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Abstract

Poset games have been the object of mathematical study for over a cen-
tury but little has been written on the computational complexity of deter-
mining important properties of these games. In this introduction we define
combinatorial games and focus for the most part on impartial poset games,
of which Nim is perhaps the best-known example. We present the complex-
ity results known to date, some discovered very recently.

An extended version of this paper, with detailed proofs, is available on-
line at http://www.cse.sc.edu/~fenner/papers/games.html and on
arXiv.org.

1 Introduction
Combinatorial games have long been studied (see [5, 1], for example) but the
record of results on the complexity of questions arising from these games is rather
spotty. Our goal in this introduction is to present several results—some old, some
new—addressing the complexity of the fundamental problem given an instance of
a combinatorial game:

Determine which player has a winning strategy.

A secondary, related problem is

Find a winning strategy for one or the other player, or just find a
winning first move, if there is one.

http://www.cse.sc.edu/~fenner/papers/games.html
arXiv.org


The former is a decision problem and the latter a search problem. In some cases,
the search problem clearly reduces to the decision problem, i.e., having a solution
for the decision problem provides a solution to the search problem. In other cases
this is not at all clear, and it may depend on the class of games you are allowed to
query.

We give formal definitions below, but to give an idea of the subject matter,
we will discuss here the large class of games known as the poset games. One of
the best known of these is Nim, an ancient game, but given its name by Charles
Bouton in 1901 [2]. There are many others, among them, Hackendot, Divisors,
and Chomp [5]. Poset games not only provide good examples to illustrate general
combinatorial game concepts, but they also are the subject of a flurry of recent
results in game complexity, which is the primary focus of this article.

The rest of this section gives some basic techniques for analyzing poset games.
Section 2 lays out the foundations of the general theory of combinatorial games,
including numeric and impartial games. The rest of the paper is devoted to com-
putational complexity. Section 3 gives an upper bound on the complexity of
so-called “N-free” games, showing that they are solvable in polynomial time.
Section 4 gives lower bounds on the complexity of some games, showing they
are hard for various complexity classes. The section culminates in two recent
PSPACE-completeness results—one for impartial poset games, and the other for
“black-white” poset games. Section 5 discusses some open problems.

An extended version of this paper, with detailed proofs, is available online
at http://www.cse.sc.edu/~fenner/papers/games.html and on arXiv.
org.

1.1 Poset games
Definition 1.1. A partial order on a set P (hereafter called a poset) is a binary
relation ≤ on P that is reflexive, transitive, and antisymmetric (i.e., x ≤ y and
y ≤ x imply x = y). For any x ∈ P, define Px := {y ∈ P | x 6≤ y}.

We identify a finite poset P with the corresponding poset game: Starting with
P, two players (Alice and Bob, say) alternate moves, Alice moving first, where a
move consists of choosing any point x in the remaining poset and removing all y
such that x ≤ y, leaving Px remaining. Such a move we call playing x. The first
player unable to move (because the poset is empty) loses.1

Poset games are impartial, which means that, at any point in the play, the set
of legal moves is the same for either player. There is a rich theory of impartial
games, and we cover it in Section 2.5.

1Games can be played on some infinite posets as well, provided every possible sequence of
moves is finite. This is true if and only if the poset is a well-quasi-order (see, e.g., Kruskal [18]).
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In an impartial game, the only meaningful distinction between players is who
plays first (and we have named her Alice). Since every play of a poset game has
only finitely many moves, one of the two players (but clearly not both!) must have
a winning strategy. We say that a poset P is an ∃-game (or winning position) if
the first player has a winning strategy, and P is a ∀-game (or losing position) if
the second player has a winning strategy. In the combinatorial game theory litera-
ture, these are often calledN-games (“Next player win”) and P-games (“Previous
player win”), respectively. We get the following concise inductive definition for
any poset P:

P is an ∃-game iff there exists x ∈ P such that Px is a ∀-game.
P is a ∀-game iff P is not an ∃-game (iff, for all x ∈ P, Px is an
∃-game).

We call the distinction of a game being a ∀-game versus an ∃-game the outcome
of the game.

There are at least two natural ways of combining two posets to produce a third.

Definition 1.2. For posets P = 〈P,≤P〉 and Q = 〈Q,≤Q〉,

• define P + Q (the parallel union of P and Q) to be the disjoint union of P
and Q, where all points in P are incomparable with all points in Q:

P + Q := 〈P ∪̇Q,≤〉 ,

where ≤:=≤P ∪̇ ≤Q.

• Define P/Q (or P
Q—the series union of P over Q) to be the disjoint union of

P and Q where all points in P lie above (i.e., are ≥ to) all points in Q:

P
Q

:= 〈P ∪̇Q,≤〉 ,

where ≤ := ≤P ∪̇ ≤Q ∪̇(Q × P).

Note that + is commutative and associative, and that / is associative but not
commutative. Using these two operations, let’s build some simple posets. Let C1

be the one-element poset. For any n ∈ N, let

1. Cn := C1/C1/ . . . /C1︸            ︷︷            ︸
n

is the chain of n points (totally ordered). This is also

called a NIM stack.

2. An := C1 + C1 + · · · + C1︸                 ︷︷                 ︸
n

is the antichain of n pairwise incomparable points.



^3C3 = ^1 V5 Λ4

Figure 1: Some simple posets constructed from individual points via parallel and
series union.

3. Vn := An/C1 is the n-antichain with a common lower bound.

4. Λn := C1/An is the n-antichain with a common upper bound.

5. ^n := C1/An/C1 is the n-antichain with common upper and lower bounds.

Some examples are shown in Figure 1.

Exercise 1.3. Find a simple way, given m and n, to determine whether Am/An is
an ∃-game or a ∀-game.

Exercise 1.4. Show that P/Q is an ∃-game if and only if either P is an ∃-game or
Q is an ∃-game.

1.1.1 More examples

The best-known poset game is Nim, an ancient game first formally described and
“solved” by C. L. Bouton in 1902 [2]. Here, the poset is a union of disjoint chains,
i.e., of the form Cn1 +Cn2 + · · ·+Cnk for some positive integers n1, . . . , nk. A move
then consists of choosing a point in one of the chains and remove that point and
everything above it.

Other families of poset games include

Chomp, introduced in 1974 by D. Gale [11], which, in its finite form, is repre-
sented by a rectangular arrangement of squares with the leftmost square in
the bottom row removed. This is a poset with two minimal elements (first
square on the second row, second square on bottom row). Every element in
a row is greater than all of the elements to the left and below so playing an
element removes it and all elements to the right and above.

Hackendot, attributed to von Newmann, where the poset is a forest of upside-
down trees (roots at the top). Hackendot was solved in 1980 by Úlehla
[29].



Divisors, introduced by F. Schuh [22], the poset is the set of all positive divisors
(except 1) of a fixed integer n, partially ordered by divisibility. Divisors is
a multidimensional generalization of Chomp. Chomp occurs as the special
case where n = pmqn for distinct primes p, q.

1.2 Dual symmetry

Some poset games can be determined (as ∃-games or ∀-games just by inspection).
For example, suppose a poset P has some kind of dual symmetry, that is, there is
an order-preserving map ϕ : P→ P such that ϕ ◦ ϕ = id.

Fact 1.5. Let P be a poset and let ϕ : P→ P be such that ϕ ◦ ϕ = idP and x ≤
y ⇐⇒ ϕ(x) ≤ ϕ(y) for all x, y ∈ P.

• If ϕ has no fixed points, then P is a ∀-game.

• If ϕ has a minimum fixed point (minimum among the set of fixed points),
then P is an ∃-game.

Proof. If ϕ has no fixed points, then Bob can answer any x played by Alice by
playing ϕ(x). If ϕ has a least fixed point z, then Alice plays z on her first move,
leaving Pz, which is symmetric with no fixed points, and thus a ∀-game. �

For example, the poset below is symmetric with a unique fixed point x, which
Alice can win by playing on her first move:

x

1.3 Strategy stealing

Another class of posets that are easy to determine by inspection are those with
an articulation point, i.e., a point that is comparable with every other point in the
poset. For example, minimum and maximum points of P are articulation points.

Fact 1.6. If a poset P contains an articulation point, then P is an ∃-game.



Proof. Let x be some articulation point of P. If x is a winning first move for
Alice, then we are done. If x is a losing first move for Alice, then there must be
some winning response y for Bob if Alice first plays x. But if Alice plays x, then
all points ≥ x are now gone, and so we have y < x. This means that the game
after Bob moves is Py, which is a ∀-game by assumption. But then, Alice could
have played y instead on her first move, leaving the ∀-game Py for Bob, and thus
winning. �

We call this “strategy stealing” because Alice steals Bob’s winning strategy.
The interesting thing about this proof is how nonconstructive it is. It shows that
Alice has a winning first move, but gives virtually no information about what that
first move could be. All we know is that the winning first play must be ≤ x. If x
is a maximum point of P, then the proof gives no information whatsoever about
Alice’s winning first move. Several poset games, including Chomp, have initial
posets with maximum points, so we know that they are ∃-games. But determin-
ing a winning first move for Alice in Chomp appears quite difficult, and no fast
algorithm is known. This suggests that, in the case of Chomp at least, the search
problem (finding a winning first move) is apparently difficult, whereas the deci-
sion problem (∃-game or ∀-game?) is trivial. The search versus decision issue is
discussed further in Section 4.1, below.

Exercise 1.7. Show that the winning first moves in any poset form an antichain.

1.4 Black-white poset games
Many interesting games are not impartial because the legal moves differ for the
players. In chess, for example, one player can only move white pieces and the
other only black pieces. We will informally call a game “black-white” when each
player is assigned a color (black or white) and can only make moves correspond-
ing to their color.2 Many impartial games have natural black-white versions. Here,
then, is a black-white version of a poset game:

Definition 1.8. A black-white poset game consists of finite poset P, each of whose
points are colored either black or white. The same rules apply to black-white poset
games as to (impartial) poset games, except that one player (Black) can only play
black points and the other player (White) can only play white points. (All points
above a played point are still removed, regardless of color.)

One could generalize this definition by allowing a third color, grey, say, where
grey points can be played by either player. We will not pursue this idea further.

2A different, popular color combination is red-blue. We use black-white so that illustrations
are faithfully rendered on a black-and-white printer.



Other “colored” games include red-blue Hackenbush and red-green-blue Hacken-
bush [1].

Combinatorial games that are not impartial are known as partisan. In partisan
games, we must make a distinction between the two players beyond who moves
first. Generically, these players are called Left and Right. There is a surprisingly
robust general theory of combinatorial games, both impartial and partisan, devel-
oped in [1, 5], and we give the basics of this theory in the next section.

2 Combinatorial game theory basics

In this section we give some relevant definitions and a few facts from the general
theory of combinatorial games. We give enough of the theory to understand later
results. Thorough treatments of this material, with lots of examples, can be found
in [1, 5] as well as other sources, e.g., the recent book by Siegel [23]. Our ter-
minology and notation vary a little bit from [1, 5], but the concepts are the same.
When we say, “game,” we always mean what is commonly referred to as a combi-
natorial game, i.e., a game between two players, say, Left and Right, alternating
moves with perfect information, where the first player unable to move loses (and
the other wins). In their fullest generality, these games can be defined abstractly
by what options each player has to move, given any position in the game.

To save space, we will omit proofs of the results of this section, leaving them
as exercises to the reader. These proofs are usually straightforward applications of
previous results in this section, or induction, or both. The extended paper contains
the full proofs.

2.1 Notation

We letN denote the set {0, 1, 2, . . . , } of natural numbers. We let |X| denote the car-
dinality of a finite set X. We use the relation “:=” to mean “equals by definition.”
We extend the definition of an operator on games to an operator on sets of games
in the customary way; for example, if ∗ is a binary operation on games, and G and
H are sets of games, then G ∗ H := {g ∗ h | g ∈ G ∧ h ∈ H}, and if g is a game,
then g ∗ H := {g} ∗ H, and so on.

2.2 Basic definitions

Definition 2.1. A game is an ordered pair G = (GL,GR), where GL and GR are sets
of games. The elements of GL (respectively, GR) are the left options (respectively,
right options) of G. An option of G is either a left option or a right option of G.



It is customary to write {GL|GR} or {`1, `2, . . . |r1, r2, . . .} rather than (GL,GR),
where GL = {`1, `2, . . .} and GR = {r1, r2, . . .}. We will do the same.

For this and the following inductive definitions to make sense, we tacitly as-
sume that the “option of” relation is well-founded, i.e., there is no infinite se-
quence of games g1, g2, . . . where gi+1 is an option of gi for all i.3 A position of a
game G is any game reachable by making a finite series of moves starting with G
(the moves need not alternate left-right). Formally,

Definition 2.2. A position of a game G is either G itself or a position of some
option of G. We say that G is finite iff G has a finite number of positions.4

Starting with a game G, we imagine two players, Left and Right, alternating
moves as follows: the initial position is G; given the current position P of G
(also a game), the player whose turn it is chooses one of her or his options of
P (left options for Left; right options for Right), and this option becomes the
new game position. The first player faced with an empty set of options loses.
The sequence of positions obtained this way is a play of the game G. Our well-
foundedness assumption implies that every play is finite, and so there must be
a winning strategy for one or the other player. We classify games by who wins
(which may depend on who moves first) when the players play optimally. This
is our broadest and most basic classification. Before giving it, we first introduce
the “mirror image” of a game G: define −G to be the game where all left options
and right options are swapped at every position, as if the players switched places.
Formally,

Definition 2.3. For any game G, define −G := {−GR|−GL}.

It is a good warm-up exercise to prove—inductively, of course—that −(−G) =

G for every game G. For impartial games, e.g., poset games, the “−” operator has
no effect; for black-white poset games, this is tantamount to swapping the color
of each point in the poset.

We can consider the following definition to be the most fundamental property
of a game:

Definition 2.4. Let G be a game. We say that G ≥ 0 (or 0 ≤ G) iff there is no right
option gR of G such that −gR ≥ 0. We will say G ≤ 0 to mean that −G ≥ 0.

So G ≥ 0 if and only if no right option gR of G satisfies gR ≤ 0. Symmetrically,
G ≤ 0 if and only if no left option gL of G satisfies gL ≥ 0. In terms of strategies,
G ≥ 0 means that G is a first-move loss for Right or a second-move win for Left.

3This follows from the Foundation Axiom of set theory, provided ordered pairs are imple-
mented in some standard way, e.g., (x, y) := {{x}, {x, y}} for all sets x and y.

4Finite games are sometimes called short games; see [23].



If Right has to move first in G, then Left can win. Symmetrically, G ≤ 0 means
that G is a first-move loss for Left or a second-move win for Right.

The ≤ notation suggests that a partial order (or at least, a preorder) on games
is lurking somewhere. This is true, and we develop it below.

Definition 2.4 allows us to partition all games into four broad categories.

Definition 2.5. Let G be a game.

• G is a zero game (or a first-move loss, or P-game) iff G ≤ 0 and G ≥ 0.

• G is positive (or a win for Left, or L-game) iff G ≥ 0 and G 6≤ 0.

• G is negative (or a win for Right, or R-game) iff G ≤ 0 and G 6≥ 0.

• G is fuzzy (or a first-move win, or N-game) iff G 6≤ 0 and G 6≥ 0.

These four categories, P (for previous player win), L (for Left win), R (for Right
win), and N (for next player win), partition the class of all games. The unique
category to which G belongs is called the outcome of G, written o(G).

For example, the simplest game is the endgame 0 := {|}with no options, which
is a zero game (o(0) = P). The game 1 := {0|} is positive (o(1) = L), and the game
−1 := {|0} is negative o(−1) = R, while the game ∗ := {0|0} is fuzzy (o(∗) = N).

2.3 Game arithmetic, equivalence, and ordering
Games can be added, and this is a fundamental construction on games. The sum
G + H of two games G and H is the game where, on each move, a player may
decide in which of the two games to play. Formally:

Definition 2.6. Let G and H be games. We define

G + H := {(GL + H) ∪ (G + HL) | (GR + H) ∪ (G + HR)} .

In Section 1 we used the + operator for the parallel union of posets. Observe
that this corresponds exactly to the + operator on the corresponding games, i.e.,
the game corresponding to the parallel union of posets P and Q is the game-
theoretic + applied to the corresponding poset games P and Q.

We write G −H as shorthand for G + (−H). One can easily show by induction
that + is commutative and associative when applied to games, and the endgame
0 is the identity under +. This makes the class of all games into a commutative
monoid (albeit a proper class). One can also show for all games G and H that
−(G + H) = −G − H. Furthermore, if G ≥ 0 and H ≥ 0, then G + H ≥ 0. It is not
the case, however, that G−G = 0 for all G, although G−G is always a zero game.
These easy results are important enough that we state and prove them formally.



Lemma 2.7. For any games G and H,

1. G −G is a zero game.

2. Suppose G ≥ 0. Then H ≥ 0 implies G + H ≥ 0, and H 6≤ 0 implies
G + H 6≤ 0.

3. Suppose G ≤ 0. Then H ≤ 0 implies G + H ≤ 0, and H 6≥ 0 implies
G + H 6≥ 0.

4. −(G + H) = −G − H.

The outcome o(G) of a game G is certainly the first question to be asked about
G, but it leaves out a lot of other important information about G. It does not
determine, for example, the outcome when G is added to a fixed game X. That is,
it may be that two games G and H have the same outcome, but o(G+X) , o(H+X)
for some game X. Indeed, defining 2 := {1|}, one can check that o(1) = o(2) = L,
but we have o(2−1) = L (left wins by choosing 1 ∈ 2L when she gets the chance),
whereas we know already from Lemma 2.7 that o(1 − 1) = P.

Behavior under addition leads us to a finer classification of games.

Definition 2.8. Let G and H be games. We say that G and H are equivalent,
written G ≈ H, iff o(G + X) = o(H + X) for all games X.5

It follows immediately from the definition that ≈ is an equivalence relation on
games, and we call the equivalence classes game values. We let PG denote the
Class6 of all game values.7 Letting X be the endgame 0 in the definition shows
that equivalent games have the same outcome. Using the associativity of +, we
also get that G ≈ H implies G + X ≈ H + X for any game X. Thus + respects
equivalence and naturally lifts to a commutative and associative Operation (also
denoted +) on PG.

The remaining goal of this subsection is finish showing that 〈PG,+,≤〉 is a
partially ordered abelian Group. We have built up enough basic machinery that we
can accomplish our goal in a direct, arithmetic way, without referring to players’
strategies.

5In much of the literature, the overloaded equality symbol = is used for game equivalence. We
avoid that practice here, preferring to reserve = for set theoretic equality. There are some important
game properties that are not ≈-invariant.

6We will start to capitalize words that describe proper classes.
7Since each game value itself is a proper Class, we really cannot consider it as a member of

anything. A standard fix for this in set theory is to represent each game value v by the set of
elements of v with minimum rank, so PG becomes the Class of all such sets.



Lemma 2.9. A game G is a zero game if and only if G + H ≈ H for all games H.

Corollary 2.10. A game G is a zero game if and only if G ≈ 0 (where 0 is the
endgame).

Here is our promised Preorder on games.

Definition 2.11. Let G and H be games. We write G ≤ H (or H ≥ G) to mean
H −G ≥ 0 (equivalently, G − H ≤ 0). As usual, we write G < H to mean G ≤ H
and H 6≤ G.8

You can interpret G < H informally as meaning that H is more preferable
a position for Left than G, or that G is more preferable for Right than H. For
example, if Left is ever faced with moving in position G, and (let us pretend) she
had the option of replacing G with H beforehand, she always wants to do so.

Proposition 2.12. The ≤ Relation on games is reflexive and transitive.

Proposition 2.13. For any two games G and H, G ≈ H if and only if G − H is a
zero game, if and only if G ≤ H and G ≥ H.

The last two propositions show that the binary Relation ≤ on games is a Pre-
order that induces a partial Order on PG. Proposition 2.13 also gives a good work-
ing criterion for proving or disproving game equivalence—just check whether
G − H is a second player win—without having to quantify over all games.

Proposition 2.14. 〈PG,+〉 is an abelian Group, where the identity element is the
≈-equivalence class of zero games, and inverses are obtained by the negation
Operator on games.

Finally, ≤ is translation-invariant on PG, making it a partially ordered abelian
Group:

Corollary 2.15. For any games G, H, and X, if G ≤ H then G + X ≤ H + X.

We next look at two important subclasses of games—the numeric games and
the impartial games.

8We now have two ways of interpreting the expression “G ≥ 0”: one using Definition 2.4
directly and the other using Definition 2.11 with 0 being the endgame. One readily checks that the
two interpretations coincide.



2.4 Numeric games
A numeric game is one where at each position all the left options are < all the
right options. Formally,

Definition 2.16. A game G is numeric iff ` < r for every ` ∈ GL and r ∈ GR, and
further, every option of G is numeric.

One can show that G is numeric if and only if ` < G for every ` ∈ GL and G < r
for every r ∈ GR. If H is also numeric, then either G ≤ H or H ≤ G. The + and −
operations also yield numeric games when applied to numeric games.9 Numeric
games have a peculiar property: making a move only worsens your position (for
Left this means having to choose a smaller game; for Right, having to choose a
larger game). Thus neither player wants to make a move—if they were given the
option to skip a turn, they would always take it. For these games, an optimal play
is easy to describe: Left always chooses a maximum left option (i.e., one that does
the least damage), and Right always chooses a minimum right option, assuming
these options exist.10 This intuitive idea is formalized in the following theorem,
which is referred to in the literature as the “dominating rule.” It applies to all
games, not just numeric games.

Theorem 2.17. Let G be a game. If y ≤ ` for some ` ∈ GL, then G ≈ {y,GL|GR}.
Similarly, if y ≥ r for some r ∈ GR, then G ≈ {GL|GR, y}.

If y ≤ ` ∈ GR, then we say that y is dominated by ` in G. Similarly, if
y ≥ r ∈ GR, then y is dominated by r in G. We obtain equivalent games by
removing dominated options. A player never needs to play a dominated option; it
is just as well (or better) to choose an option that dominates it.

Numeric games are called such because their values act like real numbers; for
one thing, their values are totally ordered by ≤. These games are constructed in a
way somewhat akin to how the real numbers are constructed from the rationals via
Dedekind cuts. The left options of a game form the left cut, the right options the
right cut, and the game itself represents a number strictly between the two. The
differences are that the two cuts might be bounded away from each other (one or
the other may even be empty), and the left cut might contain a maximum element.

2.4.1 Finite numeric games

The values of finite numeric games form a subgroup of PG naturally isomorphic
(in an order-preserving way) to the dyadic rational numbers under addition, ac-

9The property of being numeric is not invariant under ≈. One can easily concoct two equivalent
games, one of which is numeric and the other not.

10In general, Left can win by choosing any option ` ≥ 0, and Right can win by choosing any
option r ≤ 0.



cording to the following “simplicity rule”:

Definition 2.18. Let G be a finite numeric game. The (numerical) value of G,
denoted v(G), is the unique rational number a/2k such that

1. k is the least nonnegative integer such that there exists an integer a such that
v(`) < a/2k for all ` ∈ GL and a/2k < v(r) for all r ∈ GR, and

2. a is the integer with the least absolute value satisfying (1.) above.

So for example, the endgame 0 has value v(0) = 0, the game 1 has value v(1) =

1, and the game −1 has value v(−1) = −1, as the notation suggests. Intuitively,
|v(G)| indicates the number of “free moves” one of the players has before losing
(Left if v(G) > 0, and Right if v(G) < 0). In fact, for any two finite numeric games
P and Q, one can show that v(P + Q) = v(P) + v(Q) and that v(−P) = −v(P). Also,
P ≤ Q if and only if v(P) ≤ v(Q).11 The valuation map v is not one-to-one on
games, but induces a one-to-one map on values of numeric games.

To illustrate the simplicity rule, consider the game h := {0|1}. The rule says
that v(h) is the simplest dyadic rational number strictly between 0 and 1, namely,
1/2. First note that Left can always win h whether or not she plays first, so h > 0.
If v respects +, then we should also have h + h ≈ 1. Let us check this. First
consider 1 − h:

1 − h = 1 + (−h) = {0|} + {−1|0} = {0 − h, 1 − 1|1 + 0}
= {−h, 0|1} ≈ {0|1} = h

(the equivalence is by the dominating rule and −h < 0). Thus

h + h ≈ h + (1 − h) ≈ 1 .

Black-white poset games are numeric [10]. Here we identify Black with Left
and White with Right. So for example, an antichain of k black points has numeric
value k, and an antichain of k white nodes has numeric value −k. Figure 2 shows
the numeric value of two simple, two-level black-white poset games.

Exercise 2.19. Use the simplicity rule to prove the values in Figure 2.

The numerical values of arbitrary numeric games (not necessarily finite) form
an ordered, real-closed field No into which the real numbers embed, but which
also contains all the ordinals as well as infinitesimals [5]. Donald Knuth dubbed
No the surreal numbers [17], and they are formed via a transfinite construction.
The dyadic rationals are those constructed at finite stages, but numbers constructed
through stage ω already form a proper superset of R.

11One can define a purely game-theoretic multiplication operation on numeric games in such a
way that v(PQ) = v(P)v(Q) for all P and Q. See [5] for details.
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Figure 2: The numerical values of two simple black-white poset games. The left
has value k − 1

2 and the right has value 2−k, for k ≥ 1.

2.5 Impartial games and Sprague-Grundy theory

A game is impartial if at every position, the two players have the same options.
Formally,

Definition 2.20. A game G is impartial iff GL = GR and every g ∈ GL is impartial.

Equivalently, G is impartial if and only if G = −G. This means that values of
impartial games are those that have order two in the group 〈PG,+〉.

Examples of impartial games include 0 and ∗. Families of impartial games
include Nim, Geography, Node Kayles, and poset games.12 There is a beautiful
theory of impartial games, developed by R. P. Sprague and P. M. Grundy [25, 14]
that predates the more general theory of combinatorial games described in [1, 5].
We develop the basics of this older theory here. First note that, since there are no
Left/Right biases, all impartial games are either zero (P) or fuzzy (N), and we can
assume that Left always moves first. We will call impartial zero games ∀-games
(“for all first moves . . . ”) and impartial fuzzy games ∃-games (“there exists a first
move such that . . . ”). In this section only, we restrict our attention to impartial
games, so when we say “game,” we mean impartial game.

Two (impartial) games G and H are equivalent (G ≈ H) if and only if G + H is
a ∀-game, because H = −H (Sprague and Grundy defined this notion for impartial
games). One can associate an ordinal number with each game, which we call the
g-number13 of the game, such that two games are equivalent if and only if they
have the same g-number. The g-number of a finite game is a natural number. We
will restrict ourselves to finite games.

Definition 2.21. Let A be any coinfinite subset of N. Define mex A (the minimum

12Impartiality is not ≈-invariant.
13also called the Grundy number or the NIM number—not to be confused with the value of a

numerical game



excluded element from A) to be the least natural number not in A, i.e.,

mex A := min(N − A) .

More generally, for i = 0, 1, 2, . . . , inductively define

mexi A := min (N − (A ∪ {mex0(A), . . . ,mexi−1 A})) ,

the i’th least natural number not in A. (So in particular, mex0 A = mex A.)

Definition 2.22. Let G be any (finite) game. Define the g-number of G as

g(G) := mex g-set(G) ,

where g-set(G) := {g(x) | x ∈ GL} is called the g-set of G.

That is, g(G) is the least natural number that is not the g-number of any option
of G, and the set of g-numbers of options of G is g-set(G). For example, g-set(0) =

∅, and so g(0) = 0. Also, g-set(∗) = {g(0)} = {0}, and so g(∗) = 1.

Exercise 2.23. Prove the following for any finite poset P and any n ∈ N.

1. g(P) ≤ |P|. (Generally, g(G) ≤
∣∣∣GL

∣∣∣ for any impartial G.)

2. g(Cn) = n for all n ∈ N.

3. g(An) = n mod 2.

4. g(Vn) = (n mod 2) + 1.

What is g(Λn)? What is g(^n)?

Exercise 2.24. Describe g(Am/An) simply in terms of m and n.

Here is the connection between the g-number and the outcome of a game.

Proposition 2.25. A game G is a ∀-game if and only if g(G) = 0.

Proof idea. If g(G) , 0, then there is some option x of G that Left can play such
that g(x) = 0, but if g(G) = 0, then no move Left makes can keep the g-number at
0. �

The central theorem of Sprague-Grundy theory—an amazing theorem with a
completely nonintuitive proof—concerns the g-number of the sum of two games.

Definition 2.26. For any m, n ∈ N, define m⊕ n to be the natural number k whose
binary representation is the bitwise exclusive OR of the binary representations of
m and n. We may also call k the bitwise XOR of m and n.



For example, 23 ⊕ 13 = 10111 ⊕ 01101 = 11010 = 26.

Theorem 2.27 (Sprague, Grundy [25, 14]). For any finite games G and H,

g(G + H) = g(G) ⊕ g(H) .

Corollary 2.28. Two impartial games G and H are equivalent if and only if g(G) =

g(H).

Proof. G and H are equivalent iff G + H is a ∀-game, iff g(G + H) = 0 (Proposi-
tion 2.25), iff g(G) ⊕ g(H) = 0 (Theorem 2.27), iff g(G) = g(H). �

Since every natural number n is the g-number of the poset game Cn, this means
that every game is equivalent to a single NIM stack.

We can use Theorem 2.27 to solve Nim. Given a Nim game P = Cn1 + · · ·+Cnk ,
we get g(P) = n1 ⊕ · · · ⊕ nk. If this number is nonzero, then let i be largest such
that (g(P))i = 1. Alice can win by choosing a j such that (n j)i = 1 and playing
in Cn j to reduce its length (and hence its g-number) from n j to n j ⊕ (g(P))i. This
makes the g-number of the whole Nim game zero.

Theorem 2.27 shows how the g-number behaves under parallel unions of posets
(Definition 1.2). How does the g-number behave under series unions? Unfortu-
nately, g(P/Q) might not depend solely on g(P) and g(Q). For example, g(V2) =

g(C1) = 1, but g(C1/V2) = g(^2) = 3 whereas g(C1/C1) = g(C2) = 2. However,
g-set(P/Q) does depend solely on g-set(P) and g-set(Q) for any posets P and Q,
and this fact forms the basis of the Deuber & Thomassé algorithm of the next
section.

There is one important case where g(P/Q) does only depend on g(P) and g(Q):

Fact 2.29. For any finite poset P and any k ≥ 0,

g
(

P
Ck

)
= g(P) + k .

This can shown by first showing that g(P/C1) = g(P) + 1, then using induction
on k. By Fact 2.29, we get that g(^n) = 1 + g(Λn) for example.

3 Upper bounds
When asking about the computational difficulty of determining the outcome of
a game, we really mean a family of similar games, represented in some way as
finite inputs. In discussing game complexity, we will abuse terminology and refer
to a family of games simply as a game. (The same abuse occurs in other areas



of complexity, notably circuit complexity.) We will also use the same small-caps
notation to refer both to a family of games and to the corresponding decision
problem about the outcomes.

Perhaps the most common upper bound in the literature on the complexity
of a game is membership in PSPACE. Without pursuing it further, we will just
mention that, if a game G of size n satisfies: (i) every position of G has size
polynomial in n; (ii) the length of any play of G is polynomial in n; and (iii) there
are polynomial-time (or even just polynomial-space) algorithms computing the
“left option of” and “right option of” relations on the positions of G, then o(G)
can be computed in polynomial space. These properties are shared by many, many
games.

In this section we will give some better upper bounds on some classes of finite
poset games, the best one being that N-free poset games are in P [6]. We will
assume that a poset is represented by its Hasse diagram, a directed acyclic graph
(DAG) in which each element is represented as a node and an arc is placed from
a node for element x to the node for y when x < y and there is no element z such
that x < z < y. The poset is the reflexive, transitive closure of the edge relation of
the DAG.

3.1 N-free games
With the Hasse diagram representation, we can apply results from graph theory to
devise efficient ways to calculate g-numbers for certain classes of games. A good
example is the class of N-free poset games. An “N” in a poset is a set of four
elements {a, b, c, d} such that a < b, c < d, c < b, and the three other pairs are
incomparable. When drawn as a Hasse diagram the arcs indicating comparability
form the letter “N”. A poset is N-free if it contains no N as an induced subposet.
We let N-Free denote the class of N-free poset games.

Valdes, Tarjan, and Lawler [30] show that an N-free DAG can be constructed
in linear time from a set of single nodes. New components are created either by
applying parallel union (G+H) or by applying series union (G/H). As with posets,
the parallel union is the disjoint union of G and H. The series union is a single
DAG formed by giving to every element in H with out-degree 0 (the sinks in H)
an arc to every element in G with in-degree 0 (the sources in G). This gives the
Hasse diagram of the series union of the corresponding posets. Their algorithm
provides a sequence of + and / operations that will construct a given N-free DAG
from single points.

Deuber & Thomassé [6] show that N-Free ∈ P by applying this construction
to demonstrate how to calculate the g-number of an N-free poset game based on
the sequence of construction steps obtained by the VTL algorithm above. Their
algorithm, which we now describe, works by keeping track of the g-sets of the



posets obtained in the intermediate steps of the construction, rather than the g-
numbers. There is no need to store the g-numbers, because the g-number of any
poset can always be easily computed from its g-set by taking the mex.

The g-number of a single node is 1. This is the base case.

Fact 3.1. Given posets P and Q, the g-set of the parallel union P + Q is

g-set(P + Q) = {g(P + Qq) : q ∈ Q} ∪ {g(Pp + Q) : p ∈ P}
= {g(P) ⊕ g(Qq) : q ∈ Q} ∪ {g(Pp) ⊕ g(Q) : p ∈ P} .

The second equality follows from the Sprague-Grundy theorem. This is easy
to see if you consider the root of the game tree for P + Q. Each of its children
results from playing either an element in P or one in Q. The left-hand set in the
union contains the g-numbers of the games resulting from playing an element in
Q; the right-hand set from playing an element in P. Their union is the g-set of
P + Q, so its g-number is the mex of that set.

To calculate the g-set of a series union, we will need the definition of the
Grundy product of two finite sets of natural numbers:

A � B := B ∪ {mexa B | a ∈ A} .

A � B is again a finite set of natural numbers that is easy to compute given A and
B. Basically, A � B unions B with the version of A we get after re-indexing the
natural numbers to go “around” B. Notice that mex(A � B) = mexmex A B. We will
use this fact below.

Lemma 3.2 (Deuber & Thomassé [6]). For any finite posets P and Q, g-set(P/Q) =

g-set(P) � g-set(Q) = g-set(Q)∪{mexi(g-set(Q)) : i ∈ g-set(P)}.

The left-hand set of the union results from playing an element in Q, which
removes all of the elements in P. Using induction, we can see what happens when
an element in P is played.

Proof of Lemma 3.2. The fourth equality uses the inductive hypothesis.

g-set(P/Q) = {g((P/Q)r) : r ∈ P/Q}
= {g((P/Q)p) : p ∈ P} ∪ {g((P/Q)q) : q ∈ Q}
= {g((Pp/Q)) : p ∈ P} ∪ {g(Qq) : q ∈ Q}
= {mex(g-set(Pp) � g-set(Q)) : p ∈ P} ∪ g-set(Q)
= {mexmex g-set(Pp) g-set(Q) : p ∈ P} ∪ g-set(Q)
= {mexg(Pp)(g-set(Q)) : p ∈ P} ∪ g-set(Q)
= {mexi(g-set(Q)) : i ∈ g-set(P)} ∪ g-set(Q)
= g-set(P) � g-set(Q)

�



In particular, the g-number of P/Q is greater than or equal to the sum of the g-
numbers of P and Q. Notably, it’s an equality if Q is Cn for some n (Fact 2.29) and
the reason is that the g-set of Cn has no gaps, that is, it contains all of the values
from 0 to n − 1. It’s easy to see that it’s true when P and Q are both singletons.
Their g-numbers are both 1 and forming their series-union creates a NIM stack of
size 2 and that has g-number 2.

Another way to understand Lemma 3.2 is to consider the game tree of P/Q,
and we’ll look at the simple case where P is an arbitrary game with g-number k
and Q is a singleton. Consider the root node r of the game tree of P/Q. One of its
children represents playing the single element in Q and that child has g-number
0. The rest of r’s children represent game configurations reached by playing an
element in P. By the induction hypothesis the g-number of each of these nodes
will be one more than in P’s game tree where they had g-numbers 0 to k − 1, and
perhaps g-numbers k + 1 and larger. So in P/Q’s tree they have g-numbers 1 to k,
with perhaps g-numbers k + 2 or larger. Because the child reached by playing Q’s
single element has g-number 0, the first missing value in the g-set formed from
these g-numbers is k + 1.

Now using Fact 3.1 and Lemma 3.2, the decomposition described in [30] can
generate a binary tree where each internal node is labeled with a poset P and
an operation (parallel union or series union), and its children are the two posets
combined to form P. Starting with each leaf, where the poset is a singleton and
the g-set is {0}, and moving up the tree, one can apply Fact 3.1 and Lemma 3.2 to
compute the g-set of the root (and none of the g-numbers involved exceed the size
of the final poset). This can all be done in time O(n4).

3.2 Results on some classes of games with N’s

General results for classes of games containing an “N” have been few. In 2003,
Steven Byrnes [3] proved a poset game periodicity theorem, which applies to,
among others, Chomp-like games, which contain many “N”-configurations.

Here’s the theorem, essentially as stated in the paper:

Theorem 3.3. In an infinite poset game X, suppose we have two infinite chains
C (c1 < c2 < · · · ) and D (d1 < d2 < · · · ), and a finite subset A, all pairwise
disjoint, and assume that no element of C is less than an element of D. Let Am,n =

A ∪ C ∪ D − {x ∈ X|x ≥ cm+1} − {x ∈ X|x ≥ dn+1} (that is, Am,n is the position that
results from starting with the poset A ∪ C ∪ D, then making the two moves cm+1

and dn+1). Let k be a nonnegative integer. Then either:

1. there are only finitely many different Am,n with g-number k; or



2. we can find a positive integer p such that, for large enough n, g(Am,n) = k if
and only if g(Am+p,n+p) = k.

Thus, as the poset A expands along the chains C and D, positions with any fixed
g-number have a regular structure.

A simple example of a class of games covered by the theorem is the family
of two-stack Nim games, where A is empty and Am,n consists of an m-chain and
an n-chain. The g-number 0 occurs for every An,n so the periodicity is 1. The
g-number 1 occurs for every A2n,2n+1 and so has periodicity 2. In fact, one can find
a periodic repetition for every g-number. The surprising thing is that this is still
true when you allow elements in one chain to be less than elements in the other.

Another family contains Chomp, described in Section 1.1.1. We can generalize
Chomp to games where the rows do not have to contain the same number of ele-
ments. Byrnes showed that for such games there is a periodicity in the g-numbers
when we fix the size of all but the top two rows.

As Byrnes claims, this yields a polynomial-time decision algorithm for each
family generated from a fixed A but not a uniformly polynomial-time algorithm
across the families, as the time is parameterized by A.

3.2.1 Bounded-width poset games

If a poset P has width k, that is, if k is the maximum size of any antichain in P,
then there are only |P|k many positions at most in the game: if x0, x1, . . . , xn−1 ∈ P
are the elements chosen by the players in the first n moves of the game, then the
resulting position is completely determined by the minimal elements of the set
{x0, . . . , xn−1}, i.e., an antichain of size ≤ k.

This means that, for constant k, one can compute the g-number of P in poly-
nomial time using dynamic programming. The exponent on the running time de-
pends on k, however. For certain families of bounded-width posets, one can beat
the time of the dynamic programming algorithm; for example, one can compute
the g-number of width-2 games in linear time.

4 Lower bounds

In this section we give some lower bounds on game complexity. There is a vast
literature on combinatorial game complexity, and we make no attempt to be thor-
ough, but rather concentrate on poset game complexity.



4.1 A note about representations of games

The complexity of a game depends quite a bit on its representation. The choice
of representation is usually straightforward, but not always. For example, how
should we represent an N-free poset? Just by its Hasse diagram, or by an expres-
sion for the poset in terms of single points and parallel union and series union
operators? The results of Valdes, et al. [30] show that one representation can be
converted into the other in polynomial time, so the choice of representation is not
an issue unless we want to consider complexity classes within P or more succinct
representations of posets, as we will do below. There, fortunately, our hardness
results apply to either representation.

Even if the representation of a game is clear, the results may be counterintu-
itive. For example, how should we represent members of the class of all finite
games? In Section 2, we defined a game as an ordered pair of its left and right
options. We must then represent the options, and the options of options, and so on.
In effect, to represent an arbitrary finite game explicitly, we must give its entire
game tree (actually, game DAG, since different sequences of moves may end up in
the same position). Under this representation, there is a straightforward algorithm
to compute the outcome of any game: use dynamic programming to find the out-
come of every position in the game. Since every position is encoded in the string
representing the game, this algorithm runs in polynomial time.

What makes a game hard, then, is that we have a succinct representation for
it that does not apply to all games. For example, the obvious representation of a
poset game is the poset itself, and the number of positions is typically exponential
in the size of the poset. Subfamilies of poset games may have even more succinct
representations. For example, a Nim game can be represented as a finite list of
natural numbers in binary, giving the sizes of the stacks, and a game of Chomp
can be represented with just two natural numbers m and n in binary, giving the di-
mensions of the grid. Notice that this Chomp representation is significantly shorter
than what is needed to represent an arbitrary position in a Chomp game; the latter
is polynomial in m + n.

In what sense does finding a winning strategy in Chomp reduce to determining
the outcome of Chomp games? We already know that every Chomp game is an ∃-
game because it has a maximal point. We could find a winning strategy if we were
able to determine the outcome of every Chomp position, but even writing down a
query to an “outcome oracle” takes time linear in m + n, which is exponential
in the input size. The more modest goal of finding a winning first move may be
more feasible, because the position after one move is simple enough to describe
by a polynomial-length query string. To our knowledge, no efficient algorithm
is known to determine the outcome of an arbitrary Chomp position after a single
move, even allowing time (m + n)O(1).



We will more to say about representations below when we discuss lower
bounds for poset games within the complexity class P.

4.2 Some PSPACE-hard games

Many games have been shown PSPACE-hard over the years. Early on, Even
and Tarjan showed that Hex generalized to arbitrary graphs is PSPACE-complete
[7]. A typical proof of PSPACE-hardness reduces the PSPACE-complete True
Quantified Boolean Formulas (TQBF [26]) problem to the outcome of a game.
We can consider a quantified Boolean formula ϕ = (∃x1)(∀x2) · · ·ψ (where ψ is a
Boolean formula in conjunctive normal form (cnf)) itself as a game, where players
alternate choosing truth values for x1, x2, . . ., the first player (Right, say) winning
if the resulting instantiation of ψ is true, and Left winning otherwise.14

TQBF seems ideal for encoding into other games. Thomas Schaefer showed
a number of interesting games to be PSPACE-hard this way [21]. One interest-
ing variant of TQBF that Schaefer proved PSPACE-complete is the game where
a positive Boolean formula ψ is in cnf with no negations, and players alternate
choosing truth values for the Boolean variables. Schaefer called this game
Gpos(POS CNF). Unlike TQBF, however, the variables need not be chosen in or-
der; players may choose to assign a truth value to any unassigned variable on any
move. Left (who moves first) wins if ψ is true after all variables have been chosen,
and Right wins otherwise. Since ψ is positive, Left always wants to set variables
to 1 and Right to 0.

As another example, consider Geography. The input is a directed graph G
and a designated vertex s of G on which a token initially rests. The two players
alternate moving the token on G from one node to a neighboring node, trying to
force the opponent to move to a node that has already been visited. Geography is
a well-known PSPACE-complete game [21, 24]. In [19], Lichtenstein & Sipser
show that Geography is PSPACE-complete even for bipartite graphs.

An obvious way to turn Geography into a black-white game is to color the
nodes of graph G black and white. Each player is then only allowed to move the
token to a node of their own color. Since moves are allowed only to neighboring
nodes, the black-white version is equivalent to the uncolored version on bipartite
graphs. The standard method of showing that Geography is PSPACE-complete
is via a reduction from True Quantified Boolean Formulas (TQBF) to Geography
(see for example [24]). Observe that the graph constructed in this reduction is not
bipartite. That is, there are nodes that potentially may be played by both play-
ers. Hence, we cannot directly conclude that the black-white version is PSPACE-

14This is technically not a combinatorial game by our definition, because the end condition is
different. One can modify the game slightly to make it fit our definition, however.



complete. However, in [19] Lichtenstein & Sipser show that Geography is indeed
PSPACE-complete for bipartite graphs.

We now consider the game Node Kayles. This game is defined on an undi-
rected graph G. The players alternately play an arbitrary node from G. In one
move, playing node v removes v and all the direct neighbors of v from G. In the
black-white version of the game, we color the nodes black and white. Schae-
fer [21] showed that determining the winner of an arbitrary Node Kayles instance
is PSPACE-complete. He also extended the reduction to bipartite graphs, which
automatically yields a reduction to the black-white version of the game (see [12]).
Therefore, black-white Node Kayles is also PSPACE-complete.

The game of Col [1] is a two-player combinatorial strategy game played on a
simple planar graph, some of whose vertices may be colored black or white. Dur-
ing the game, the players alternate coloring the uncolored vertices of the graph.
One player colors vertices white and the other player colors vertices black. A
player is not allowed to color a vertex neighboring another vertex of the same
color. The first player unable to color a vertex loses. A well-known theorem
about Col is that the value of any game is either x or x + ∗ where x is a number.
Removing the restriction that Col games be played on planar graphs and consid-
ering only those games in which no vertex is already colored, we get a new game,
GenCol (generalized Col). It is shown in [10] that GenCol is PSPACE-complete;
furthermore, GenCol games only assume the two very simply game values 0 and
∗.

In [20], Stockmeyer & Chandra give examples of games that are complete for
exponential time and thus provably infeasible.

4.3 Lower bounds for poset games

Until recently, virtually no hardness results were known relating to poset games,
and the question of the complexity of determining the outcome of a game was
wide open, save the easy observation that it is in PSPACE.

For the moment, let PG informally denote the decision problem of determining
the outcome of a arbitrary given (impartial) poset game, that is, whether or not the
first player (Alice) can win the game with perfect play. The first lower bound on
the complexity of PG we are aware of, and it is a modest one, was proved by
Fabian Wagner [31] in 2009. He showed that PG is L-hard15 under FO-reductions
(First-Order reductions). This is enough to show, for example, that PG < AC0.
Soon after, Thomas Thierauf [28] showed that PG is hard for NL under AC0

reductions.16 A breakthrough came in 2010, when Adam Kalinich, then a high

15L is short for LOGSPACE.
16NL is nondeterministic LOGSPACE.



school student near Chicago, Illinois, showed that PG is hard for NC1 under AC0

reductions [16]. For the proof, he invents a clever way to obliviously “flip” the
outcome of a game, i.e., to toggle the outcome between ∃ and ∀. This allows for
the simulation of a NOT-gate in an NC1 circuit. (An OR-gate can be simulated by
the series union construction of Definition 1.2. See below.)

The astute reader will notice that Kalinich’s result appears to be weaker than
the other two earlier results. In fact, the three results are actually incomparable
with each other, because they make different assumptions about how poset games
are represented as inputs. We say more about this below, but first we mention that
Wagner’s and Thierauf’s results both hold even when restricted to Nim games with
two stacks, and Kalinich’s result holds restricted to N-free games. Modest as they
are, these are currently the best lower bound we know of for N-free poset games.

Very recently, the complexity of PG was settled completely by Daniel Grier,
an undergraduate at the University of South Carolina [13]. He showed that PG
is PSPACE-complete via a polynomial reduction (henceforth, p-reduction) from
Node Kayles. Here, it is not important how a game is represented as an input, so
long as the encoding is reasonable. His proof shows that PSPACE-completeness
is still true when restricted to three-level games, i.e., posets where every chain
has size at most three (equivalently, posets that are partitionable into at most three
antichains). The games used in the reduction are of course not N-free.

4.4 Representing posets as input

As we discussed above, for any of the various well-studied families of poset games
(Chomp, Divisors, Nim, etc.), there is usually an obvious and natural way to rep-
resent a game as input. For example, an instance of Chomp can be given with just
two positive integers, one positive integer for Divisors, and a finite list of positive
integers for Nim, giving the heights of the stacks. When considering arbitrary fi-
nite posets, however, there is no single natural way to represent a poset as input,
but rather a handful of possibilities, and these may affect the complexity of various
types of poset games. We consider two broad genres of poset representation:

Explicit The poset is represented by an explicit data structure, including the set
of points and the relations between them. In this representation, the size of
the poset is always comparable to the size of the input.

Succinct (Implicit) The poset is represented by a Boolean circuit with two n-bit
inputs. The inputs to the circuit uniquely represent the points of the poset,
and the (1-bit) output gives the binary relation between these two inputs. In
this representation, the size of the poset can be exponential in the size of the
circuit.



Within each representational genre, we will consider three general approaches to
encoding a poset P, in order from “easiest to work with” to “hardest to work with”:

Partial Order (PO) P is given as a reflexive, transitive, directed acyclic graph,
where there is an edge from x to y iff x ≤ y.

Hasse Diagram (HD) P is given as a directed acyclic graph whose reflexive,
transitive closure (i.e., reachability relation) is the ordering ≤. The graph
then gives the Hasse diagram of P.

Arbitrary (binary) Relation (AR) An arbitrary directed graph (or arbitrary bi-
nary relation) is given, whose reflexive, transitive closure is then a pre-order
whose induced partial order is P. (Equivalently, P is the set of strongly con-
nected components, and ≤ is the reachability relation between these com-
ponents.)

The first two (PO and HD) must involve promises that the input satisfies the cor-
responding constraint, so problems in these categories are posed as promise prob-
lems. Notice that the PO promise is stronger than the HD promise, which is
stronger than the AR (vacuous) promise. So in either the Explicit or Succinct
cases, the complexity of the corresponding problems increases monotonically as
PO→ HD→ AR.

We will ignore some additional subtleties: In the explicit case, is the graph (or
relation) given by an adjacency matrix or an array of edge lists? In the succinct
case, should we be able to represent a poset whose size is not a power of 2? For
example, should we insist on including a second circuit that tells us whether a
given binary string represents a point in the poset? These questions can generally
be finessed, and they do not affect any of the results.

4.5 The decision problems
The two genres and three approaches above can be combined to give six versions
of the basic decision problem for arbitrary posets: the three explicit problems
PG(Explicit,PO), PG(Explicit,HD), and PG(Explicit,AR); and the three succinct
problems PG(Succinct,PO), PG(Succinct,HD), and PG(Succinct,AR). We will
define just a couple of these, the others being defined analogously.

Definition 4.1. PG(Succinct,HD) is the following promise problem:

Input: A Boolean circuit C with one output and two inputs of n bits
each, for some n.

Promise: G is acyclic, where G is the digraph on {0, 1}n whose edge
relation is computed by C.



Question: Letting P be the poset given by the reachability relation
on G, is P an ∃-game?

Definition 4.2. PG(Explicit,AR) is the following promise problem:

Input: A digraph G on n nodes.
Promise: None.
Question: Letting P be the poset given by the reachability relation

on the strongly connected components of G, is P an ∃-game?

We also can denote subcategories of poset games the same way. For exam-
ple, Nim(Explicit,HD) is the same as PG(Explicit,HD), but with the additional
promise that the poset is a parallel union of chains; for any k > 0,
Nimk(Explicit,HD) is the same as Nim(Explicit,HD) but with the additional promise
that there are at most k chains; N-Free(Succinct,PO) is the same as
PG(Succinct,PO) with the additional promise that the poset is N-free.

4.6 The first results
Here are the first lower bounds known for poset games, given roughly in chrono-
logical order. The first four involve Nim; the first two of these consider explicit
games, and the next two consider succinct games. None of these results is cur-
rently published; proof sketches can be found in the extended paper.

Theorem 4.3 (Wagner, 2009). Nim4(Explicit,HD) is L-hard under AC0 reduc-
tions.

The proof reduces from the promise problem ORD (order between vertices),
which is known to be complete for L via quantifier-free projections [8, 15].

Theorem 4.4 (Thierauf, 2009). Nim2(Explicit,AR) is NL-hard under AC0 reduc-
tions.

The proof reduces from the reachability problem for directed graphs, which is
NL-complete under AC0-reductions.

The next result about succinct poset games is straightforward.

Theorem 4.5 (F, 2009). Nim2(Succinct,PO) is coC=P-hard under p-reductions.

The idea here is that, for any L ∈ coC=P and any input x, we produce two
NIM stacks, and x ∈ L if and only if they are of unequal length.

Theorem 4.6 (F, 2009). Nim6(Succinct,HD) is PSPACE-hard under p-reductions.



The proof uses a result of Cai & Furst [4] based on techniques of David Bar-
rington on bounded-width branching programs. Recall that S 5 is the group of
permutations of the set {1, 2, 3, 4, 5}. Their result is essentially as follows:

Theorem 4.7 (Cai & Furst). For any PSPACE language L, there exists a polyno-
mial p and a polynomial-time computable (actually, log-space computable) func-
tion σ such that, for all strings x of length n and positive integers c (given in
binary), σ(x, c) is an element of S 5, and x ∈ L if and only if the composition
σ(x, 1)σ(x, 2)σ(x, 2) · · ·σ(x, 2p(n)), applied left to right, fixes the element 1.

The idea is that we connect the first five NIM stacks level-by-level via per-
mutations in S 5, as well as adding a couple of widgets. If the product of all the
permutions fixes 1, then we get five NIM stacks of equal length N + 1 and one
NIM stack of length N + 3, which is an ∃-game by the Sprague-Grundy theorem.
If 1 is not fixed, then we get four stacks of length N +1 and two of length N +2—a
∀-game by the same theorem.

Although the above results all mention Nim, the representations we use of a
Nim game as a poset are not the natural one. Therefore, it is better to consider
these as lower bounds on N-free poset games, which are naturally represented as
posets.

The next results regard N-free games. They depend on Adam Kalinich’s game
outcome-flipping trick. The trick turns a poset game A into another poset game
¬A with opposite outcome, starting with A and applying series and parallel union
operations in a straightforward way. Here we describe a simplification of the trick
due to Daniel Grier:
Given a poset A,

1. Let k be any (convenient) natural number such that 2k ≥ |A| (that is, A has
at most 2k elements).

2. Let B := A/C2k−1.

3. Let C := B + C2k .

4. Let D := C/C1.

5. Finally, define ¬A := D + A.

Exercise 4.8. Check that: (1) if g(A) , 0, then g(¬A) = 0; (2) if g(A) = 0, then
g(¬A) = 2k+1. See the extended paper for a proof.

Observe that the size of ¬A is linearly bounded in |A|. In fact, |¬A| ≤ 6|A| if
A , ∅.



Theorem 4.9 (Kalinich [16]). N-Free(Explicit,PO) is NC1-hard under AC0 re-
ductions.

Proof sketch. We reduce from the Circuit Value problem for NC1 circuits with a
single output. Given an NC circuit C with a single output and whose inputs are
constant Boolean values, we produce a poset game P so that P is an ∃-game if
and only if C = 1. We can assume WLOG that all gates in C are either (binary)
OR-gates or NOT-gates. Starting with the input nodes, we associate a poset Pn

with every node n in C from bottom up so that the outcome of Pn matches the
Boolean value at node n. P is then the poset associated with the output node of C.
The association is as follows:

• If n is an input node, we set Pn := ∅ if n = 0; otherwise, if n = 1, we set
Pn := C1.

• If n is an OR-gate taking nodes ` and r as inputs, then we set Pn := P`/Pr.
(Recall Exercise 1.4.)

• If n is a NOT-gate taking node c as input, we set Pn := ¬Pc.

This transformation from C to P can be done in (uniform) AC0, producing a poset
of polynomial size, provided C has O(log n) depth. �

The next theorem is not published elsewhere.

Theorem 4.10 (F, 2011). N-Free(Succinct,PO) is PP-hard under p-reductions.

To prove this, we generalize the Kalinich/Grier construction a bit.

Definition 4.11. For any poset A and any integer t > 0, define

Threshold(A, t) :=
(A/C2k−t) + C2k

Ct
+ A ,

where k is any convenient natural number (the least, say) such that 2k > max(|A| −
t, t − 1).

Note that ¬A = Threshold(A, 1). It can be checked that

g(Threshold(A, t)) =

{
2k+1 if g(A) < t,
0 if g(A) ≥ t. (1)

We then use the Threshold(·, ·) operator to polynomially reduce any PP lan-
guage to N-Free(Succinct,PO).



4.7 A note on the complexity of the g-number
Of course, computing the g-number of an impartial game is at least as hard as
computing its outcome, the latter just being a test of whether the g-number is
zero. Is the reverse true, i.e., can we polynomial-time reduce computing the g-
number to computing the outcome? For explicitly represented poset games, this
is certainly true. Given an oracle S returning the outcome of any poset game, we
get the g-number of a given poset game G as follows: query S with the games
G,G + C1,G + C2, . . . ,G + Cn, where n is the number of options of G (recall that
that Ci is a NIM stack of size i). By the Sprague-Grundy theorem (Theorem 2.27),
all of these are ∃-games except G + Cg(G), which is a ∀-game.

What about succinctly represented games? The approach above can’t work, at
least for poset games, because the poset has exponential size. Surprisingly, we can
still reduce the g-number to the outcome for succinct poset games in polynomial
time, using the threshold construction of Definition 4.11 combined with binary
search. Given a succinctly represented poset P of size ≤ 2n, first query S with
Threshold(P, 2n−1). If S says that this is an ∃-game, then we have g(P) < 2n−1;
otherwise, g(P) ≥ 2n−1. Next, query S with Threshold(P, 2n−2) in the former case
and Threshold(P, 3 · 2n−2) in the latter case, and so on. Note that in this reduction,
the queries are adaptive, whereas they are nonadaptive for explicitly represented
games.

4.8 PSPACE-completeness
In this section we sketch the proofs of two recent PSPACE-completeness results
for poset game. The first, by Daniel Grier, is that the outcome problem for gen-
eral explicit (impartial) poset games is PSPACE-complete [13]. The second is a
similar result about the complexity of black-white poset games [10].

Theorem 4.12 (Grier [13]). Deciding the outcome of an arbitrary finite poset
game is PSPACE-complete.

Here we describe the reduction but do not prove correctness. See the extended
paper or [13] for a full proof.

Proof sketch. Membership in PSPACE is clear. For PSPACE-hardness, we re-
duce from Node Kayles. Let G = (V, E) (a simple undirected graph) be an arbi-
trary instance of Node Kayles. By altering the graph slightly if necessary without
changing the outcome of the game, we can assume that |E| is odd and that for every
v ∈ V there exists e ∈ E not incident with v. We can do this by adding two disjoint
cliques to G—either two K2’s or a K2 and a K4, whichever of these options results
in an odd number of edges. We then construct the following three-level poset P
from G:
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· · · · · ·

ce

ae
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Figure 3: The < relations in P obtained from the edge e = {v1, v2} in G.

• The points of P are grouped into three disjoint antichains, A, B, and C, with
A being the set of minimal points, C the maximal points, and B the points
intermediate between A and C.

• For each edge e ∈ E there correspond unique points ce ∈ C and ae ∈ A, and
vice versa.

• We let B := V .

• For each edge e = {v1, v2} and b ∈ B, we have b < ce iff b = v1 or b = v2, and
ae < b iff this is not the case, i.e., iff b , v1 and b , v2. This is illustrated in
Figure 3.

This construction can clearly be done in polynomial time, given G. �

Finally, we turn to the complexity of black-white poset games. The next theo-
rem is the first PSPACE-hardness result for a numeric game.

Theorem 4.13. Determining the outcome of a black-white poset game is PSPACE-
complete.

Proof sketch. Membership in PSPACE is straightforward. For hardness, we re-
duce from TQBF. We present the reduction in detail and briefly describe optimal
strategies for the winning players, but we do not show correctness. See the ex-
tended version for a more detailed sketch and [10] for a full proof.

Suppose we are given a fully-quantified boolean formula ϕ of the form
∃x1∀x2∃x3 · · · ∃x2n−1∀x2n∃x2n+1 f (x1, x2, . . . , x2n+1), where f = c1 ∧ c2 ∧ · · · ∧ cm

is in cnf with clauses c1, . . . , cm. We define a two-level black-white poset (game)
X based on ϕ as follows:

• X is divided into sections. There is a section (called a stack) for each vari-
able, a section for the clauses (the clause section), and a section for fine-
tuning the balance of the game (balance section).



• The ith stack consists of a set of incomparable waiting nodes Wi above (i.e.,
greater than) a set of incomparable choice nodes Ci. We also have a pair of
anti-cheat nodes, αi and βi, on all stacks except the last stack. For odd i,
the choice nodes are white, the waiting nodes are black, and the anti-cheat
nodes are black. The colors are reversed for even i.

• The set of choice nodes Ci, consists of eight nodes corresponding to all
configurations of three bits (i.e., 000, 001, . . . , 111), which we call the left
bit, assignment bit and right bit respectively.

• The number of waiting nodes is |Wi| = (2n + 2 − i)M, where M is the
number of non-waiting nodes in the entire game. It is important that |Wi| ≥

|Wi+1| + M.

• The anti-cheat node αi is above nodes in Ci with right bit 0 and nodes in
Ci+1 with left bit 0. Similarly, βi is above nodes in Ci with right bit 1 and
nodes in Ci+1 with left bit 1.

• The clause section contains a black clause node b j for each clause c j, in
addition to a black dummy node. The clause nodes and dummy node are all
above a single white interrupt node. The clause node b j is above a choice
node z in Ci if the assignment bit of z is 1 and xi appears positively in c j, or
if the assignment bit of z is 0 and xi appears negatively in c j.

• The balance section or balance game is incomparable with the rest of the
nodes. The game consists of eight black nodes below a white node, which
is designed to have numerical value −7 1

2 . All nodes in this section are called
balance nodes.

The number of nodes is polynomial in m and n, so the poset can be efficiently
constructed from ϕ.

A sample construction is shown in Figure 4. The idea is that players take turns
playing choice nodes, starting with White, and the assignment bits of the nodes
they play constitute an assignment of the variables, x1, . . . , x2n+1. The assignment
destroys satisfied clause nodes, and it turns out that Black can win if there re-
mains at least one clause node. The waiting nodes and anti-cheat nodes exist to
ensure players take nodes in the correct order. The interrupt node and dummy
node control how much of an advantage a clause node is worth (after the initial
assignment), and the balance node ensures the clause node advantage can decide
whether White or Black wins the game. One can show that White (i.e., Right) can
force a win when playing first if and only if the formula is true. �
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clause nodes
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balance nodes
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interrupt

Figure 4: An example game with three variables (n = 1). Circles represent in-
dividual nodes, blobs represent sets of nodes, and χ is the set of clause nodes.
An edge indicates that some node in the lower level is less than some node in the
upper level. The dotted lines divide the nodes into sections (stacks, clause section
and balance section).

5 Open questions
Are there interesting games whose complexity is complete for a subclass of
PSPACE? The natural black-white version of GenCol is complete for the class
PNP[log], but the game itself and the reasons for its complexity are not so interest-
ing. In this version, each uncolored node is reserved (“tinted”) for being colored
one or the other color, e.g., some node u can only be colored black, while some
other node v can only be colored white. Then the outcome of this game depends
only on which subgraph (the black-tinted nodes or the white-tinted nodes) con-
tains a bigger independent set. Given two graphs G1 and G2, the problem of deter-
mining whether G1 has a bigger independent set than G2 is known to be complete
for PNP[log] [27].

Fix a natural number k > 2. For poset games of bounded width k, defined in
Section 3.2.1, is there an algorithm running in time o(nk)?

Grier’s proof that the poset game decision problem is PSPACE-complete (The-
orem 4.12) constructs posets having three levels, that is, whose maximum chain
length is three. What about two-level games? Those having a single maximum
or a single minimum element are easily solved. What is the complexity of those
with more than one minimum and more than one maximum? Certain subfami-
lies of two-level posets have g-numbers that show regular patterns and are easily
computed, or example, games where each element is above or below at most two
elements, as well as “parity uniform” games [9]. Despite this, we conjecture that
the class of all two-level poset games is PSPACE-complete, but are nowhere near
a proof. Are there larger subfamilies of the two-level poset games that are in P?

A more open-ended goal is to apply the many results and techniques of com-
binatorial game theory, as we did in Theorem 4.13, to more families of games.



Finally, we mention a long-standing open problem about a specific infinite
poset game: What is the outcome of the game N3 − {(0, 0, 0)}, where (x1, x2, x3) ≤
(y1, y2, y3) iff xi ≤ yi for all i ∈ {1, 2, 3}?
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