all
non-negative resource-consumptions, which leads to linear dominance O.

1.8 Implicit conventions
An implicit convention is an overload of notation adopted by people working in
a given field. Since it is an overload, the reader is required to deduce the correct

meaning of such notation from the context. Here are some implicit conventions
related to the O-notation — as commonly used in computer science.

The anonymous function convention is to use OX(f) as a placeholder for an
anonymous function f̂ ∈ OX(f). It then must be guessed from the context whether
the author means by OX(f) the whole set, or just an element of this set. For
example, to say that the time-complexity of a given algorithm is ON

(
n2

)
means

that the time-consumption function is an element of this set.
The domain convention is to leave off the domain of the O-notation, say O

(
n2

)
,

and then let the reader guess, for each use, the domain from the context. Here is
an example where the domain convention leads to a difficult interpretation. Con-
sider an algorithm [10] under the unit-cost w-bit RAM model, where w ∈ N,
which for I ⊆ [0, 2w)N = U finds a nearest neighbor of i ∈ U in I in time
O(log2

(
log2(∆ + 4)

)
), where ∆ ∈ N is the distance between i and its nearest neigh-

bor in I. Intuitively, this sounds reasonable, but what is the domain?10 Our think-
ing process went as follows.

Since the expression contains only a single symbol ∆, we assumed it to be a
univariate O-notation. Our first guess was OU

(
log2

(
log2(∆ + 4)

))
— with w fixed.

However, since U is bounded, this is equal to OU(1). The guess had to be wrong;
otherwise the authors would have reported the complexity as O(1).

Our second guess was ON

(
log2

(
log2(∆ + 4)

))
— again with w fixed. However,

this arbitrarily extends the complexity analysis to elements outside the input-set,
since ∆ < 2w. In addition, it is not always possible to do such an extension, such
as when the function is log2

(
log2(2w − ∆ + 4)

)
instead.

Finally, we observed that the complexity depends both on w and ∆ — although
O(log2

(
log2(∆ + 4)

)
) never mentions w. The correct formalization is given by

OD
(
log2

(
log2(∆ + 4)

))
, where D =

{
(w,∆) ∈ N2 : ∆ ∈ [0, 2w)

}
. The correspond-

ing algorithm would then take as input w ∈ N>0, I ∈ ∪k∈N>0P
(
[0, 2k)N

)
, and

i ∈ ∪k∈N>0[0, 2k), subject to I ⊂ [0, 2w)N and i ∈ [0, 2w).

2 Previous work

In [11], Bachmann gave a rather brief and informal definition of the O-notation
on page 401:

... wenn wir durch das Zeichen O(n) eine Grösse ausdrücken, deren
Ordnung in Bezug auf n die Ordnung von n nicht überschreitet; ...

10The inability to answer this question was the motivation for us to start studying the O-notation
formally.

which we translate as: when we present some term with O(n), its order does not
surpass the order of n. In [12], Landau put this definition on a formal grounding
on page 31 by

f ∈ ON(g) :⇐⇒ ∃c ∈ R>0, y ∈ N : ∀x ≥ y : f (x) ≤ cg(x), (18)

for all f , g ∈ (N→ R). On page 883, Landau credits this definition to [11].
In [13], Knuth defined O-notation as f ∈ ON(g) :⇐⇒ ∃c ∈ R>0 : f ≤ cg, for

all f , g ∈ (N → R). This seems to have been by accident; in [14], the definition
was replaced with Equation 18. Knuth credited the definition to Bachmann [11].

In [12], Landau defined the o-notation on page 61 as

f ∈ oR(g) :⇐⇒ lim
x→∞

f (x)
g(x)

= 0, (19)

for all f , g ∈ (R→ R). On page 883, Landau states that the o-notation is his own.
In [15], Knuth defined the Ω-notation as f ∈ ΩN(g) : ⇐⇒ g ∈ ON(f), the

Θ-notation as f ∈ ΘN(g) : ⇐⇒ f ∈ ON(g) and g ∈ ON(f), and the ω-notation as
f ∈ ωN(g) :⇐⇒ g ∈ oN(f), for all f , g ∈ (N→ R).

We are unaware of who first generalized the O-notation (and related nota-
tions) to the multi-variate case. The definition as asymptotic linear dominance,
Equation (12), can be found from an exercise of [8], page 50. The definition as
co-asymptotic linear dominance, Equation (13), can be found from an exercise of
[9], page 53.

2.1 Howell’s counterexample

In [16], Howell showed that asymptotic linear dominance Ô does not satisfy the
subset-sum rule. To be precise, Howell required the following properties from an
O-notation:

• asymptotic refinement;
OX(f) ⊆ ÔX(f) (20)

• reflexivity;
f ∈ OX(f) (21)

• asymptotic order-consistency;(
∃y ∈ Nd :

(
f̂ |X≥y

)
≤

(
f |X≥y

))
=⇒ OX

(
f̂
)
⊆ OX(f) (22)

• simplified subset-sum;

nk∑
i=0

ĝ(n1, . . . , nk−1, i, nk+1, . . . , nd) ∈

OX

 nk∑
i=0

g(n1, . . . , nk−1, i, nk+1, . . . , nd)

, (23)

where X = Nd, f̂ , f , g ∈ RX, ĝ ∈ OX(g), and k ∈ [1, d] ⊆ N.
Let us also assume that O has scale-invariance11. While Howell did not ex-

plicitly assume this property, we claim that any sensible definition must satisfy
it.

Theorem 2.1 (Howell’s definition is asymptotic dominance). O has asymptotic
order-consistency, scale-invariance, reflexivity, and asymptotic refinement. =⇒

O = Ô.

Proof. By asymptotic order-consistency, scale-invariance, and reflexivity,

f̂ ∈ ÔX(f)

=⇒ ∃c ∈ R>0, y ∈ Nd :
(

f̂ |X≥y
)
≤ c

(
f |X≥y

)
=⇒ ∃c ∈ R>0 : OX

(
f̂
)
⊆ OX(c f)

=⇒ OX

(
f̂
)
⊆ OX(f)

=⇒ f̂ ∈ OX(f),

(24)

for all f , f̂ ∈ RX. Therefore ÔX(f) ⊆ OX(f). It follows from asymptotic refine-
ment that OX(f) = ÔX(f). �

Therefore, while Howell’s argument seems general, it only concerns the Ô-
notation. Howell gave the following counterexample12 to the subset-sum rule un-
der Ô. Let X = N2, and ĝ ∈ RX be such that

ĝ(m, n) =

2n, m = 0,
mn, m > 0,

(25)

11Recall that scale-invariance is OX(α f) = OX(f), for all f ∈ RX and α ∈ R>0.
12We have fixed the error of having the sum-index i run only to m − 1.

and g ∈ RX be such that g(m, n) = mn. Then

m∑
i=0

ĝ(i, n) = 2n + m(m + 1)n/2

< ÔX(m(m + 1)n/2)

= ÔX

 m∑
i=0

g(i, n)

.
(26)

This observation was the starting point for our paper.

3 Worst case, best case, average case
In this section we will formalize the concepts of worst-case, best-case, and aver-
age-case complexities.

Let X,Y,Z ∈ U. A Z-grouping of X is a surjective function g : X → Z. A case
over g is a function s : Z → X such that g ◦ s = idZ; a right inverse of g. A case s
over g is called the worst of f , if

(f ◦ s)(z) = sup f
(
g−1({z})

)
, (27)

for all z ∈ Z. A worst-case analysis of f over g is the process of finding out
OZ(f ◦ s), where s is the worst case of f over g. A case s over g is called the best
of f if

(f ◦ s)(z) = inf f
(
g−1({z})

)
, (28)

for all z ∈ Z. A best-case analysis of f over g is the process of finding out
ΩZ(f ◦ s), where s is the best case of f over g.

Example 3.1 (Analysis of insertion sort). Assume the RAM model, with unit
cost for comparison of integers and zero cost for other atomic operations. Let
N∗ =

⋃
d∈NN

d be the set of all finite sequences over N. Let F : N∗ � N∗ be the
insertion sort algorithm [9], which sorts a given input sequence x into increasing
order. Let f ∈ RN∗ be the number of comparisons made by F. Let g : N∗ → N
be such that g(x) = |x|. Let s : N → N∗ be the worst case of f over g; each such
sequence is decreasing. Then the worst-case complexity of f over g is f ◦ s, and
the worst-case analysis of f provides ON(f ◦ s) = ON

(
n2 + 1

)
. Let r : N → N∗

be the best case of f over g; each such sequence is increasing. Then the best-
case complexity of f over g is f ◦ r, and the best-case analysis of f provides
ΩN(f ◦ r) = ΩN(n + 1). For an arbitrary case p : N→ N∗ of f over g, it holds that
f ◦ p ∈ ΩN(n + 1) ∩ ON

(
n2 + 1

)
.

Let (X,ΣX,P) be a probability space, and (Z,ΣZ) be a measurable space. Let
g : X → Z be measurable and surjective (g is a surjective random element). Let
f ∈ RX be measurable (f is a random variable). An average-case analysis of f
over g is the process of finding out OZ

(
E
[
f | g

]
◦ s

)
, where s : Z → X is any case

over g, and E stands for (conditional) expectation.
Since worst-case, best-case, and average-case analyses are the most common

forms of complexity analysis in computer science — with the grouping set almost
always Z ⊆ Nd, for some d ∈ N>0 — this has led to the widespread misconception
that the result of complexity analysis is a function which maps an ‘input size’
to the amount of used resources. For example, [9] writes as follows on page 25
(emphasis theirs):

The best notion for input size depends on the problem being studied.
For many problems, such as sorting or computing discrete Fourier
transforms, the most natural measure is the number of items in the
input - for example, the array size n for sorting. For many other prob-
lems, such as multiplying two integers, the best measure of input size
is the total number of bits needed to represent the input in ordinary
binary notation. Sometimes, it is more appropriate to describe the
size of the input with two numbers rather than one. For instance, if
the input to an algorithm is a graph, the input size can be described
by the numbers of vertices and edges in the graph. We shall indicate
which input size measure is being used with each problem we study.

We have shown above how this input-size-thinking is subsumed by the more
general input-set-thinking. In the input-set thinking, a set is used to provide a
mathematical model for a data structure, and resource-consumption is a function
of this data.

4 Characterization of the O-notation

4.1 Linear dominance is sufficient
In this section we will show the following theorem.

Theorem 4.1 (Linear dominance has primitive properties). Let OX : RX →

P(RX) be defined by

g ∈ OX(f) ⇐⇒ ∃c ∈ R>0 : g ≤ c f , (29)

for all f , g ∈ RX, and all X ∈ U, where the universe U is the class of all sets. Then
O satisfies the primitive properties.

Proof. The result follows directly from the Lemmas in this section. �

We shall apply the following lemma repeatedly without mentioning it.

Lemma 4.2 (Simplification lemma). Let X ∈ U, I be a finite set, Xi ⊆ X, fi ∈ RXi ,
and f̂i ∈ OXi(fi), for all i ∈ I. Then there exists c ∈ R>0, such that f̂i ≤ c fi, for all
i ∈ I.

Proof. Since f̂i ∈ OXi(fi), there exists ci ∈ R
>0, such that f̂i ≤ ci f , for all i ∈ I. Let

c = max{ci}i∈I . Then f̂i ≤ c fi, for all i ∈ I. �

Lemma 4.3 (Linear dominance has order-consistency). Let X ∈ U, and f , g ∈
RX. Then

f ≤ g =⇒ f ∈ OX(g). (30)

Proof. Since f ≤ 1g, it holds that f ∈ OX(g). �

Lemma 4.4 (Linear dominance has transitivity). Let X ∈ U, and f , g, h ∈ RX.
Then (

f ∈ OX(g) and g ∈ OX(h)
)

=⇒ f ∈ OX(h). (31)

Proof. Let f ∈ OX(g), and g ∈ OX(h). Then there exists c ∈ R>0, such that f ≤ cg
and g ≤ ch. It follows that f ≤ c2h. Therefore f ∈ OX(h). �

Lemma 4.5 (Linear dominance has locality). Let X ∈ U, f , g ∈ RX, and C ⊆
P(X) be a finite cover of X. Then(

∀D ∈ C : (f |D) ∈ OD(g|D)
)

=⇒ f ∈ OX(g). (32)

Proof. Assume (f |D) ∈ OD(g|D), for all D ∈ C. Then there exist c ∈ R>0 such
that (f |D) ≤ c(g|D), for all D ∈ C. Since C covers X, f ≤ cg. Therefore f ∈
OX(g). �

Lemma 4.6 (Linear dominance has one-separation).

n < ON>0(1). (33)

Proof. For all c ∈ R>0, there exists n ∈ N>0 — for example n = dce + 1 — such
that n > c1. Therefore n < ON>0(1). �

Lemma 4.7 (Linear dominance has scale-invariance). Let X ∈ U, f ∈ RX, and
α ∈ R>0. Then f ∈ OX(α f).

Proof. Assume f̂ ∈ OX(f). Then there exists c ∈ R>0, such that

f̂ ≤ c f
= (c/α)(α f).

(34)

Therefore f̂ ∈ OX(α f). �

Lemma 4.8 (Linear dominance has N-sub-homogenuity and N>0-cancella-
tion). Let X ∈ U, and f , u ∈ RX. Then

uOX(f) ⊆ OX(u f). (35)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0, such that f̂ ≤ c f . This implies
u f̂ ≤ cu f . Therefore u f̂ ∈ OX(u f); OX has R≥0-sub-homogenuity. SinceN ⊂ R≥0,
OX has N-sub-homogenuity. Since 1

N>0 ⊂ R
>0, OX has N>0-cancellation. �

Lemma 4.9 (Linear dominance has sub-composability). Let X ∈ U, f ∈ RX,
and s : Y → X. Then

OX(f) ◦ s ⊆ OY(f ◦ s). (36)

Proof. Let f̂ ∈ OX(f). Then there exists c ∈ R>0, such that f̂ ≤ c f . This implies
f̂ ◦ s ≤ c(f ◦ s). Therefore f̂ ◦ s ∈ OX(f ◦ s). �

4.2 Some implied properties
In this section we provide proofs for those implied properties which are needed in
the proof of the necessity of linear dominance.

Proposition 4.10 (Q≥0-sub-homogenuity is a composite). OX has Q≥0-sub-ho-
mogenuity. ⇐⇒ OX has N-sub-homogenuity and N>0-cancellation.

Proof. Suppose OX hasQ≥0-sub-homogenuity. Then OX hasN-sub-homogenuity,
since N ⊂ Q≥0. Let f , g, u ∈ RX, such that u(X) ⊂ N>0. Then

(
1
u

)
(X) ⊂ Q>0, and

by Q≥0-sub-homogenuity,

u f ∈ OX(ug)

=⇒
1
u

u f ∈ OX

(
1
u

ug
)

=⇒ f ∈ OX(g).

(37)

Suppose OX has N-sub-homogenuity and N>0-cancellation. Let f , g, u ∈ RX

be such that u(X) ⊂ Q≥0. Then there exists p, q ∈ RX, such that p(X) ⊂ N≥0,

q(X) ⊂ N>0, and u = p/q. By N-sub-homogenuity and N>0-cancellation,

f ∈ OX(g)
=⇒ p f ∈ OX(pg)

=⇒ q
p
q

f ∈ OX

(
q

p
q

g
)

=⇒
p
q

f ∈ OX

(
p
q

g
)

=⇒ u f ∈ OX(ug).

(38)

�

Proposition 4.11 (R≥0-sub-homogenuity is implied). OX has order-consistency,
transitivity, scale-invariance, N-sub-homogenuity, and N>0-cancellation. =⇒

OX has R≥0-sub-homogenuity.

Proof. OX has Q≥0-sub-homogenuity by Proposition 4.10. Let f , g, u ∈ RX, and
h : R≥0 → Q≥0 be such that

x ≤ h(x) ≤ 2x. (39)

By Q≥0-sub-homogenuity, order-consistency, transitivity, and scale-invariance,

f ∈ OX(g)
=⇒ (h ◦ u) f ∈ OX((h ◦ u)g)
=⇒ u f ∈ OX(2ug)
=⇒ u f ∈ OX(ug).

(40)

�

Proposition 4.12 (reflexivity is implied). OX has order-consistency =⇒ OX has
reflexivity.

Proof. By order-consistency, f ≤ f =⇒ f ∈ OX(f), for all f ∈ RX; OX has
reflexivity. �

Proposition 4.13 (zero-separation is implied). O has order-consistency, transi-
tivity, one-separation, and N-sub-homogenuity =⇒ O has zero-separation.

Proof. Suppose O does not have zero-separation, so that 1 ∈ ON>0(0). By N-sub-
homogenuity, n ∈ ON>0(0). By order-consistency, 0 ∈ ON>0(1). By transitivity,
n ∈ ON>0(1). This contradicts one-separation. �

Proposition 4.14 (the membership rule is a composite). OX has reflexivity and
transitivity ⇐⇒ OX has the membership rule.

Proof. =⇒ Assume f ∈ OX(g). Let f̂ ∈ OX(f). By transitivity, f̂ ∈ OX(g), and
so OX(f) ⊆ OX(g). Assume OX(f) ⊆ OX(g). By reflexivity, f ∈ OX(f). Therefore
f ∈ OX(g), and so OX has the membership rule.
⇐= By the membership rule, f ∈ OX(f) ⇐⇒ OX(f) ⊆ OX(f). Therefore

OX has reflexivity. Let f ∈ OX(g), and g ∈ OX(h). By the membership rule,
OX(g) ⊆ OX(h). Therefore f ∈ OX(h), and so OX has transitivity. �

Proposition 4.15 (the membership rule is implied). OX has order-consistency
and transitivity. =⇒ OX has the membership rule.

Proof. OX has reflexivity by Proposition 4.12. OX has the membership rule by
Proposition 4.14. �

Proposition 4.16 (zero-triviality is implied). O has order-consistency, transitiv-
ity, one-separation, scale-invariance, N-sub-homogenuity, N>0-cancellation, and
sub-composability. =⇒ O has zero-triviality.

Proof. O has zero-separation by Proposition 4.13 and R≥0-sub-homogenuity by
Proposition 4.11. Suppose O does not have zero-triviality, so that there exists
f ∈ OX(0) such that f , 0. Then there exists y ∈ X such that f (y) = c, for some
c ∈ R>0. Let s : N>0 → X be such that s(x) = y. By sub-composability and R≥0-
sub-homogenuity,

f ∈ OX(0)
=⇒ f ◦ s ∈ OX(0) ◦ s
=⇒ c ∈ ON>0(0 ◦ s)
=⇒ 1 ∈ ON>0(0)/c
=⇒ 1 ∈ ON>0(0/c)
=⇒ 1 ∈ ON>0(0).

(41)

This contradicts zero-separation. �

Proposition 4.17 (injective super-composability is implied). OX has order-con-
sistency, locality, and injective sub-composability for injective s : Y → X. =⇒

OX has injective super-composability for s.

Proof. Let f ∈ RX, and s : Y → s(Y) be such that s(y) = s(y). Then s is bijective.
Let ĝ ∈ OY(f ◦ s) and f̂ ∈ RX be such that

f̂ (x) =

(̂
g ◦ s−1

)
(x), x ∈ s(Y),

0, x < s(Y).
(42)

Then ĝ = f̂ ◦ s; we need to show that f̂ ∈ OX(f). By injective sub-composability

f̂ |s(Y) = ĝ ◦ s−1

∈ OY(f ◦ s) ◦ s−1

⊆ Os(Y)

(
f ◦ s ◦ s−1

)
= Os(Y)(f |s(Y)).

(43)

By order-consistency,

f̂ |(X \ s(Y)) = 0 ∈ OX\s(Y)(f |(X \ s(Y))). (44)

By locality,
f̂ ∈ OX(f). (45)

Therefore OX has injective super-composability for s. �

Proposition 4.18 (sub-restrictability is implied). OX has injective sub-compos-
ability. =⇒ OX has sub-restrictability.

Proof. Let D ⊆ X, and s : D → X be such that s(x) = x. Then s is injective. By
injective sub-composability

OX(f)|D = OX(f) ◦ s
⊆ OX(f ◦ s)
= OX(f |D),

(46)

for all f ∈ RX. �

4.3 Linear dominance is necessary
In this section we will show the following theorem.

Theorem 4.19 (Primitive properties imply linear dominance). Suppose O has
order-consistency, transitivity, one-separation, scale-invariance, locality, N-sub-
homogenuity, N>0-cancellation, and sub-composability. Then

f ∈ OX(g) ⇐⇒ ∃c ∈ R>0 : f ≤ cg. (47)

Proposition 4.20 (OX(1) equals the bounded functions). Suppose O has order-
consistency, transitivity, one-separation, locality, scale-invariance, and injective
sub-composability. Then

OX(1) =
{
f ∈ RX : ∃c ∈ R>0 : f ≤ c

}
, (48)

provided X , ∅.

Proof. O has injective super-composability by Proposition 4.17, and the member-
ship rule by Proposition 4.15.
⊆ Assume f ∈ OX(1) such that f is unbounded. Then for every n ∈ N>0 there

exists xn ∈ X such that f (xn) ≥ n. Therefore, let s : N>0 → X be injective such that
n ≤ (f ◦ s)(n), for all n ∈ N>0. By the membership rule, OX(f) ⊆ OX(1). By order-
consistency, order-consistency and transitivity, injective super-composability, and
injective sub-composability,

(n 7→ n) ∈ ON>0(n)
⊆ ON>0(f ◦ s)
⊆ OX(f) ◦ s
⊆ OX(1) ◦ s
⊆ ON>0(1 ◦ s)
= ON>0(1).

(49)

This contradicts O having one-separation. Therefore f is bounded, which is equiv-
alent to ∃c ∈ R>0 : f ≤ c.
⊃ Assume ∃c ∈ R>0 : f ≤ c. By order-consistency, f ∈ OX(c). By scale-

invariance, f ∈ OX(1).
�

Proposition 4.21 (Big-oh for positive functions). Suppose OX has order-con-
sistency, transitivity, scale-invariance, N-sub-homogenuity, andN>0-cancellation.
Then

f ∈ OX(g) ⇐⇒ f /g ∈ OX(1), (50)

for all f , g ∈ RX such that g > 0.

Proof. OX has R≥0-sub-homogenuity by Proposition 4.11.
=⇒ By R≥0-sub-homogenuity,

f ∈ OX(g)
=⇒ f /g ∈ OX(g)/g
=⇒ f /g ∈ OX(g/g)
=⇒ f /g ∈ OX(1).

(51)

⇐= By R≥0-sub-homogenuity,

f /g ∈ OX(1)
=⇒ f ∈ OX(1)g
=⇒ f ∈ OX(g).

(52)

�

Theorem 4.22 (Primitive properties imply linear dominance). Suppose O has
order-consistency, transitivity, one-separation, scale-invariance, locality, N-sub-
homogenuity, N>0-cancellation, and sub-composability. Then

f ∈ OX(g) ⇐⇒ ∃c ∈ R>0 : f ≤ cg. (53)
Proof. OX has sub-restrictability by Proposition 4.18. OX has zero-triviality by
Proposition 4.16. Let G := g−1(R>0) and G := X \G. Then

(f |G) ∈ OG(g|G)

⇐⇒
(f |G)
(g|G)

∈ OG(1)

⇐⇒ ∃c ∈ R>0 :
(f |G)
(g|G)

≤ c

⇐⇒ ∃c ∈ R>0 : (f |G) ≤ c(g|G)

(54)

where we used Proposition 4.21 and Proposition 4.20. On the other hand,(
f |G

)
∈ OG

(
g|G

)
⇐⇒

(
f |G

)
= 0

(55)

by zero-triviality. By locality, sub-restrictability, and zero-triviality,

f ∈ OX(g)

⇐⇒ (f |G) ∈ OG(g|G) and
(

f |G
)
∈ OG

(
g|G

)
⇐⇒

(
∃c ∈ R>0 : (f |G) ≤ c(g|G)

)
and

(
f |G

)
= 0

⇐⇒ ∃c ∈ R>0 : f ≤ cg.

(56)

�

4.4 Completeness
The �X is complete on A ⊆ P(RX), if every F ∈ A which has a lower-bound
(an upper-bound) in RX has a greatest lower-bound (a least upper-bound) in RX.
The �X is complete, directed-complete, chain-complete, a lattice, and algorithm-
complete, if it is complete onP(RX), complete on directed subsets of RX, complete
on linearly-ordered subsets of RX, complete on finite subsets of RX, and complete
on

{
{R(F)}F∈A(P)

}
P∈(X→P(X))

, respectively.
It follows from the axiom of choice that chain-complete is equivalent to di-

rected-complete. Since �X is a lattice by Proposition 4.23, every subset of RX is
directed, and therefore directed-complete is equivalent to complete.

Completeness on P(RX) is too strict a condition to require, because — un-
der commonly used models — most of these sets can never be realized by algo-
rithms. Instead, the appropriate sets are those which are generated as the resource-
consumptions of algorithms to solve computational problems. However, this al-
gorithm-completeness can be harder to examine.

By order-consistency, every subset of RX has the trivial lower-bound 0, and so
the requirement for a lower-bound is redundant.

Proposition 4.23 (lattice structure is implied). �X has order-consistency, local-
ity, and injective sub-composability. =⇒ �X has lattice structure.

Proof. Let f1, . . . , fn ∈ RX. Then f1, . . . , fn ≤ max(f1, . . . , fn), and by order-con-
sistency f1, . . . , fn �X max(f1, . . . , fn). Suppose h ∈ RX is such that f1, . . . , fn �X

h �X max(f1, . . . , fn). Let Fi = {x ∈ X : fi(x) = max(f1, . . . , fn)}. By injective sub-
composability, (fi|Fi) �Fi (h|Fi) �Fi (fi|Fi). Therefore (fi|Fi) ≈Fi (h|Fi). By local-
ity, max(f1, . . . , fn) ≈X h. Therefore sup{ f1, . . . , fn} ≈X max(f1, . . . , fn). Similarly,
inf{ f1, . . . , fn} ≈X min(f1, . . . , fn). �

Theorem 4.24 (Incompleteness). �N>0 has order-consistency, transitivity,N-sub-
homogenuity, N>0-cancellation, scale-invariance, and one-separation. =⇒ �N>0

is not complete.

Proof. �N>0 has R≥0-sub-homogenuity by Proposition 4.11.
Let fα ∈ FN>0 be such that fα(n) = αn, for all α ∈ R≥0. By order-consistency,

α ≤ β =⇒ fα �N>0 fβ, for all α, β ∈ R≥0.
Suppose there exists α, β ∈ R≥0 such that α > β and fα �N>0 fβ. By R≥0-sub-

homogenuity,
(

fα/ fβ
)
�N>0 1. It can be shown that n ≤ 1

e loge(α/β)

(
fα/ fβ

)
. By order-

consistency and scale-invariance, n �N>0

(
fα/ fβ

)
. By transitivity, n �N>0 1, which

contradicts one-separation. Therefore, α < β =⇒ fα ≺N>0 fβ, for all α, β ∈ R≥0.
Let F = { fα}α∈R>2 . Then f2 is a lower-bound of F. Let f ∈ RN>0 be a lower-

bound of F such that f2 �N>0 f .

Suppose f ≈N>0 βn, for some β ∈ R>2. Then
(

2+β

2

)n
≺N>0 βn ≈N>0 f , which

contradicts f being a lower-bound of F. Therefore f ≺N>0 αn, for all α ∈ R>2.
By order-consistency, f �N>0 n f . Suppose n f �N>0 f . By R≥0-sub-homoge-

nuity, n �N>0 1, which contradicts one-separation. Therefore f ≺N>0 n f .
By R≥0-sub-homogenuity, n f ≺N>0 nαn, for all α ∈ R>2. It can be shown that

nαn ≤
β/α

loge(β/α)eβ
n, for all α, β ∈ R>2 such that α < β. By order-consistency and

scale-invariance, nαn �N>0 βn, for all α, β ∈ R>2 such that α < β. By transitivity,
n f ≺N>0 αn, for all α ∈ R>2; n f is a lower-bound for F. Since f ≺N>0 n f , there is
no greatest lower-bound for F.

�

Remark 4.25 (Algorithm-completeness). Are there commonly used computa-
tional models and cost-models where {�X}X∈U are algorithm-complete? This ques-
tion is open. 4

5 Conclusion
We showed that the primitive properties for the O-notation are equivalent to its
definition as linear dominance.

We had to skip several interesting topics due to space-constraints. For practical
use, the most important thing is to prove that the listed desirable properties really
are implied by the primitive properties. Then, it must be made sure that the Master
theorems in their various forms hold for linear dominance. For intuition, it can be
interesting to compare various candidate definitions for the O-notation, and see
how they fail the primitive properties.

All this is available in our extended Arxiv-paper with the same name. In partic-
ular, we have proved that the Master theorems in their various forms hold without
any regularity conditions.

6 Acknowledgements
We would like to thank the anynomous reviewer, whose comments greatly im-
proved the presentation of this paper, as well as led to R≥0-sub-homogenuity being
split into N-sub-homogenuity and N>0-cancellation.

The work for this paper distributed as follows. KR did the research, and wrote
the paper. GGH, SLE, and KE checked and commented on the paper on its various
revisions.

The research was done while KR was under funding from the Finnish National
Doctoral Programme in Mathematics and its Applications. The review process
was carried out while KR was under funding from the science fund of the city of
Tampere.

References
[1] Elliott Mendelson. Introduction to Mathematical Logic. Chapman & Hall/CRC, 5th

edition, 2009.

[2] Yuri Gurevich. Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic, 1(1):77–111, July 2000.

[3] Andreas Blass and Yuri Gurevich. Abstract state machines capture parallel algo-
rithms. ACM Transactions on Computational Logic, 4:578–651, 2003.

[4] Egon Börger and Robert F. Stärk. Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2003.

[5] Lenore Blum, Michael Shub, and Stephen Smale. On a theory of computation over
the real numbers; np completeness, recursive functions and universal machines. In
Proceedings of the 29th Annual Symposium on Foundations of Computer Science,
SFCS ’88, pages 387–397, Washington, DC, USA, 1988. IEEE Computer Society.

[6] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa
Clara, CA, USA, 3rd ed. edition, 2008.

[7] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines.
In Proceedings of the Fourth Annual ACM Symposium on Theory of Computing,
STOC ’72, pages 73–80, New York, NY, USA, 1972. ACM.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, Cambridge, MA, USA, 2nd edition, 2001.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

[10] Prosenjit Bose, Karim Douïeb, Vida Dujmović, John Howat, and Pat Morin. Fast lo-
cal searches and updates in bounded universes. Computational Geometry, 46(2):181
– 189, 2013.

[11] Paul Bachmann. Die Analytische Zahlentheorie. B. G. Teubner, Leipzig, 1894.

[12] Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen. B. G.
Teubner, Leipzig, volume 2 edition, 1909.

[13] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, 1st edition, 1968.

[14] Donald E. Knuth. The Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley, 2nd edition, 1973.

[15] Donald E. Knuth. Big omicron and big omega and big theta. SIGACT News, 8(2):18–
24, April 1976.

[16] Rodney R. Howell. On asymptotic notation with multiple variables, 2008.

	Introduction
	Notation
	Algorithms
	Computational model and cost-model
	Primitive properties
	Problem complexity
	O-notation
	Example analyses
	Implicit conventions

	Previous work
	Howell's counterexample

	Worst case, best case, average case
	Characterization of the O-notation
	Linear dominance is sufficient
	Some implied properties
	Linear dominance is necessary
	Completeness

	Conclusion
	Acknowledgements

