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Abstract

With the anticipated end of Moore’s law for integrated circuits [3, 4]
fast approaching and continued advances in low-power electronics, inter-
est in quantum computing has increased. This shifts the focus from de-
terministic logical circuits to potentially more powerful circuits based on
controllable quantum systems. In this column, we present a mathematical
tour of the quantum circuit model, beginning with reversible logic circuits
and expanding to quantum circuits, gates, and measurement. We highlight
quantum mechanical phenomena such as superposition, entanglement, and
measurement, review the Gottesman-Knill theorem, which states that some
subclasses of quantum operations can be simulated efficiently on a classical
computer, and describe sets of quantum gates that are universal for quantum
computation.

∗Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052,
USA. {alexeib,ksvore}@microsoft.com



��� �������	 
� ��� ����

��

1 Introduction
There is a growing list of problems for which a quantum algorithm delivers super-
polynomial speedup over the corresponding classical algorithms. Most notably,
integer factorization can be solved exponentially faster using a quantum algo-
rithm than using the best-known classical algorithms [10]. Other problems in-
clude Pell’s equation [11], computing the unit group and class group of a number
field [12, 13], finding the hidden shift of a boolean function [14], solving linear
systems of equations [15], group order and membership [16], group isomorphism
[17], and knot invariants [18, 19]. These algorithms are based on the quantum
circuit model of computation.

At the core of the quantum circuit model is unitary evolution, which by nature
is physically reversible. According to Landauer’s principle [2], in order for a
computational process to be physically reversible it must be logically reversible.
We begin in Section 2 with a short introductory discourse on reversible logic gates
which are a special case of classical Boolean gates [5]. We then introduce in
Section 3 controllable quantum states and observe that any reversible logic gate
generates a unitary quantum gate, however the converse is not true. Quantum
state spaces are incomparably richer than boolean logic, as is the hierarchy of
controllable gates that we will present.

Since quantum gates are richer than boolean gates, it comes as a surprise that
a subclass of quantum circuits can in fact be simulated efficiently on a classical
computer [6]. This subclass is commonly called stabilizer circuits or Clifford
circuits. In Section 4, we introduce the Gottesman-Knill theorem and review some
of its key implications.

In Section 5, we introduce the notion of a universal quantum basis. After
reviewing several such universal bases, we highlight a key result: the quantum
analog of the classical Toffoli gate, with some help in the form of measurement
and classical feedback, is universal when added to the group of Clifford circuits.
Finally, we conclude in Section 6 with directions for future work.

2 Reversible Logic Gates
Consider an n-bit space {0, 1}n and the complete set of Boolean functions of the
form f : {0, 1}n → {0, 1}m, where m is a positive integer. It was realized very
early that any Boolean function can be represented as a nested composition of
logic gates. In fact, in 1881, C.S. Pierce claimed that with just one gate, a NOR,
or alternatively a NAND, any Boolean function can be realized. For NAND, this
was first proven by H.M. Sheffer in 1913 (see [20]). Nested compositions of logic
gates are called logic circuits.
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In this column, we focus on reversible Boolean functions. A reversible func-
tion f is a computation that can be ‘undone’, that is, an arbitrary bit vector input
x can be reconstructed from the corresponding output vector f (x) and so no input
information is erased during the computation of f . We define a reversible Boolean
function with n arguments as a bijection {0, 1}n → {0, 1}n. If we consider {0, 1}n
as a set with 2n elements, we can also say that such a bijection is an arbitrary
permutation of 2n. Thus there is a one-to-one correspondence between reversible
boolean functions and elements of the symmetric group S 2n .

Interestingly, neither NAND(a, b) = ¬(a ∧ b) nor NOR(a, b) = ¬(a ∨ b) is
reversible. In fact, among those gates commonly appearing in disjunctive or con-
junctive normal forms, only NOT: {0, 1} → {0, 1} is reversible. Naturally, for any
n, the identity map In is also reversible. We denote the identity gate by I.

A binary reversible gate that plays a key role in reversible (and subsequently
in quantum) logic is the controlled-NOT gate, written as CNOT, which maps
{0, 1}2 → {0, 1}2 and is defined as CNOT(a, b) = (a, a ⊕ b), where ⊕ is the ex-
clusive OR (which can be alternatively viewed as addition modulo 2). Intuitively,
the first input bit, or the control bit, controls the application of the NOT opera-
tion on the second bit, called the target bit. Evidently, when a = 0, b remains
unchanged, and when a = 1 the second bit is flipped.

We can use simple gates such as NOT and CNOT during synthesis of n × n
reversible Boolean functions {0, 1}n → {0, 1}n.

To this end, NOT[i], i = 1, . . . , n denotes the NOT gate applied to the i-th
input argument, i.e., NOT[i] replaces the i-th bit of the bit vector (x1, . . . , xn) with
NOT(xi).

We define CNOT[i, j], 1 ≤ i, j ≤ n, i � j as follows:
CNOT[i, j] replaces the j-th bit of the bit vector (x1, . . . , xn) with xi ⊕ x j.
In general, given a k × k Boolean function f : {0, 1}k → {0, 1}k, some n ≥ k,

and a multi-index i = i1, . . . , ik, 1 ≤ il ≤ n, l = 1, . . . k, we define the extension
f [i] : {0, 1}n → {0, 1}n to n-bit logic as follows: if f (xi1 , . . . , xik) = (yi1 , . . . , yik)
then f [i](x1, . . . xn) = replace((x1, . . . xn), xil , yil , l = 1, . . . , k).

Throughout, we use the ◦ symbol to denote the composition of reversible
Boolean functions of the same arity, and replace it with a single space when this
does not lead to ambiguities. We also use the term ‘wire’ to refer to logical input
bits in the computation.

We now consider several examples of function composition.

Example 1.

1. NOT[i] NOT[i] = I.

2. CNOT[i, j] CNOT[i, j] = I.
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Example 2.

1. We introduce the two-bit SWAP gate that swaps the two logical input bits:

SWAP = CNOT[1, 2] CNOT[2, 1] CNOT[1, 2]

.

2. Verify that for n ≥ 2, 1 ≤ i, j ≤ n, i � j,

SWAP[i, j] = CNOT[i, j] CNOT[ j, i] CNOT[i, j].

3. Verify that SWAP[i, j] = SWAP[ j, i] and SWAP[i, j] SWAP[i, j] = I.

Conjugated composition of a reversible function with SWAP is equivalent to
re-indexing the arguments of that function.

Example 3.

1. NOT[ j] = SWAP[i, j] NOT[i] SWAP[i, j].

2. By direct verification on the i, j, k, l bits,

CNOT[k, l] = SWAP[i, k]SWAP[ j, l] CNOT[i, j] SWAP[ j, l] SWAP[i, k].

Regarding individual bits as logical wires as in Example 3(2.), we can view
the SWAP gate as a mechanism to move both the control and the target bits of a
CNOT gate from wire to wire.

Given a set of elementary gates, we can define a n-bit logical circuit over that
set of gates as a composition of a finite number of extensions of these gates to
n-bit logic.

Example 4. For n = 3 , SWAP[1, 2] SWAP[2, 3] is a circuit implementing a cyclic
permutation of bits in a 3-bit vector: (x1, x2, x3) → (x2, x3, x1).

How do we implement a Boolean function with a logical circuit? Example
4 describes a specific implementation where the resulting function is a simple
composition of all gates in the circuit.

In general, however, we may need to implement a function with a given num-
ber of arguments with a circuit of greater arity. Let f : {0, 1}k → {0, 1}k be a
Boolean function, and suppose n > k. Consider the extension f [1, . . . , k] of the
function f to the n-bit space. Given an n-bit circuit c such that the composition
of its gates is equal to f [1, . . . , k], we say that circuit c implements f using n − k
ancillary bits.
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To get a taste of the constructive side of Boolean function synthesis, let us
first characterize Boolean functions that are implementable using only the CNOT
gate and no ancillary bits. To this end, let us view the elements of the {0, 1}n as
bit vectors and interpret the exclusive OR operation, ⊕, as bitwise addition of the
vectors mod 2. We say that a reversible boolean function f : {0, 1}n → {0, 1}n
performs a linear transformation f (x ⊕ y) = f (x) ⊕ f (y) for any bit vectors of
appropriate dimension.

Theorem 1. A reversible Boolean function can be represented by a circuit con-
structed entirely of CNOTs if and only if the function performs a reversible linear
transformation.

Obviously, the identity map is a linear transformation, as is any extension
CNOT[i, j] to any bit space. Therefore the ‘only if’ part of the above theorem is
straightforward: composition of any number of linear transformations is a linear
transformation. A proof of the less trivial ‘if’ part can be found, for example, in
[21].

Example 5. None of the extensions of the NOT gate are linear transformations.
This can be seen from the fact that when an extension of the NOT gate is applied
to the zero bit vector the result is non-zero. Therefore the NOT gate cannot be
implemented by a CNOT circuit using any number of ancillary bits.

Example 6. Consider a controlled-CNOT gate, CCNOT, which is a ternary gate
with the property CCNOT(x, y, z) = (x, y, (x ∧ y) ⊕ z). This gate is also called a
Toffoli gate after its inventor Tommaso Toffoli [22]. Toffoli gate is not a linear
transformation (e.g., compare CCNOT ((1, 0, 0)⊕ (1, 1, 0)) and CCNOT (1, 0, 0)⊕
CCNOT (1, 1, 0)). Therefore it cannot be implemented as a CNOT circuit.

Even more surprising is that the Toffoli gate cannot be implemented as a circuit
combining NOTs and CNOTs. We omit the proof in this column. However, if we
add a Toffoli gate to our small library of reversible gates and allow ancillary bits,
we can represent all the reversible Boolean functions, as outlined in the following
definition and theorem. We refer the reader to [21] for the corresponding proof.

Definition 1. A composition of various extensions of the CNOT, NOT, and Toffoli
gates is called a CNT -circuit.

Theorem 2. Any reversible Boolean function can be implemented by a CNT-
circuit using at most one ancillary bit.

Exercise 1. Consider the 4-bit reversible boolean function f defined by the fol-
lowing rules:

f (0, 0, 0, 0) = (1, 1, 1, 1),
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f (0, 1, 0, 1) = (0, 0, 0, 0),

f (1, 0, 1, 0) = (0, 1, 0, 1),

f (1, 1, 1, 1) = (1, 0, 1, 0),

and f is identity on the remaining 12 bit vectors of {0, 1}4.
Show that the function f cannot be implemented with a CNT-circuit using no

ancillary bits.

Hint As shown in [21], a reversible function can be implemented by a CNT -
circuit without ancillary bits if and only if the function performs an even per-
mutation of the bit space. Establish that the function f from the above exercise
performs an odd permutation of the {0, 1}4.

3 Quantum States and Quantum Gates
Armed with an understanding of reversible logic gates and circuits, we can now
introduce quantum gates and circuits. We begin by describing the principal infor-
mation unit, the quantum bit, as a quantum system with two basis states. (On a
physical level, such states may be represented, for example, by polarizations of a
single photon or spin directions of a single electron.)

3.1 Quantum States
In a quantum computation, information is stored in a quantum bit, or qubit, which
extends the concept of the classical bit. Whereas a classical bit has a state value
s ∈ {0, 1}, a state of a qubit |ψ〉 is actually a linear superposition of basis states:

|ψ〉 = α |0〉 + β |1〉 , (1)

where the {0, 1} basis state vectors are represented in Dirac notation (ket vectors)
as |0〉 = (1, 0)T and |1〉 = (0, 1)T , respectively. The amplitudes α and β are
complex numbers that satisfy the normalization condition: |α|2 + |β|2 = 1. Upon
measurement of the quantum state |ψ〉, either state |0〉 or |1〉 is observed with prob-
ability |α|2 or |β|2, respectively.

Note that a n-qubit quantum state is a 2n × 1-dimensional state vector, where
each entry represents the amplitude of the corresponding basis state. Therefore, n
qubits live in a 2n-dimensional Hilbert space, and we can represent a superposition
over 2n states as:

|ψ〉 =
2n−1∑
i=0

αi |i〉 , (2)
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where αi are complex amplitudes that satisfy the condition
∑

i |αi|2 = 1, and i is
the binary representation of integer i. Note, for example, that the state |0000〉 is
equivalent to writing the tensor product of the four states: |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 =
|0〉⊗4 = (1, 0, 0, 0, 0, 0, 0, 0)T . The ability to represent a superposition over expo-
nentially many states with only a linear number of qubits is one of the essential
ingredients of a quantum circuit — an innate massive parallelism.

Example 7.

1. The two-qubit state (1/2) (|00〉 − i |01〉 + i |10〉 + |11〉) is a product of the
single-qubit state (1/

√
2) (|0〉+ i |1〉) on the first qubit and the (1/

√
2) (|0〉−

i |1〉) state on the second qubit.

2. The two-qubit state (1/
√

2) (|00〉 + |11〉) is not a product of two individual
single-qubit states

The state given in Example 7(2.) possesses a non-classical entanglement prop-
erty. When multi-qubit state cannot be represented as a product of individual
single-qubit states, we say that the state is entangled. Intuitively, this means that
for at least two qubits in the system we cannot in principle identify, or separate
out, their individual states.

It follows from the principles of quantum mechanics that two quantum states
are indistinguishable if they differ only by a phase factor of the form ei θ, θ ∈ R.
Thus, we can rewrite a qubit as cos(θ) |0〉 + ei φ sin(θ) |1〉, where 0 ≤ φ < 2π, 0 ≤
θ ≤ π/2. We can interpret 2 θ and φ as spherical angle coordinates and map
the state onto a point on the unit sphere, allowing a geometrical interpretation of
single-qubit states, as originally proposed by Felix Bloch [38].

Now consider the evolution of a quantum state. Such evolution would need to
preserve the norm of the complex vectors representing the states and would also
need to transform a superposition of states into a superposition of transformed
states. A physically motivated operation would be, for example, a linear operator
C

2 → C
2 that preserves the inner product 〈(α, β), (γ, δ)〉 = αγ∗ + βδ∗, where ∗

is complex conjugate transpose. Such operetors are known as unitary operators
(c.f., [43]).

A quantum computation proceeds through the unitary evolution of a quantum
state; in turn, quantum operations are necessarily reversible. We refer to quantum
unitary operations as quantum gates. In the multi-qubit case, an n-qubit quantum
gate is a 2n × 2n unitary matrix acting on an n-qubit quantum state.

We can more formally define a unitary operator U. For a given invertible linear
transformation U : CN → CN , we introduce

U† : CN → CN
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Figure 1: Bloch sphere representation of a single-qubit state. The two basis states,
|0〉 and |1〉, sit at the two poles.

as the transformation defined by transposition and complex conjugation of the
matrix of U.

Definition 2. A linear operator U : CN → CN is unitary if UU† = I (or in other
words U† is the inverse of U).

Returning to the single-qubit Bloch sphere interpretation, because a unitary
operator A : C2 → C2 transforms valid single-qubit states into valid single-qubit
states and because the states map onto points on the Bloch sphere (see Fig. 1),
a single-qubit unitary can be interpreted as some transformation of the Bloch
sphere. It is not difficult to see that this transformation is, in fact, an isometry.
Conversely, each isometry from the special orthogonal group SO(3) corresponds
to an equivalence class of single-qubit unitary operators. Because superposition
states are defined up to am arbitrary global phase factor, two unitary operators
that differ only by a multiplicative ei θ are considered equivalent, in particular any
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unitary is equivalent to one with determinant equal to 1.

3.2 Reversible ‘Classical’ Gates

Unitary operations on an n-qubit system are, by definition, reversible. Any re-
versible n-bit classical Boolean function f can be converted into the n-qubit uni-
tary operator U f by defining the action on the standard basis |s〉 as follows:

U f (|s〉) = | f (s)〉 .

We call a unitary operator U f , where f is a reversible Boolean function, a classical
unitary gate. From the definition, it follows that U∗ is a functor preserving, for
reversible Boolean functions f and g, the composition: U f◦g = U f ◦ Ug.

Boolean gates of the universal CNT basis generate the following unitary gates:
X = UNOT is a single-qubit gate with the matrix:

[
0 1
1 0

]
.

UCNOT is a two-qubit gate, denoted by Λ(X), and called CNOT. Its matrix is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Similarly, UCNOT[2,1] is denoted by Λ(X)[2, 1] and its matrix is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Since we can compute U f◦g, we can obtain the USWAP gate:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

UCCNOT is a three-qubit, denoted by Λ2(X), and referred to as the Toffoli
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gate. Its matrix is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

TheΛ symbol surreptitiously introduced above is actually the functor of adding
a control qubit to a unitary. For an n-qubit unitary G, Λ(G) is the n + 1-qubit uni-
tary defined as follows in the standard basis:

Λ(G) |0 s1 . . . sn〉 ≡ |0s1 . . . sn〉 ,
Λ(G) |1 s1 . . . sn〉 ≡ |1〉G |s1 . . . sn〉 .

Unlike the classical case where the control bit is a logical switch on the appli-
cation of the target gate, the meaning of the control qubit is more complex, since
the qubit can be in superposition. Nevertheless, at the matrix level, UC( f ) = Λ(U f )
for any reversible Boolean function f .

An important non-classical single-qubit gate is the Hadamard gate H, which
maps a quantum state into a quantum superposition state, as follows:

H |0〉 = (1/
√

2)(|0〉 + |1〉),
H |1〉 = (1/

√
2)(|0〉 − |1〉),

where the unitary matrix is given by

H =
1√
2

[
1 1
1 −1

]
. (3)

There are 2n! reversible Boolean functions and as many ‘classical’ gates on n
qubits. Although the size of this set is double-exponential in n, the set turns out to
be very sparse in the infinite continuous group of unitary operators.

3.3 Pauli Gates
The single-qubit Pauli group is generated by compositions of the following unitary
gates, called Pauli gates:

I = UI =

[
1 0
0 1

]
, X = UNOT =

[
0 1
1 0

]
,Y =

[
0 −i
i 0

]
,Z =

[
1 0
0 −1

]
.
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Of these generating gates, only X and I are classical. Note that X2 = Y2 = Z2 = I.
An easy matrix algebra exercise shows that the Pauli gates generate a group of

16 elements with a 4-element center z = {±I,±i I}. Since −1 = eiπ and ± i = e±i π/2

are phase factors, each element of z is equivalent to the identity as a single-qubit
unitary gate and each element of the Pauli group is equivalent to one of the four
gates in {I, X,Y,Z}

Recall that a single-qubit unitary can be interpreted as a rotation of the Bloch
sphere and apply this interpretation to the Pauli gates. Then it is easy to verify
that {X,Y,Z} are rotations by angle π about axes {x, y, z}, respectively. Proceeding
with the Bloch sphere exercise, we find an easy recipe for writing out the rotation
corresponding to any single-qubit unitary A.

Exercise 2. (1) Prove that given a single-qubit unitary A and P ∈ {X,Y,Z} ,
A P A† = aP X + bP Y + cP Z where aP, bP, cP are uniquely defined by real coef-
ficients.

Hint. Due to the unitary condition A A† = I , matrix A is defined up to a
phase factor by its first row. More specifically, A = eiα ∗ B, where α ∈ R and B =
[[u, v], [−v∗, u∗]]. It is easy to see that B = Re(u) I+ i(Im(v) X+Re(v) Y+ Im(u) Z).

(2) Prove that in the context of (1)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
aX aY aZ

bX bY bZ

cX cY cZ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is a special orthogonal matrix.

(3) Prove that the matrix in (2) defines the rotation of the Bloch sphere corre-
sponding to A.

The multi-qubit Pauli group is, again, generated by the {I, X,Y,Z} using tensor
products along with the compositions. Let us start with a formal description of
the tensor product of unitary operators. Let n = k + m be an integer partition of
the natural integer n. We note that the complex vector space C2n

is represented as
tensor product C2k ⊗ C2m

. One specific tensor representation is written in terms of
standard bases in C2k

and C2m
by noting that if {a1, . . . , a2k} is a basis in the former

and {b1, . . . , b2m} is a basis in the latter, then the formal pairs (aj, bl), 1 ≤ j ≤
2k, 1 ≤ l ≤ 2m form a basis in a complex vector space of dimension (2k)×(2m) = 2n.
For the purposes of the tensor product representation we denote the new basis
element (aj, bl) as aj ⊗ bl or simply ajbl.

Definition 3. Given two linear operators A : CM → C
M and B : CN → C

N,
M,N ∈ N, the tensor product of A and B is the linear operator A⊗B : CM ⊗CN →
C

M ⊗ CN uniquely defined by the property

(A ⊗ B)(a ⊗ b) = (A a) ⊗ (B b).
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Iterating the construction and the definition, we can represent the n-qubit state
space C2n

as a tensor product of n copies of the one-qubit state space C2. In
particular for any set of unitaries Aj : C2 → C2, j = 1, . . . , n , the tensor product
A1 ⊗ · · · ⊗ An is the unitary operator uniquely defined by the property

(A1 ⊗ · · · ⊗ An)(|ψ1〉 . . . |ψn〉) = A1(|ψ1〉) . . . An(|ψn〉).
If A1 = . . . = An = A, then the above tensor product is written as A⊗n.

It is easy to see that, in the context of the above definition, given pairs of
operators A,C : CM → CM and B,D : CN → CN ,

(A ◦C) ⊗ (B ◦ D) = (A ⊗ B) ◦ (C ⊗ D).

We are now ready to define the n-qubit Pauli group Pn as the group with re-
spect to composition generated by {P1 ⊗ . . . ⊗ Pn|Pi ∈ {I, X,Y,Z}, i = 1, . . . , n}.
It is known (c.f., [24]) that this group has 22 n+2 elements. For any n , Pn has a
4-element center. Introducing In = I⊗n, we can describe the center as {±In,±i In}.

Pauli groups are important in quantum information theory. This is due to the
fact that it forms the core of the so-called Heisenberg representation of quantum
computing (see [6]), where quantum information is encoded in eigenstates of cer-
tain Pauli operators (we refer the reader to [6] for details.)

3.4 Clifford Group
Consider the group U(2n) of the n-qubit unitaries. The Pauli group Pn ⊂ U(2n) is
a subgroup, and is tiny compared to the continuous infinite group U(2n). We want
to look for meaningful ways to extend this group of operations into a larger and
more powerful set.

One might logically ask what is a set of unitary operations that preserves the
Pauli group? (This would be a set of operations that would preserve the Heisen-
berg computational model mentioned in the previous subsection.) In group theory
language, the question would be: what is the normalizer of the Pauli group?

Before answering this question, we note that the center of the U(2n) consisting
of the scalar operators of the form eiθI, θ ∈ R stabilizes all the elements of U(2n)
and is trivially a part of the normalizer for Pn. This is not at all interesting. The
question then must be: what other operators outside the center and the Pn are in
the normalizer of Pn?

Here, the Hadamard gate H comes to prominence. Recall that H is a single-
qubit gate defined as

H |0〉 = (1/
√

2)(|0〉 + |1〉),
H |1〉 = (1/

√
2)(|0〉 − |1〉).
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It is easy to see that H2 = I; H X H = Z; H Y H = (−1) Y; H Z H = X, therefore
H is in the normalizer of the single-qubit Pauli group. Obviously, using H in a
tensor product with other normalizer gates generates a normalizer element of the
respective multi-qubit Pauli group. For example, I ⊗ H,H ⊗ I and H ⊗ H are in
the normalizer of the two-qubit Pauli group.

Another important gate that we must now introduce is the phase gate S defined
as

S |0〉 = |0〉 ; S |1〉 = i |1〉 .
Unlike other gates considered thus far, S is not involutive, rather we see immedi-
ately that S 2 = Z so S 4 = I, making it an order-4 group element. The inverse is
given by S † = S 3.

By direct computation,

S X S † = Y; S Y S † = (−1)X; S Z S † = Z.

Thus S is a normalizer element and so are its compositions and tensor products
with other normalizer elements. For example, S ⊗ H, S ⊗ S and H ⊗ S are all in
the normalizer of the two-qubit Paulis.

We note that the already familiar CNOT gate Λ(X) preserves the two-qubit
Pauli group (as does any controlled-Pauli gate Λ(P), P ∈ {X,Y,Z, (−1)I,±i I} ;
this is easy to check by direct computation). We also note the following amusing
two-qubit identity:

(H ⊗ H) ◦ Λ(X) ◦ (H ⊗ H) = Λ(X)[2, 1].

Theorem 3. The normalizer of the n-qubit Pauli group in U(2n) is generated by
the center z(U(2n)) (the subgroup of scalar unitaries), tensor products of I,H, S
operators, and various CNOT operators Λ(X)[ j, l], 1 ≤ j < l ≤ n.

A proof of an equivalent theorem can be found in Chapter 10 of [23].

Definition 4. The Clifford group is the group of unitary operators, generated by

(1) H and S in the single-qubit case
(2) Tensor products of I,H, S and all Λ(X)[ j, l], 1 ≤ j < l ≤ n in the n-qubit

case, n > 1.
For any number of qubits, the Clifford group is the "non-trivial part" of the

normalizer of the Pauli group.1 Interestingly, although the term Clifford group is

1It is commonly claimed that the Clifford group is the normalizer of the Pauli group. Strictly
speaking, this claim is incorrect. It is only meaningful ‘modulo scalar operators’. More precisely,
the central quotient of the Clifford group is the normalizer of the central quotient of the Pauli group
in the central quotient PU(2n) of the unitary group.
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universally accepted, its origin is not entirely clear (it is not directly related to the
class of Clifford algebras). According to D. Gottesman, the first use of the term is
attributed to Eric M. Rains.

If we view Clifford operators as "instructions" on a quantum computer, we
get a rather large instruction set. As per [24], the n-qubit Clifford group has
2n2+2 n+3∏n

j=1 4 j − 1 distinct elements. For example, this amounts to 92,160 el-
ements in the two-qubit case. Regrettably, this instruction set does not provide
any speedups for quantum computers over classical computers. This remarkable
result is the subject of the next section.

4 Gottesman-Knill Theorem
In order to harness the power of a quantum computer, we need to first step away
from the unitary operator paradise and introduce some non-unitary operations.
We start this section by discussing quantum measurement and classical feedback
operations.

4.1 Measurement and Classical Feedback

It is one of the great mysteries of quantum mechanics that measurements are pa-
rameterized by Hermitian operators. An operator M : CN → CN is called Her-
mitian if M = M†. Obviously all the eigenvalues of such an operator are real.
It follows that if M is both unitary and Hermitian, then it is also involutive, i.e.,
M2 = I, with eignevalues ±1. Note, for example, that a generator of the Clifford
group is Hermitian iff it does not explicitly contain the S gate.

If {m1, . . . ,ml} is the list of distinct eigenvalues of a Hermitian operator M,
then it is a simple algebraic fact that

M =
∑

j

m j Pr j,

where Prj is the projector onto the eigenspace of M corresponding to the eigen-
value mj. Conceptually, according to the postulates of quantum mechanics, a
measurement of the operator M on a quantum state |ψ〉 must produce one of the
eigenvalues of M. Any of the eigenvalues may randomly result from the measure-
ment.

We need a way to compute the probability pj of observing a certain eigenvalue
mj in the measurement. To this end, consider the projection Prj |ψ〉 of a state
vector |ψ〉 on the jth eigenspace. Note that the scalar product 〈ψ| Prj |ψ〉 is a
measure of proximity of the state vector |ψ〉 to the eigenspace, very similar to
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the cosine of the angle between a vector and a plane in Euclidean space (the larger
the cosine, the smaller the angle).

It is the measurement postulate of quantum mechanics that defines pj as pj =

〈ψ| Prj |ψ〉. It is easy to see that
∑

j p j = 〈ψ| |ψ〉 = 1.
The fundamental state reduction principle also states that if the eigenvalue

mj is observed in measuring the operator M, the quantum state |ψ〉 is changed
(‘collapsed’) into Pr j |ψ〉 post-measurement.

The probability of observing an eigenvalue of M can thus be also under-
stood as the probability of the quantum state being forced into the corresponding
eigenspace. It makes intuitive sense that such a probability is proportional to a
proximity measure between the state and the eigenspace.

Example 8. The simplest scenario is measuring the Pauli operator Z on the
single-qubit state α |0〉 + β |1〉 . The eigenvalues of Z are +1 and −1 and the prob-
abilities of observing each one are |α|2 and |β]2 respectively. Post-measurement
the state collapses to either basis state |0〉 or to basis state |1〉. The standard no-
tation for this measurement procedure is MZ. In multi-qubit case we will use the
notation MZ[i] for the Z-measurement applied to ith qubit only.

One key application of measurements in quantum computation is the feeding
of the measurement results back into quantum circuits to be used as classical con-
trol bits. The non-unitary primitive that makes such feedback possible is called
a classically controlled gate. Given an operator G ∈ U(N), the classically con-
trolled gate

BC(G) : ({0, 1} × CN) → ({0, 1} × CN)

is defined by

BC(G)((0, v)) = (0, v); BC(G)((1, v)) = (1,G v).

4.1.1 An Important Toffoli-based Construction

We now consider an important measurement example that is significantly more
sophisticated than Example 8, and introduces the concept of a classical feedback
loop. We will implement a certain single-qubit rotation that will turn out to be
important in the next section.

Consider a single-qubit state |ψ〉 and add two ancillary qubits prepared in state
|0〉. To simplify notations, assign indices 1 and 2 to the ancillary qubits and assign
index 3 to the qubit in the state |ψ〉. The resulting 3-qubit system is initially in the
product state |00〉 |ψ〉.

Consider operator H ⊗H ⊗ I that performs the Hadamard gate on qubits 1 and
2 and leaves qubit 3 unchanged; consider operator I ⊗ I ⊗ S that leaves qubits 1
and 2 unchanged while performing the phase gate S on the third qubit. Build the
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3-qubit circuit U = (H ⊗H ⊗ I)Λ2(X) (I ⊗ I ⊗ S )Λ2(X) (H ⊗H ⊗ I), apply it to the
3-qubit system prepared in state |00〉 |ψ〉, then apply MZ measurement operator to
qubits 1 and 2.

Note that the Toffoli gate Λ2(X) does not belong to the Clifford group and
neither does the composite U. Given |ψ〉 = a |0〉 + b |1〉 , |a|2 + |b|2 = 1, by direct
computation we obtain

U |00〉 |ψ〉 = (1/4) ((3 + i) a |000〉 + (1 + 3i) b |001〉 +
(1 − i) a |010〉 − (1 − i) b |011〉 + (1 − i) a |100〉 −
(1 − i) b |101〉 + (i − 1) a |110〉 − (i − 1) b |111〉).

We introduce the Clifford gate IIZ = I ⊗ I ⊗ Z that leaves qubits 1 and 2
unchanged and performs a Pauli-Z gate on the third qubit and introduce the classi-
cally controlled gate BC(IIZ)(MZ[1] ∨ MZ[2], ∗), where the notation reads: apply
the IIZ gate unless MZ[1] = |0〉 and MZ[2] = |0〉. Now apply the composition
BC(IIZ)(MZ[1] ∨ MZ[2], ∗) ◦ U to the |00〉 |ψ〉 state.

As per the state reduction principle, when MZ[1] = |0〉 and MZ[2] = |0〉, the
U |00〉 |ψ〉 is projected to the +1 eigenspace of Z ⊗ I ⊗ I, then to +1 eigenspace of
I ⊗ Z ⊗ I. In other words, the state gets projected onto the two-dimensional space
spanned by |000〉 and |001〉. From the above expression for U |00〉 |ψ〉, we derive
that the projected state vector is proportional to (3+ i) a |000〉+ (1+3 i) b |001〉 and
thus it is equivalent to a |000〉+ ((1+ 3 i)/(3+ i)) b |001〉 = a |000〉+ (3+4 i

5 ) b |001〉.
To summarize, the case when measurement outcomes are |0〉 is equivalent to

applying the V = [[1, 0], [0, 3+4 i
5 ]] gate to the third qubit. Looking at the remain-

der of the expression for U |00〉 |ψ〉, it is easy to see that all other outcomes are
equivalent to applying the Pauli-Z gate to the third qubit, which is then canceled
out by the BC(IIZ)(MZ[1] ∨ MZ[2], ∗) operator.

Finally, we estimate the probability of measurement outcomes being simulta-
neously |0〉. As per the measurement postulate above, that probability is p00 =

|(3+ i)/4|2 |a|2+ |(1+3 i)/4|2 |b|2 = 5/8 (|a|2+ |b|2) = 5/8. Note, for now, that using
the above protocol, the probability of performing the gate V on the third qubit is
higher than the probability of leaving the third qubit state unchanged.

4.2 The Theorem and Discussion

Daniel Gottesman [6] and, independently, Emmanuel Knill, conjectured (and later
proved) that certain quantum circuits, when containing only a subset of quantum
operations and measurements, could be efficiently computed on a classical com-
puter. Informally, if the computer uses only, for example, the gates within the
Clifford group and measurements in the computational basis, then it is no more
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powerful (and in fact, more restricted) than a classical computer. One of the most
common versions of this result is articulated in the following theorem.

Theorem 4. The result of applying a sequence of Clifford gates followed by a
Pauli measurement to the input state |0〉 = |0〉⊗N can be simulated in polynomial
time on a probabilistic classical computer.

The practical corollary is that if we only use Clifford gates for both preparation
of a quantum state and the evolution of the quantum state, then this computation
will not have an exponential speed-up over the corresponding classical computa-
tion.

In [8], Maarten Van den Nest established a slightly more general result re-
garding the ‘classicality’ of certain circuits. Recall that the quantum Toffoli gate
Λ2(X) does not belong to the Clifford group. (As an exercise, check Λ2(X)(X⊗ I⊗
I)Λ2(X).) Consider, however, a type of circuit called H-Toffoli that consists of two
decoupled parts: the first part is a multi-qubit Hadamard gate H⊗N and the sec-
ond part is an arbitrary N-qubit circuit composed of the NOT,CNOT and Toffoli
gates. Because classical {NOT,CNOT,Toffoli} constitute a universal basis in the
the group of reversible classical circuits, we note that the second part is a quan-
tum wrapper around arbitrary reversible boolean function, i.e., it is of the form
U f , where f is the reversible boolean function computed by the classical circuit
replicating the {NOT,CNOT,Toffoli} part of the quantum circuit.

Then any H-Toffoli circuit followed by a Pauli measurement has the same
computational power as a probabilistic classical computation. Intuitively, the re-
sult may be not so unexpected given the circuit is H⊗N U f , where f is classical.
This is surprising though: if we allow the Hadamard gate and the quantum Toffoli
gate to interleave, then we get a ‘universal’ circuit group that goes beyond classi-
cal computation and delivers the famous exponential speedups observed in some
quantum algorithms. This phenomenon is discussed in the next section.

5 Universal Quantum Bases

Since any constructive set of operations is going to be finite or countably infinite,
we need a different notion of universality and a different concept of circuit syn-
thesis. Both are based on the notion of a dense subgroup of the unitary group
U(N).

Definition 5. A subgroup G ⊂ U(N) is everywhere dense if for every u ∈ U(N)
and for every ε > 0 there exists a gε ∈ G such that the distance between gε and u
is less than ε.
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There are several ways to define the distance on an operator group, for the
purposes of this definition, they are equivalent. The distance most often used in
quantum computing literature is the trace distance and is defined on U(N) as

dist(U,V) =
√

(N − |tr(U V†)|)/N,

where tr stands for the operator trace. Since tr(IN) = N, each operator is at zero
distance with itself. It is not difficult to prove that the distance as defined is non-
negative real and satisfies the triangle inequality.

Concept: A finite set of quantum gates forms a pure universal quantum basis
in n-qubit space if they generate an everywhere dense subgroup of U(2n).

The best fault-tolerant implementations of operations in a pure universal quan-
tum basis are not entirely unitary; they also require the use of non-unitary opera-
tions, including (but not limited to) state preparation, measurement, and classical
feedback. These non-unitary operations may use varying numbers of ancillary
qubits. (To get some taste of the amount of ‘non-unitary help’ required, an in-
quisitive reader may consult [33] or the appendix of [35].) As in the reversible
logic world, allowing ancillary qubits may be more desirable than increasing the
number of operations required for implementation, which relates to the following
definition.

Definition 6. We say that a k-qubit unitary u ∈ U(2k) is approximated to precision
ε > 0 by a circuit c ∈ U(2n), where n ≥ k, using n − k ancillary qubits if either
In−k ⊗ u is at a distance less than ε from c or u is at a distance less than ε from a
projection of c onto U(2k).

In this definition, the term projection refers to a factorization map U(2n) →
U(2k) related to some non-unitary operation(s).

We are finally ready to discuss universal quantum bases, which enable quan-
tum computations that cannot be simulated classically. Exact and effective unitary
reduction leads to the following result first published in [25]:

Theorem 5. The circuit group generated by CNOT and all single-qubit unitary
operators is purely universal in the multi-qubit space.

This particular reduction puts an onus on implementing any single-qubit gate
G that is universal in single-qubit space, possibly in combination with the single-
qubit Clifford group. In fact, any gate G has this property, unless the eigenvalues
of G2 are ±1.

In light of this it would seem that the gate T = [[1, 0], [0,
√

i]] is the simplest
and most logical choice, since the phase gate S = T 2 has one eigenvalue equal
to i. The gate T , commonly known as the π/8-gate, was originally proposed in
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[26] (albeit with a different rationale). While {H, S } generate the finite single-
qubit Clifford group, {H,T } is a universal single-qubit basis and hence generates
an infinite group, everywhere dense in U(2), that, of course, contains S = T 2 and
thus contains the entire Clifford group. Research based on this ‘Clifford+T ’ basis
has generated a steady stream of both theoretical and practical results over recent
years (an incomplete selection includes [27, 28, 29, 30, 31]).

In fact, the use of this basis is so common that the research community has fo-
cused on developing fault-tolerant implementations of the T gate, while perhaps
overlooking other more convenient universal bases. The best fault-tolerant imple-
mentations of T are based on the so-called magic state distillation protocol that
consumes a number of ancillary qubits while also requiring non-unitary steps such
as measurement and classical feedback (see, for example, [32, 33, 34]). Never-
theless, the T gate provides a convenient abstraction, where the non-unitary tech-
niques needed for implementation are separate from the group-theoretical guaran-
tees.

To give a taste of alternative universal bases, we will briefly sketch a more
recent proposal, borrowing directly from reversible logic circuits. The alternative
is based on the quantum Toffoli gate Λ2(X) and Subsection 4.1.1.

In 2002, Shi [9] offered an elegant proof that the Toffoli gate in combination
with the Hadamard gate form a universal quantum basis when one ancillary qubit
is allowed. However, the proof does not yield a constructive algorithm to perform
the actual approximation of a unitary gate by a synthesized Toffoli/Hadamard cir-
cuit to a desired precision.

In contrast, the task of synthesizing Clifford+Toffoli circuits has recently be-
come algorithmic. In [35], an algorithm for synthesizing efficient Clifford+V cir-
cuits, where V = [[1, 0], [0, 3+4 i

5 ]] is the gate constructed in subsection 4.1.1, is
presented. (Action of the T and V gates on the Bloch sphere are shown schemati-
cally in Fig. 2.) It shows that any single-qubit unitary can be effectively approxi-
mated to precision ε by a Clifford+V circuit containing no more than 4 log5(2/ε)
occurrences of the V gate.

By iterating over the circuit from 4.1.1, we can perform the V gate with proba-
bility 1. The actual number of iterations needed is a random variable, however its
expected value is 5/8 ∗∑k k (3/8)k−1 = 8/5. Thus a Toffoli-based circuit approx-
imating a single-qubit target to precision ε will have on average (64/5) log5(2/ε)
occurrences of the Toffoli gate.

As per Theorem 5, the ability to effectively approximate any single-qubit gate
with a Toffoli-based circuit, combined with the two-qubit Clifford gate CNOT ,
implies the ability to effectively approximate any multi-qubit unitary by such a
circuit. Note that we also have a specific upper bound on the number of occur-
rences of the Toffoli gate in the resulting approximation.

As defined, this solution currently consumes more resources than the most
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Figure 2: Action of the ’π/8’ and V gates on the Bloch sphere. The gates perform
rotations about Z axis by the angles of π/4 and cos−1(−3/5) respectively (the latter
angle is an irrational multiple of π).

recent solutions based on the Clifford+T basis (primarily because known fault-
tolerant implementations of the Toffoli gate are even more expensive than those
of the T gate [41, 42]). However we point out this alternative not just to prove
the algorithmic feasibility of the universal Toffoli-based quantum circuits. There
is evidence that in the multi-qubit space such circuits can be more aggressively
optimized than those based on the Clifford+T approach.

6 Future Directions

At this stage of research, circuits based on universal quantum bases constitute the
most popular framework for implementing quantum algorithms. The implemen-
tation of an algorithm begins with a definition of the required high-level unitary
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and non-unitary operators, followed by a quantum compilation step, where the
high-level operators are represented by circuits in a chosen basis.

Interestingly, the year 2012 could likely be referred to as the "Year of Quantum
Circuit Decomposition". Until early 2012, the most popular and most efficient
method for decomposing (or compiling) a high-level quantum circuit, in particular
the single-qubit gates, into implementable and fault-tolerant quantum gates was
the Dawson-Nielsen version of the Solovay-Kitaev theorem [36, 37]. Given a
target unitary gate and a compilation precision ε, this method delivers circuits
of depth O(log3.97(1/ε)). A handful of theoretical results published over the last
decade (c.f., [39]), however, suggested that much more efficient circuit depths
O(log(1/ε)) could be achieved for some bases, but no constructive compilation
algorithms to achieve these asymptotics were yet known.

Remarkably, in the course of 2012, efficient circuit compilation algorithms
achieving circuit depths of O(log(1/ε)) have been discovered for two universal
bases. Compared to the previous solution in [36, 37], the cost of a circuit imple-
menting a typical single-qubit rotation in an algorithm such as Shor’s factorization
[10] has come down from millions of basis gates to mere dozens of gates. The lat-
est compilation algorithms (see, for example, [35, 31, 29]) not only address the
asymptotic circuit growth rate, but also come with specific upper bounds on the
circuit depth.

We now look to an upcoming year to label as the "Year of Multi-qubit Decom-
position". Depth upper bounds for multi-qubit circuits is the next research frontier
for circuit compilation. Most of the algorithms referenced in this column exploit
the following two facts:

1. any single-qubit unitary can be decomposed, effectively and exactly, into at
most three axial rotations,

2. any controlled single-qubit unitary can be decomposed, effectively and ex-
actly, into at most three uncontrolled single-qubit unitaries (interleaved with
at most two CNOTs).

Sidestepping either of these two intermediate decomposition steps would slash
the depth of a circuit implementing a general controlled unitary by a factor of 3
(bypassing both has the potential of reducing the constant coefficient in front of
the log(1/ε) by a factor of 9). In this respect, using multi-qubit primitive gates
(such as Toffoli) hold much promise for the future of practical compilation of
quantum algorithms.
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