
Distributed Computing Column
Maurice Herlihy’s 60th Birthday Celebration

Panagiota Fatourou
FORTH ICS & University of Crete

faturu@csd.uoc.gr

Maurice Herlihy is one of the most renowned members of the Distributed
Computing community. He is currently a professor in the Computer Science De-
partment at Brown University. He has an A.B. in Mathematics from Harvard Uni-
versity, and a Ph.D. in Computer Science from M.I.T. He has served on the fac-
ulty of Carnegie Mellon University and on the staff of DEC Cambridge Research
Lab. He is the recipient of the 2003 Dijkstra Prize in Distributed Computing, the
2004 Gödel Prize in theoretical computer science, the 2008 ISCA influential pa-
per award, the 2012 Edsger W. Dijkstra Prize, and the 2013 Wallace McDowell
award. He received a 2012 Fullbright Distinguished Chair in the Natural Sciences
and Engineering Lecturing Fellowship, and he is a fellow of the ACM, a fellow
of the National Academy of Inventors, and a member of the National Academy of
Engineering and the American Academy of Arts and Sciences.

On the occasion of his 60th birthday, the SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), which was held in Paris, France
in July 2014, hosted a celebration which included several technical presentations
about Maurice’s work by colleagues and friends. This column includes a summary
of some of these presentations, written by the speakers themselves. In the first arti-
cle, Vassos Hadzilacos overviews and highlights the impact of Maurice’s seminal
paper on wait-free synchronization. Then, Tim Harris provides a perspective on
hardware trends and their impact on distributed computing, mentioning several
interesting open problems and making connections to Maurice’s work. Finally,
Michael Scott gives a concise retrospective on transactional memory, another area
where Maurice has been a leader. This is a joint column with the Distributed
Computing Column of ACM SIGACT News (June 2015 issue), edited by Jennifer
Welch. Many thanks to Vassos, Tim, and Michael for their contributions!

 faturu@csd.uoc.gr


A Quarter-Century of Wait-Free Synchronization1

Vassos Hadzilacos
Department of Computer Science

University of Toronto, Canada
vassos@cs.toronto.edu

It is an honour and a pleasure to have the opportunity to speak about what
in my opinion is Maurice Herlihy’s most influential paper, and indeed one of the
most significant papers in the theory of distributed computing. I am referring to
his work on wait-free synchronization, which appeared in preliminary form in
PODC 1988 [8] and in its final form in TOPLAS three years later [10]. I will first
review the key contributions of this paper and then I will discuss its impact.

1 Review of the key contributions
The context for this work is a distributed system in which processes take steps
asynchronously and communicate by accessing shared objects. Here asynchrony
means that between successive steps of a process other processes may take an
arbitrary number of steps. Processes are subject to crash failures, meaning that
they may stop taking steps altogether, even though they have not reached the end
of their computation. For convenience, we assume that a process is designed to
take steps (perhaps no-ops) forever, and so we can define a process to have crashed
if it takes only finitely many steps in an infinite execution. Minimally, the shared

1Remarks on the occasion of Maurice Herlihy’s 60th birthday in PODC 2014. Based on the
transparencies used in an oral presentation on July 15, 2014, Paris, France. I have tried to preserve
the informal tone of that oral presentation here. Supported in part by a grant from the Natural
Sciences and Engineering Council of Canada.



objects that the processes use to communicate are registers accessible via separate
but atomic write and read operations. The shared objects can also include registers
with additional operations such as fetch-and-add, whereby a process atomically
increments the value of the register by a specified amount and reads the value of
the register before it was incremented; or even other types of shared objects, such
as queues or stacks.

The key question that animates the paper is the following:

“For given object types A and B, in a system with n processes, can we
implement an object of type A using objects of type B and registers?”

In what follows, we will take registers (with atomic write and read operations) for
granted. So, the above question will be simplified to “in a system of n processes,
can we implement an object of type A using objects of type B?”

Here are some specific instances of this question:

• Can we implement a queue shared by two processes using only registers?
Herlihy showed that the answer to this question is negative.

• Can we implement a register with a fetch-and-add operation, shared by five
processes, using registers with a compare-and-swap operation?1 Herlihy
showed that the answer to this question is affirmative.

What is significant about this paper is not so much the answer to these specific
questions, but the tools that it gave us to answer such questions in general.

Having set the general context for the paper, I will now describe its main
contributions.

Contribution 1: Model of computation

The type of an object specifies what operations can be applied to an object (of that
type) and how the object is supposed to behave when operations are applied to it
sequentially. For example, the type queue tells us that we can access the object via
enqueue and dequeue operations only, and that in a sequence of such operations
items are dequeued in the order in which they were enqueued. But how should a
shared queue behave if operations are applied to it by processes concurrently?

1A compare-and-swap operation applied to register X takes two parameters, values old and
new, and has the following effect (atomically): If the present value of X is equal to old then X
is assigned the value new and the value “success” is returned; otherwise, the value of X is not
changed and the value “failure” is returned.



More generally, what exactly are the properties that an implementation of an
object of type A (shared by n processes) should have? Herlihy requires two prop-
erties of such an implementation: linearisability and wait freedom.2

Linearisability: The implemented object should behave as if each operation took
effect instantaneously, at some point between its invocation and its response.

Wait freedom: An operation on the implemented object invoked by a nonfaulty
process eventually terminates, regardless of whether other processes are
fast, slow, or even crash.

Note that the requirement of wait freedom implies that implementations

(a) may not use locks: otherwise, a process that crashes while holding a lock
could prevent all others from terminating, and

(b) must be starvation free: not only must the system as a whole make progress
but each individual nonfaulty process must complete all its operations.

The first important contribution of the paper was the articulation of a com-
pelling, elegant, and pragmatic model of computation.

Contribution 2: Comparing the power of object types
Recall the basic question the paper addresses: In a system of n processes, can we
implement an object of type A using objects of type B? An affirmative answer
to such a question presents no methodological difficulties: One presents an im-
plementation and a proof that it satisfies the two requisite properties. But what
if the answer is negative? How can we prove that A cannot be implemented us-
ing B? One way to do so is to show that there is some task C that A can do,
and that B cannot do. So, task C is a “yardstick” that can be used to compare
A and B. Another key contribution of the paper is the identification of the right
kind of yardstick to compare types, namely, solving the consensus problem. This
problem, which under various forms and guises had been studied extensively in
fault-tolerant distributed computing before Herlihy’s paper, can be described as
follows:

• Each process starts with an input.

2In my oral presentation, I referred to linearisability as a safety property, and to wait freedom
as a liveness property. Rachid Guerraoui, who was in the audience, brought to my attention a paper
of his with Eric Ruppert in which they show that this is not quite right [6]: There are types with
infinite non-determinism for which linearisability is not a safety property; for types with bounded
non-determinism, however, linearisability is indeed a safety property.



• Each nonfaulty process produces an output.

• The output of any process is the input of some process (validity), and is no
different than the output of any other process (agreement).

Note that we are interested in wait-free solutions for this problem. Let us exam-
ine some examples of the use of this “yardstick” to prove non-implementability
results.
Example 1: To show that in a system of two processes we cannot implement a
queue using registers we prove that

(1) using queues we can solve consensus for two processes; and

(2) using registers we cannot solve consensus for two processes.

From (1) and (2) we conclude that we cannot implement queues using only reg-
isters: For, if we could, we would combine such an implementation with (1) to
obtain an algorithm that uses registers and solves consensus for two processes,
contradicting (2).
Example 2: To show that in a system of three processes we cannot implement a
register with the compare-and-swap operation using registers with a fetch-and-add
operation we prove that

(1) using registers with compare-and-swap we can solve consensus for three pro-
cesses; and

(2) using registers with fetch-and-add we cannot solve consensus for three pro-
cesses.

Using similar reasoning as in Example 1, from (1) and (2) we conclude that we
cannot implement compare-and-swap using only fetch-and-add.

So, to capture the “power” of an object type A, Herlihy attaches to A a con-
sensus number, namely the unique integer n such that:

• using objects of type A we can solve consensus for n processes, and

• using objects of type A we cannot solve consensus for n + 1 processes.

If no such integer n exists, the consensus number of A is ∞. The following,
methodologically very useful, theorem follows immediately from this definition.

Theorem 1.1 ([8, 10]). If type A has consensus number n and type B has consen-
sus number m < n, then A cannot be implemented from B in a system with more
than m processes.



This leads us to Herlihy’s consensus hierarchy of object types: A type A is
at level n of the consensus hierarchy if and only if its consensus number is n —
i.e., if and only if A solves consensus for n, but not for n + 1, processes. Thus, by
Theorem 1.1, “stronger” types are at higher levels of this hierarchy.

Figure 1 illustrates the consensus hierarchy. I now briefly explain the types
mentioned in that figure that I have not already defined.

• The test-and-set type (at level 2) refers to a register initialised to 0, with
an operation that atomically sets the register to 1 and returns the value of
the register before the operation. (So, the operation that is linearised first
returns 0, and all others return 1.)

• The n-consensus type (at level n) refers to an object with a Propose(v) oper-
ation, where v is an arbitrary value (say a natural number); the object returns
the value proposed by the first operation to the first n Propose operations ap-
plied to it, and returns an arbitrary value to subsequent operations. (Thus, it
is an object designed to solve consensus for n processes.)

• The n-peekable queue type (also at level n) refers to a kind of queue to
which a maximum of n values can be enqueued (any values subsequently
enqueued are lost) and which allows a process to “peek” at the first value
enqueued without dequeuing it.

• The n-assignment type (at level 2n−2) allows a process to atomically assign
n specified values to n specified registers.

• The consensus type (at level ∞) is similar to n consensus, except that it
returns to all Propose operations (not only to the first n) the value proposed
by the first one.

• Finally, the memory-to-memory swap type (also at level∞) allows a process
to atomically swap the values of two specified registers.

Contribution 3: Universality of consensus
We have seen how Herlihy used consensus as a “yardstick” to compare the relative
power of object types. But why is consensus the right yardstick? In principle, we
could have taken any task and used it as a yardstick. For example, consider the
leader election problem:

• Each nonfaulty process outputs “winner” or “loser”.

• At most one process outputs “winner”.



• The consensus type (at level ∞) is similar to n consensus, except that it returns to all Propose
operations (not only to the first n) the value proposed by the first one.

• Finally, the memory-to-memory swap type (also at level ∞) allows a process to atomically swap the
values of two specified registers.

consensus

queue, stack

mem-to-mem swap

compare-and-swap

fetch-and-add

test-and-set

register

n-consensus

n-peekable queue

n-assignment

Level ∞

Level 2n − 2

Level n

Level 2

Level 1

...

...

...

Figure 1: The consensus hierarchy

Contribution 3: Universality of consensus

We have seen how Herlihy used consensus as a “yardstick” to compare the relative power of object types.
But why is consensus the right yardstick? In principle, we could have taken any task and used it as a
yardstick. For example, consider the leader election problem:

• Each nonfaulty process outputs “winner” or “loser”.

• At most one process outputs “winner”.

• Some process outputs “winner” or crashes after taking at least one step.

4

Figure 1: The consensus hierarchy

• Some process outputs “winner” or crashes after taking at least one step.

We could define the “leader election number” of type A to be the maximum num-
ber of processes for which A can solve the leader election problem — by analogy
to the definition of the consensus number, but using a different problem as the
yardstick. There is nothing in principle wrong with this, except that the resulting
“leader election hierarchy” would not be very interesting: it would consist of just
two levels: all types in levels two to infinity of the consensus hierarchy would
coalesce into a single level! In other words, unlike consensus, the leader election
yardstick is not a very discriminating one. So, what is special about consensus
that makes it the right yardstick? The answer lies in the following important fact:

Theorem 1.2 ([8, 10]). Any object type B with consensus number n is universal
for n processes: it can implement an object of any type A, shared by n processes.



The proof of this theorem is through an intricate algorithm that has come to
be known as Herlihy’s universal construction. Given a function that defines the
sequential behaviour of an arbitrary type A, this construction shows how to im-
plement an object of type A shared by n processes using only registers and n-
consensus objects. So, given any object of type B with consensus number n, we
can solve the consensus problem for n processes (by definition of consensus num-
ber), and therefore we can implement n-consensus objects. Then, using Herlihy’s
universal construction, we can implement an object of type A shared by n pro-
cesses.

At a very high level, the intuition behind this theorem is simple: Processes
use consensus to agree on the order in which to apply their operations on the
object they implement. Between this intuition and an actual working algorithm
that satisfies wait freedom, however, there is a significant gap. Herlihy’s universal
construction is an algorithm well worth studying carefully, and returning to every
now and then!

2 Impact

The impact of the paper is accurately reflected by its citation count. A Google
Scholar search conducted in July 2014 showed over 1400 citations for [10] and
over 200 for [8]. Let us look beyond the numbers, however, into the specific ways
in which Herlihy’s paper on wait-free synchronisation has influenced the field of
distributed computing.

Impact 1: The model

The model of asynchronous processes communicating via linearisable, wait-free
shared objects that was articulated in a complete form in this paper has been a very
influential one. As noted earlier, it is mathematically elegant but also pragmatic. It
is certainly true that different aspects of this model appeared earlier, but I believe
that this was the first paper that presented the complete package. It is nevertheless
useful to trace the heritage.

Shared memory: The asynchronous shared memory model goes back to Dijk-
stra’s seminal paper on mutual exclusion [3].

Wait freedom: The concept of wait-free implementations (though not under this
name) originated in Lamport’s and Peterson’s work on implementations of
shared registers [15, 19, 16, 17].



Linearisability: The concept of linearisability as the correctness criterion for the
behaviour of shared objects was introduced by Herlihy and Wing [12, 13].

Impact 2: Lock-free data structures

The idea of synchronising access to data structures without relying on locks has
had a significant impact on the practice of concurrent programming. Although
locking is still (and may well remain) the predominant mechanism employed to
coordinate access to data structures by multiple processes, Herlihy’s paper helped
highlight some of its shortcomings (potential for deadlock, unnecessary restric-
tions to concurrency, intolerance to even crash failures, priority inversions) and
pointed the way to the possibility of synchronising without using locks. There is,
by now, an extensive literature on so-called lock-free data structures. In this con-
text, lock free doesn’t necessarily mean wait free. It is a term that encompasses
wait freedom as well as the weaker non-blocking property, which requires that
progress be made by some non-faulty process, not necessarily every non-faulty
process.3

Impact 3: Weaker liveness properties

Linearisable wait-free implementations tend to be complex, and one culprit seems
to be wait freedom. The most intricate aspect of Herlihy’s universal construction is
the so-called helping mechanism, which ensures that “no process is left behind”. If
one is willing to settle for the less demanding non-blocking property, the universal
construction becomes much simpler.

The observation that wait freedom seems to complicate things and that it is
perhaps too strong a liveness property has led researchers to investigate other live-
ness properties, weaker than wait freedom, easier to implement, but hopefully
still useful in practice. The following are some examples of objects with relaxed
liveness requirements:

Obstruction-free objects: Every operation invoked by a nonfaulty process that
eventually runs solo (i.e., without interference from other processes) termi-
nates [4, 11].

“Pausable” objects: Every operation invoked by a live process eventually returns
control to the caller, either by completing normally, or by aborting without
taking effect, or by “pausing” so that another operation can run solo and ter-
minate. An operation can abort or pause only if it encounters interference.

3The terms “lock free” and “non-blocking” are not used consistently in the literature; in some
papers their meaning is as given here, in others it is reversed.



A nonfaulty process whose operation was paused is required to resume the
paused operation and complete it (normally or by aborting) before it can do
anything else [2].

Nondeterministic abortable objects: Every operation invoked by a nonfaulty pro-
cess eventually returns to the caller either by completing normally or by
aborting. An operation can abort only if it encounters interference. An
aborted operation may or may not have taken effect, and the caller doesn’t
know which of these two possibilities is the case [1].

Abortable objects: Every operation invoked by a nonfaulty process eventually re-
turns to the caller either by completing normally or by aborting. An oper-
ation can abort only if it encounters interference. An aborted operation is
guaranteed not to have taken effect [7].

Impact 4: Structure of the “A implemented by B” relation

Though the consensus number of an object type A encapsulates much information
about A’s ability to implement other types, it does not tell the whole story. By
Theorem 1.2, if A has consensus number n, it can support the implementation
of any object shared by n processes; but what about the implementation of even
“weak” objects, i.e., objects of types whose consensus number is no greater than
n, shared by more than n processes? In this setting, there are phenomena that run
counter to the notion that the higher the consensus number of a type the greater its
power to implement other types.

Consider the following question: Are all object types at the same level of the
consensus hierarchy equivalent? That is, if A and B are two types at the same level
n of the consensus hierarchy, can an object of type A, shared by any number m
of processes, be implemented using objects of type B? Or, equivalently (in view
of Theorem 1.2), can any object of a type with consensus number n, shared by
any number of processes, be implemented using n-consensus? Herlihy himself
proved that this is not the case for level 1: He demonstrated a type at level 1 that
cannot be implemented from registers (which are also at level 1) [9]. Rachman
proved that this is the case for every level [20]: For every positive integer n, he
demonstrated a type Tn at level n of the consensus hierarchy such that an object
of type Tn shared by 2n + 1 processes cannot be implemented using n-consensus
objects.4 (In fact, Rachman’s result is more general: for any positive integers n,m
such that m ≤ n, there is a type Tm at level m of the consensus hierarchy such that

4My account in this paragraph differs from my oral presentation in Paris, as a result of things I
learned in the meanwhile — but should have known then!



an object of type Tm, shared by 2n + 1 processes, cannot be implemented using
n-consensus objects.)

A related set of investigations concern the matter of “robustness” of the con-
sensus hierarchy. Consider a system with n processes. By the definition of con-
sensus number, objects of a type with consensus number less than n cannot im-
plement an n-consensus object. Is it possible, however, to use objects of multiple
“weak” types (with consensus number less than n) to implement n-consensus? If
this is possible, we say that the consensus hierarchy is not robust. Jayanti was the
first to identify and study the issue of robustness; he proved that under a restricted
definition of implementation of one type by others, the consensus hierarchy is not
robust [14]. Later, Schenk proved that under a restricted definition of wait free-
dom, the consensus hierarchy is not robust [21]. Lo and Hadzilacos proved that
under the usual definitions of implementation and wait freedom, the consensus
hierarchy is not robust [18].

Impact 5: Elevating the status of the bivalency argument

George Pólya and Gabor Szegö made a famous quip about the distinction between
a trick and a method:

“An idea that can be used only once is a trick. If one can use it more
than once, it becomes a method.” (Problems and Theorems in Analy-
sis, 1972.)

Fischer, Lynch, and Paterson gave us the bivalency argument as a brilliant trick
in their proof of the impossibility of consensus in asynchronous message-passing
systems [5]. With his masterful use of the same argument to prove that consensus
among n processes cannot be solved using objects of type B (for several choices
of n and B), Herlihy elevated bivalency to the more exalted status of a method!

Impact 6: Design of multiprocessors?

I put a question mark for this impact, because here I am speculating: I do not really
know why, in the late 1980s and early 1990s, multiprocessor architects abandoned
operations with low consensus number in favour of universal ones. But the timing
is such that I wouldn’t be surprised to learn that these architects were influenced,
at least in part, by Herlihy’s discovery that, from the perspective of wait-free syn-
chronisation, much more is possible with operations such as compare-and-swap
or load-linked/store-conditional than with operations such as test-and-set or fetch-
and-add.



Great papers answer important questions, but also open new ways of thinking,
and perhaps even influence practice. Herlihy’s paper on wait-free synchronisation
delivers on all these counts!

Acknowledgements
I am grateful to Naama Ben-David and David Chan for their comments on this
paper.

References
[1] Marcos K. Aguilera, Sven Frolund, Vassos Hadzilacos, Stephanie Horn, and Sam

Toueg. Abortable and query-abortable objects and their efficient implementation.
In PODC ’07: Proceedings of the 26th Annual ACM Symposium on Principles of
Distributed Computing, pages 23–32, 2007.

[2] Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. Computing with reads and
writes in the absence of step contention. In DISC ’05: Proceedings of the 19th
International Symposium on Distributed Computing, pages 122–136, 2005.

[3] Edgar W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mununications of the ACM, 8(9):569, 1965.

[4] Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized
synchronization. Journal of the ACM, 45(5):843–862, 1998.

[5] Michael Fischer, Nancy Lynch, and Michael Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[6] Rachid Guerraoui and Eric Ruppert. Linearizability is not always a safety property.
In Networked Systems - Second International Conference, NETYS 2014, pages 57–
69, 2014.

[7] Vassos Hadzilacos and Sam Toueg. On deterministic abortable objects. In PODC
’13: Proceedings of the 32nd ACM Symposium on Principles of Distributed Com-
puting, pages 4–12, 2013.

[8] Maurice Herlihy. Impossibility and universality results for wait-free synchroniza-
tion. In PODC ’88: Proceedings of the 7th Annual ACM Symposium on Principles
of Distributed Computing, pages 276–290, 1988.

[9] Maurice Herlihy. Impossibility results for asynchronous PRAM. In SPAA ’91:
Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 327–336, 1991.

[10] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, 1991.



[11] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In ICDCS ’03: Proceedings of the 23rd
International Conference on Distributed Computing Systems, pages 522–529, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[12] Maurice Herlihy and Jeannette Wing. Axioms for concurrent objects. In POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 13–26, New York, NY, USA, 1987. ACM Press.

[13] Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condition
for concurrent objects. Transactions on Programming Languages and Systems,
12(3):463–492, July 1990.

[14] Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In PODC ’93: Proceedings
of the 12th Annual ACM Symposium on Principles of Distributed Computing, pages
145–157, 1993.

[15] Leslie Lamport. On concurrent reading and writing. Communications of the ACM,
20(11):806–811, November 1977.

[16] Leslie Lamport. On interprocess communication. Part I: Basic formalism. Dis-
tributed Computing, 1(2):77–85, 1986.

[17] Leslie Lamport. On interprocess communication. Part II: Algorithms. Distributed
Computing, 1(2):86–101, 1986.

[18] Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of is: wait-free
hierarchies are not robust. In STOC ’97: In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 579–588, 1997.

[19] Gary Peterson. Concurrent reading while writing. ACM Transactions of Program-
ming Languages and Systems, 5(1):46–55, 1983.

[20] Ophir Rachman. Anomalies in the wait-free hierarchy. In WDAG ’94: Proceedings
of the 8th International Workshop on Distributed Algorithms, pages 156–163, 1994.

[21] Eric Schenk. The consensus hierarchy is not robust. In PODC ’97: In Proceedings
of the 16th Annual ACM Symposium on Principles of Distributed Computing, page
279, 1997.



Hardware Trends: Challenges and Opportunities in
Distributed Computing

Tim Harris
Oracle Labs

Cambridge, UK
timothy.l.harris@oracle.com

This article is about three trends in computer hardware, and some of the challenges
and opportunities that I think they provide for the distributed computing commu-
nity. A common theme in all of these trends is that hardware is moving away from
assumptions that have often been made about the relative performance of different
operations (e.g., computation versus network communication), the reliability of
operations (e.g., that memory accesses are reliable, but network communication
is not), and even some of the basic properties of the system (e.g., that the contents
of main memory are lost on power failure).

Section 1 introduces “rack-scale” systems and the kinds of properties likely in
their interconnect networks. Section 2 describes challenges in systems with shared
physical memory but without hardware cache coherence. Section 3 discusses non-
volatile byte-addressable memory. The article is based in part on my talk at the
ACM PODC 2014 event in celebration of Maurice Herlihy’s sixtieth birthday.

1 Rack-Scale Systems
Rack-scale computing is an emerging research area concerned with how we design
and program the machines used in data centers. Typically, these data centers are
built from racks of equipment, with each rack containing dozens of discrete ma-
chines. Over the last few years researchers have started to weaken the boundaries



between these individual machines, leading to new “rack-scale” systems. These
architectures are being driven by the need to increase density and connectivity
between servers, while lowering cost and power consumption.

Different researchers mean somewhat different things by “rack-scale” systems.
Some systems are built from existing components. These are packaged together
for a particular workload, providing appropriate hardware, and pre-installed soft-
ware. Other researchers mean systems with internal disaggregation of compo-
nents: rather than having a rack of machines each with its own network interface
and disk, there might be a pool of processor nodes, disk nodes, and networking
nodes, all connected over an internal intra-machine interconnect. The interconnect
can be configured to connect sets of these resources together in different ways.

Initial commercial systems provide high-density processor nodes connected
through an in-machine interconnect to storage devices or to external network in-
terfaces. Two examples are the HP MoonShot [12] and AMD SeaMicro [22]
single-box cluster computers. Many further ideas are now being explored in re-
search projects—for instance, the use of custom system-on-chip (SoC) processors
in place of commodity chips.

These systems should not just be seen as a way to build a faster data cen-
ter. Communicating over a modern interconnect is different from communicating
over a traditional packet-switched network. Some differences are purely trends in
performance—a round-trip latency for over InfiniBand is around 1µs, not much
longer than the time it takes to access data stored in DRAM on a large shared-
memory multiprocessor. The Scale-Out NUMA architecture provides one exam-
ple of how latencies may be reduced even further: it exposes the interconnect
via a specialized “remote memory controller” (RMC) on a multi-core SoC [18].
Threads in one SoC can instruct the RMC to transfer data to or from memory at-
tached to other processors in the system. Threads communicate with their RMC
over memory-mapped queues (held in the SoC’s local caches). These operations
have much lower latency than accessing a traditional network interface over PCI-
express. If network latencies continue to fall, while memory access latencies
remain constant, then this will change the optimization goals when designing a
protocol.

Other differences are qualitative: as with the Scale-Out NUMA RMC, the
main programming interface in many rack-scale systems is RDMA (remote direct
memory access). To software, RDMA appears as a transfer from a region of a
sender’s address space into a region in the receiver’s address space. Various forms
of control message and notification can be used—e.g., for a receiver to know
when data has arrived, or for a sender to know when transmission is complete.
Flow control is handled in hardware to prevent packet loss.

Some network devices provide low-latency hardware distribution of data to
multiple machines at once (for instance, the ExaLINK matrix switches advertise



5ns latency multicasting data from an input port to any number of output ports [1]).
Researchers are exploring how to use this kind of hardware as part of an atomic
broadcast mechanism [7].

Research questions: What are the correct communication primitives to let ap-
plications benefit from low-latency communication within the system? What are
the likely failure modes and how do we achieve fault tolerance? What is the ap-
propriate way to model the guarantees provided by the interconnect fabric in a
rack-scale system? How should the interconnect fabric be organized, and how
should CPUs, DRAM, and storage be placed in it?

2 Shared Memory Without Cache Coherence
The second trend I will highlight is toward systems with limited support for cache
coherence in hardware: Some systems provide shared physical memory, but rely
on threads to explicitly flush and invalidate their local caches if they want to com-
municate through them. Some researchers argue that cache coherence will be
provided within a chip, but not between chips [15].

This kind of model is not entirely new. For instance, the Cray T3D system
distributed its memory across a set of processor nodes, providing each node with
fast access to its local memory, and slower access to uncacheable remote mem-
ory [6]. This kind of model makes it important to keep remote memory accesses
rare because they will be slow even in the absence of contention (for instance,
lock implementations with local spinning are well suited in this setting [16]).

One motivation for revisiting this kind of model is to accommodate special-
ized processors or accelerators. The accelerator can transfer data to and from
memory (and sometimes to and from the caches of the traditional processors) but
does not need to participate in a full coherence protocol. A recent commercial
example of this kind of system is the Intel Xeon Phi co-processor accessed over
PCI-express [13].

A separate motivation for distributing memory is to provide closer coupling
between storage and computation. The IRAM project explored an extreme ver-
sion of this with the processor on the same chip as its associated DRAM [19].
Close coupling between memory and storage can improve the latency and energy
efficiency of memory accesses, and permit the aggregate bandwidth to memory to
grow by scaling the number of memory-compute modules.

Some research systems eschew the direct use of shared memory and instead
focus on programming models based on message passing. Shared memory buffers
can be used to provide a high-performance implementation of message passing
(for instance, by using a block of memory as a circular buffer to carry messages).



This approach means that only the message passing infrastructure needs to be
aware of the details of the memory system. Also, it means that software written
for a genuinely distributed environment is able to run correctly (and hopefully
more quickly) in an environment where messages stay within a machine.

Systems such as K2 [14] and Popcorn [4] provide abstractions to run existing
shared-memory code in systems without hardware cache coherence, using ideas
from distributed shared memory systems.

Conversely, the Barrelfish [5] and FOS [23] projects have been examining the
use of distributed computing techniques within an OS. Barrelfish is an example of
a multikernel in which each core runs a separate OS kernel, even when the cores
operate in a single cache-coherent machine. All interactions between these ker-
nels occur via message-passing. This design avoids the need for shared-memory
data structures to be managed between cores, enabling a single system to operate
across coherence boundaries. While it is elegant to rely solely on message passing,
this approach seems better suited to some workloads than to others—particularly
when multiple hardware threads share a cache, and could benefit from spatial and
temporal locality in the data they are accessing.

Research questions: What programming models and algorithms are appropri-
ate for systems which combine message passing with shared memory? To what
extent should systems with shared physical memory (without cache coherence) be
treated differently from systems without any shared memory at all?

3 Non-Volatile Byte-Addressable Memory
There are many emerging technologies that provide non-volatile byte-addressable
memory (NV-RAM). Unlike ordinary DRAM, memory contents are preserved
on power loss. Unlike traditional disks, locations can be read or written at a fine
granularity—nominally individual bytes, although in practice hardware will trans-
fer complete cache lines. Furthermore, unlike a disk, these reads and writes may
be performed by ordinary memory access instructions (rather than using RDMA,
or needing the OS to orchestrate block-sized transfers to or from a storage device).

This kind of hardware provides the possibility of an application keeping all of
its data structures accessible in main memory. Researchers are starting to explore
how to model NV-RAM [20]. Techniques from non-blocking data structures pro-
vide one starting point for building on NV-RAM. A power loss can be viewed as
a failure of all of the threads accessing a persistent object. However, there are
several challenges which complicate matters:

First, the memory state seen by the threads before the power loss is not nec-
essarily the same as the state seen after recovery. This is because, although the



NV-RAM is persistent, the remainder of the memory system may hold data in or-
dinary volatile buffers such as processor caches and memory controllers. When
power is lost, some data will transiently be in these volatile buffers. Aggressively
flushing every update to NV-RAM may harm performance. Some researchers
have explored flushing updates upon power-loss, but that approach requires care-
ful analysis to ensure that there is enough residual power to do so [17].

The second problem is that applications often need to access several structures—
for instance, removing an item from one persistent collection object, processing
it, and adding it to another persistent collection. If there is a power loss during the
processing step, then we do not want to lose the item.

Transactions provide one approach for addressing these two problems. It may
be possible to optimize the use of cache flush/invalidate operations to ensure that
data is genuinely persistent before a transaction commits, while avoiding many
individual flushes while the transaction executes. As with transactional memory
systems, transactions against NV-RAM would provide a mechanism for compos-
ing operations across multiple data structures [10]. What is less clear is whether
transactions are appropriate for long-running series of operations (such as the ex-
ample of processing an object when moving it between persistent collections).

Having an application’s data structures in NV-RAM could be a double-edged
sword. It avoids the need to define translations between on-disk and in-memory
formats, and it avoids the time taken to load data into DRAM for processing. This
time saving is significant in “big data” applications, not least when restarting a
machine after a crash. However, explicit loading and saving has benefits as well
as costs: It allows in-memory formats to change without changing the external
representation of data. It allows external data to be processed by tools in a generic
way without understanding its internal formats (backup, copying, de-duplication,
etc.). It provides some robustness against transient corruption of in-memory for-
mats by restarting an application and re-loading data.

It is difficult to quantify how significant these concerns will be. Earlier expe-
rience with persistent programming languages explored many of these issues [3].
Recent work on dynamic software updates is also relevant (e.g., Arnold and Kaashoek
in an OS kernel [2], and Pina et al. in applications written in Java [21]).

Research questions: How should software manage data held in NV-RAM, and
what kinds of correctness properties are appropriate for a data structure that is
persistent across power loss?



4 Discussion

This article has touched on three areas where developments in computer hard-
ware are changing some of the traditional assumptions about the performance and
behavior of the systems we build on.

Processor clock rates are not getting significantly faster (and, many argue, core
counts are unlikely to increase much further [9]). Nevertheless, there are other
ways in which system performance can improve such as by integrating special-
ized cores in place of general-purpose ones, or by providing more direct access
to the interconnect, or by removing the need to go through traditional storage
abstractions to access persistent memory.

I think many of these trends reflect a continued blurring of the boundaries
between what constitutes a “single machine” versus what constitutes a “distributed
system”. Reliable interconnects are providing hardware guarantees for message
delivery, and in some cases this extends to guarantees about message ordering as
well even in the presence of broadcast and multicast messages. Conversely, the
move away from hardware cache coherence within systems means that distributed
algorithms become used in systems which look like single machines—e.g., in the
Hare filesystem for non-cache-coherent multicores [8].

Many of these hardware developments have been proceeding ahead of the ad-
vancement of formal models of the abstractions being built. Although the use of
verification is widespread at low levels of the system – especially in hardware –
I think there are important opportunities to develop new models of the abstrac-
tions exposed to programmers. There are also opportunities to influence the di-
rection of future hardware evolution—perhaps as with how the identification of
the consensus hierarchy pointed to the use of atomic compare and swap in today’s
multiprocessor systems [11].

References
[1] EXALINK Fusion (web page). Apr. 2015. https://exablaze.com/
exalink-fusion.

[2] J. Arnold and M. F. Kaashoek. Ksplice: automatic rebootless kernel updates. In
Proc. 4th European Conference on Computer Systems (EuroSys), pages 187–198,
2009.

[3] M. Atkinson and M. Jordan. A review of the rationale and architectures of PJama: a
durable, flexible, evolvable and scalable orthogonally persistent programming plat-
form. Technical report, University of Glasgow, Department of Computing Science,
2000.

https://exablaze.com/exalink-fusion
https://exablaze.com/exalink-fusion


[4] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir,
A. Murray, and B. Ravindran. Popcorn: bridging the programmability gap in
heterogeneous-ISA platforms. In EuroSys ’15: Proc. 10th European Conference
on Computer Systems (EuroSys), page 29, 2015.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for
scalable multicore systems. In SOSP ’09: Proc. 22nd Symposium on Operating
Systems Principles, pages 29–44, 2009.

[6] Cray Research Inc. CRAY T3D System Architecture Overview Manual.
1993. ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/
T3D.overview.html.

[7] M. P. Grosvenor, M. Fayed, and A. W. Moore. Exo: atomic broadcast for the rack-
scale computer. 2015. http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/
wrsc15-exo-abstract.pdf.

[8] C. Gruenwald III, F. Sironi, M. F. Kaashoek, and N. Zeldovich. Hare: a file system
for non-cache-coherent multicores. In EuroSys ’15: Proc. 10th European Confer-
ence on Computer Systems, page 30, 2015.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in
servers. IEEE Micro, 31(4):6–15, 2011.

[10] T. Harris, M. Herlihy, S. Marlow, and S. Peyton Jones. Composable memory trans-
actions. In PPoPP ’05: Proc. 10th Symposium on Principles and Practice of Parallel
Programming, June 2005.

[11] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, Jan. 1991.

[12] HP Moonshot system: a new class of server. http://www.hp.com/go/moonshot,
Accessed 9 July 2014.

[13] Intel Corporation. Intel Xeon Phi coprocessor system software developers guide.
2012. IBL Doc ID 488596.

[14] F. X. Lin, Z. Wang, and L. Zhong. K2: a mobile operating system for heterogeneous
coherence domains. In ASPLOS ’14: Proc. Conference on Architectural Support for
Programming Languages and Operating Systems, pages 285–300, 2014.

[15] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence is here
to stay. Commun. ACM, 55(7):78–89, 2012.

[16] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–
65, Feb. 1991.

[17] D. Narayanan and O. Hodson. Whole-system persistence. In ASPLOS ’12: Proc.
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 401–410, 2012.

ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/wrsc15-exo-abstract.pdf
http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/wrsc15-exo-abstract.pdf
http://www.hp.com/go/moonshot


[18] S. Novaković, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-Out NUMA.
In ASPLOS ’14: Proc. 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2014.

[19] D. A. Patterson, K. Asanovic, A. B. Brown, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, C. E. Kozyrakis, D. B. Martin, S. Perissakis, R. Thomas, N. Treuhaft,
and K. A. Yelick. Intelligent RAM (IRAM): the industrial setting, applications and
architectures. In Proceedings 1997 International Conference on Computer Design:
VLSI in Computers & Processors, ICCD ’97, Austin, Texas, USA, October 12-15,
1997, pages 2–7, 1997.

[20] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages
265–276, Piscataway, NJ, USA, 2014. IEEE Press.

[21] L. Pina, L. Veiga, and M. Hicks. Rubah: DSU for Java on a stock JVM. In OOPSLA
’14: Proc. Conference on Object-Oriented Programming Languages, Systems, and
Applications, Oct. 2014.

[22] A. Rao. SeaMicro SM10000 system overview, June 2010. http://www.
seamicro.com/sites/default/files/SM10000SystemOverview.pdf.

[23] D. Wentzlaff and A. Agarwal. Factored operating systems (FOS): the case for a
scalable operating system for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,
Apr. 2009.

http://www.seamicro.com/sites/default/files/SM10000SystemOverview.pdf
http://www.seamicro.com/sites/default/files/SM10000SystemOverview.pdf


Transactional Memory Today1

Michael Scott
Computer Science Department

University of Rochester, NY, USA
scott@cs.rochester.edu

It was an honor and a privilege to be asked to participate in the celebration, at
PODC 2014, of Maurice Herlihy’s many contributions to the field of distributed
computing—and specifically, to address the topic of transactional memory, which
has been a key component of my own research for the past decade or so.

When introducing transactional memory (“TM”) to people outside the field, I
describe it as a sort of magical merger of two essential ideas, at different levels of
abstraction. First, at the language level, TM allows the programmer to specify that
certain blocks of code should be atomic without saying how to make them atomic.
Second, at the implementation level, TM uses speculation (much of the time, at
least) to execute atomic blocks in parallel whenever possible. Each dynamic exe-
cution of an atomic block is known as a transaction. The implementation guesses
that concurrent transactions will be mutually independent. It then monitors their
execution, backing out and retrying if (and hopefully only if) they are discovered
to conflict with one another.

The second of these ideas—the speculative implementation—was the focus of
the original TM paper, co-authored by Maurice with Eliot Moss [22]. The first
idea—the simplified model of language-level atomicity—is also due largely to
Maurice, but was a somewhat later development.

1Based on remarks delivered at the Maurice Herlihy 60th Birthday Celebration, Paris, France,
July 2014



1 Motivation
To understand the original motivation for transactional memory, consider the typi-
cal method of a nonblocking concurrent data structure. The code is likely to begin
with a “planning phase” that peruses the current state of the structure, figuring
out the operation it wants to perform, and initializing data—some thread-private,
some visible to other threads—to describe that operation. At some point, a critical
linearizing instruction transitions the operation from “desired” to “performed.”
In some cases, the identity of the linearizing instruction is obvious in the source
code; in others it can be determined only by reasoning in hindsight over the his-
tory of the structure. Finally, the method performs whatever “cleanup” is required
to maintain long-term structural invariants. Nonblocking progress is guaranteed
because the planning phase has no effect on the logical state of the structure, the
linearizing instruction is atomic, and the cleanup phase can be performed by any
thread—not just the one that called the original operation.

Two issues make methods of this sort very difficult to devise. The first is the
need to effect the transition from “desired” to “performed” with a single atomic
instruction. The second is the need to plan correctly in the face of concurrent
changes by other threads. By contrast, an algorithm that uses a coarse-grained
lock faces neither of these issues: writes by other threads will never occur in the
middle of its reads; reads by other threads will never occur in the middle of its
writes.

2 The Original Paper
While Maurice is largely celebrated for his theoretical contributions, the original
TM paper was published at ISCA, the leading architecture conference, and was
very much a hardware proposal. We can see this in the subtitle—“Architectural
Support for Lock-Free Data Structures”—and the abstract: “[TM is] . . . intended
to make lock-free synchronization as efficient (and easy to use) as conventional
techniques based on mutual exclusion.”

The core idea is simple: a transaction runs almost the same code as a coarse-
grain critical section, but with special load and store instructions, and without
the actual lock. The special instructions allow the hardware to track conflicts
between concurrent transactions. A special end-of-transaction commit instruction
will succeed (and make transactionally written values visible to other threads) only
if no concurrent conflicting transaction has committed. Here “conflict” means
that one transaction writes a cache line that another reads or writes. Within a
transaction, a special validate instruction allows code to determine whether it still
has a chance to commit successfully—and in particular, whether the loads it has



performed to date remain mutually consistent. In response to a failed validate or
commit, the typical transaction will loop back (in software) and start over.

Looking back with the perspective of more than 20 years, the original TM pa-
per appears remarkably prescient. Elision of coarse-grain locks remains the prin-
cipal use case for TM today, though the resulting algorithms are “lock-free” only
in the informal sense of “no application-level locks,” not in the sense of livelock-
free. Like almost all contemporary TM hardware, Herlihy & Moss (H&M) TM
was also a “best-effort-only” proposal: a transaction could fail due not only to
conflict or to overflow of hardware buffers, but to a variety of other conditions—
notably external interrupts or the end of a scheduling quantum. Software must be
prepared to fall back to a coarse-grain lock (or some other hybrid method) in the
event of repeated failures.

Speculative state (the record of special loads and stores) in the H&M pro-
posal was kept in a special “transactional cache” alongside the “regular” cache (in
1993, processors generally did not have multiple cache layers). This scheme is
still considered viable today, though commercial offerings vary: the Intel Haswell
processor leverages the regular L1 data cache [40]; Sun’s unreleased Rock ma-
chine used the processor store buffer [10]; IBM’s zEC12 uses per-core private
L2s [25].

In contrast with current commercial implementations, H&M proposed a “re-
sponder wins” coherence strategy: if transaction A requested a cache line that had
already been speculatively read or written by concurrent transaction B, B would
“win” and A would be forced to abort. Current machines generally do the op-
posite: “responder loses”—kill B and let A continue. Responder-loses has the
advantage of compatibility with existing coherence protocols, but responder-wins
turns out to be considerably less vulnerable to livelock. Nested transactions were
not considered by H&M, but current commercial offerings address them only by
counting, and subsuming the inner transactions in the outer: there is no way to
abort and retry an inner transaction while keeping the outer one live.

Perhaps the most obvious difference between H&M and current TM is that the
latter uses “modal” execution, rather than special loads and stores: in the wake of
a special tm-start instruction, all ordinary memory accesses are considered spec-
ulative. In keeping with the technology of the day, H&M also assumed sequential
consistency; modern machines must generally arrange for tm-start and commit
instructions to incorporate memory barriers.

While designers of modern systems—both hardware and software—think of
speculation as a fundamental design principle—comparable to caching in its de-
gree of generality—this principle was nowhere near as widely recognized in 1993.
In hindsight, the H&M paper (which doesn’t even mention the term) can be seen
not only as the seminal work on TM, but also as a seminal work in the history of
speculation.



3 Subsequent Development
Within the architecture community, H&M TM was generally considered too am-
bitious for the hardware of the day, and was largely ignored for a decade. There
was substantial uptake in the theory community, however, where TM-like seman-
tics were incorporated into the notion of universal constructions [3, 5, 24, 28, 35].
In 1997, Shavit and Touitou coined the term “Software Transactional Memory,”
in a paper that shared with H&M the 2012 Dijkstra Prize [33].

And then came multicore. With the end of uniprocessor performance scal-
ing, the difficulty of multithreaded programming became a sudden and pressing
concern for researchers throughout academia and industry. And with advances in
processor technology and transistor budgets, TM no longer looked so difficult to
implement. Near-simultaneous breakthroughs in both software and hardware TM
were announced by several groups in the early years of the 21st century.

Now, another decade on, perhaps a thousand TM papers have been published
(including roughly a third of my own professional output). Plans are underway for
the 10th annual ACM TRANSACT workshop. Hardware TM has been incorpo-
rated into multiple “real world” processors, including the Azul Vega 2 and 3 [7];
Sun Rock [10]; IBM Blue Gene/Q [36], zEnterprise EC12 [25], and Power8 [6];
and Intel Haswell [40]. Work on software TM has proven even more fruitful, at
least from a publications perspective: there are many more viable implementa-
tion alternatives—and many more semantic subtleties—than anyone would have
anticipated back in 2003. TM language extensions have become the synchroniza-
tion mechanism of choice in the Haskell community [16], official extensions for
C++ are currently in the works (a preliminary version [1] already ships in gcc),
and research-quality extensions have been developed for a wide range of other
languages.

4 Maurice’s Contributions
Throughout the history of TM, Maurice has remained a major contributor. The
paragraphs here touch on only a few of his many contributions. With colleagues
at Sun, Maurice co-designed the DSTM system [18], one of the first software
TMs with semantics rich enough—and overheads low enough—to be potentially
acceptable in practice. Among its several contributions, DSTM introduced the
notion of out-of-band contention management, a subject on which Maurice also
collaborated with colleagues at EPFL [13, 14]. By separating safety and liveness,
contention managers simplify both STM implementation and correctness proofs.

In 2005, Maurice collaborated with colleagues at Intel on mechanisms to vir-
tualize hardware transactions, allowing them to survive both buffer overflows and



context switches [30]. He also began a series of papers, with colleagues at Brown
and Swarthmore, on transactions for energy efficiency [12]. With student Eric
Koskinen, he introduced transactional boosting [20], which refines the notion
of conflict to encompass the possibility that concurrent operations on abstract
data types, performed within a transaction, may commute with one another at an
abstract level—and thus be considered non-conflicting—even when they would
appear to conflict at the level of loads and stores. With student Yossi Lev he
explored support for debugging of transactional programs [21]. More recently,
again with the team at Sun, he has explored the use of TM for memory manage-
ment [11].

Perhaps most important, Maurice became a champion of the promise of trans-
actions to simplify parallel programming—a promise he dubbed the “transactional
manifesto” [19]. During a sabbatical at Microsoft Research in Cambridge, Eng-
land, he collaborated with the Haskell team on their landmark exploration of com-
posability [16]. Unlike locks, which require global reasoning to avoid or recover
from deadlock, transactions can easily be combined to create larger atomic oper-
ations from smaller atomic pieces. While the benefits can certainly be oversold
(and have been—though not by Maurice), composability represents a fundamen-
tal breakthrough in the creation of concurrent abstractions. Prudently employed,
transactions can offer (most of) the performance of fine-grain locks with (most of)
the convenience of coarse-grain locks.

5 Status and Challenges
Today hardware TM appears to have become a permanent addition to processor
instruction sets. Run-time systems that use this hardware typically fall back to
a global lock in the face of repeated conflict or overflow aborts. For the over-
flow case, hybrid systems that fall back to software TM may ultimately prove
to be more appropriate. STM will also be required for TM programs on legacy
hardware. The fastest STM implementations currently slow down critical sections
(though not whole applications!) by factors of 3–5, and that number is unlikely to
improve. With this present status as background, the future holds a host of open
questions.

5.1 Usage Patterns
TM is not yet widely used. Most extant applications are actually written in Haskell,
where the semantics are unusually rich but the implementation unusually slow.
The most popular languages for research have been C and C++, but progress has
been impeded, at least in part, by the lack of high quality benchmarks.



The biggest unknown remains the breadth of TM applicability. Transactions
are clearly useful—from both a semantic and a performance perspective—for
small operations on concurrent data structures. They are much less likely to be
useful—at least from a performance perspective—for very large operations, which
may overflow buffer limits in HTM, run slowly in STM, and experience high con-
flict rates in either case. No one is likely to write a web server that devotes a
single large transaction to each incoming page request. Only experience will tell
how large transactions can become and still run mostly in parallel.

When transactions are too big, and frequently conflict, programmers will need
tools to help them identify the offending instructions and restructure their code
for better performance. They will also need advances, in both theory and software
engineering, to integrate transactions successfully into pre-existing lock-based ap-
plications.

5.2 Theory and Semantics
Beyond just atomicity, transactions need some form of condition synchronization,
for operations that must wait for preconditions [16, 37]. There also appear to be
cases in which a transaction needs some sort of “escape action” [29], to generate
effects (or perhaps to observe outside state) in a way that is not fully isolated from
action in other threads. In some cases, the application-level logic of a transaction
may decide it needs to abort. If the transaction does not restart, but switches to
some other code path, then information (the fact of the abort, at least) has “leaked”
from code that “did not happen” [16]. Orthogonally, if large transactions prove
useful in some applications, it may be desirable to parallelize them internally, and
let the sub-threads share speculative state [4]. All these possibilities will require
formalization.

A more fundamental question concerns the basic model of synchronization.
While it is possible to define the behavior of transactions in terms of locks [27],
with an explicit notion of abort and rollback, such an approach seems contrary
to the claim that transactions are simpler than locks. An alternative is to make
atomicity itself the fundamental concept [8], at which point the question arises:
are aborts a part of the language-level semantics? It’s appealing to leave them out,
at least in the absence of a program-level abort operation, but it’s not clear how
such an approach would interact with operational semantics or with the definition
of a data race.

For run-time–level semantics, it has been conventional to require that every
transaction—even one that aborts—see a single, consistent memory state [15].
This requirement, unfortunately, is incompatible with implementations that “sand-
box” transactions instead of continually checking for consistency, allowing doomed
transactions to execute—at least for a little while—down logically impossible



code paths. More flexible semantics might permit such “transactional zombies”
while still ensuring forward progress [32].

5.3 Language and System Integration

For anyone building a TM language or system, the theory and semantic issues of
the previous section are of course of central importance, but there are other issues
as well. What should be the syntax of atomic blocks? Should there be atomic
expressions? How should they interact with existing mechanisms like try blocks
and exceptions? With locks?

What operations can be performed inside a transaction? Which of the standard
library routines are on the list? If routines must be labeled as “transaction safe,”
does this become a “viral” annotation that propagates throughout a code base?
How much of a large application must eschew transaction-unsafe operations?

In a similar vein, given the need to instrument loads and stores inside (but not
outside) transactions, which subroutines must be “cloned”? How does the choice
interact with separate compilation? How do we cope with the resulting “code
bloat”?

Finally, what should be done about repeated aborts? Is fallback to a global lock
acceptable, or do we need a hybrid HTM/STM system? Does the implementation
need to adapt to observed abort patterns, avoiding fruitless speculation? What
factors should influence adaptation? Should it be static or dynamic? Does it
need to incorporate feedback from prior executions? How does it interact with
scheduling?

5.4 Building and Using TM Hardware

With the spread of TM hardware, it will be increasingly important to use that
hardware well. In addition to tuning and adapting, we may wish to restructure
transactions that frequently overflow buffers. We might, for example—by hand
or automatically—reduce a transaction’s memory footprint by converting a read-
only preamble into explicit (nontransactional) speculation [2, 39]. One of my
students has recently suggested using advisory locks (acquired using nontransac-
tional loads and stores) to serialize only the portions of transactions that actually
conflict [38].

Much will depend on the evolution of hardware TM capabilities. Nontrans-
actional (but immediate) loads and stores are currently available only on IBM
Power machines, and there at heavy cost. Lightweight implementations would
enable not only partial serialization but also ordered transactions (i.e., specu-
lative parallelization of ordered iteration) and more effective hardware/software



hybrids [9, 26]. As noted above, there have been suggestions for “responder-
wins” coherence, virtualization, nesting, and condition synchronization. With
richer semantics, it may also be desirable to “deconstruct” the hardware inter-
face, so that features are available individually, and can be used for additional
purposes [23, 34].

6 Concluding Thoughts

While the discussion above spans much of the history of transactional memory,
and mentions many open questions, the coverage has of necessity been spotty,
and the choice of citations idiosyncratic. Many, many important topics and pa-
pers have been left out. For a much more comprehensive overview of the field,
interested readers should consult the book-length treatise of Harris, Larus, and
Rajwar [17]. A briefer overview can be found in chapter 9 of my synchronization
monograph [31].

My sincere thanks to Hagit Attiya, Shlomi Dolev, Rachid Guerraoui, and Nir
Shavit for organizing the celebration of Maurice’s 60th birthday, and for giving
me the opportunity to participate. My thanks, as well, to Panagiota Fatourou and
Jennifer Welch for arranging the subsequent write-ups for BEATCS and SIGACT
News. Most of all, my thanks and admiration to Maurice Herlihy for his seminal
contributions, not only to transactional memory, but to nonblocking algorithms,
topological analysis, and so many other aspects of parallel and distributed com-
puting.

References

[1] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich, editors. Draft Specification
of Transaction Language Constructs for C++. Version 1.1, IBM, Intel, and Sun
Microsystems, Feb. 2012.

[2] Y. Afek, H. Avni, and N. Shavit. Towards Consistency Oblivious Programming.
In Proc. of the 15th Intl. Conf. on Principles of Distributed Systems, pages 65-79.
Toulouse, France, Dec. 2011.

[3] Y. Afek, D. Dauber, and D. Touitou. Wait-Free Made Fast. In Proc. of the 27th ACM
Symp. on Theory of Computing, 1995.

[4] K. Agrawal, J. Fineman, and J. Sukha. Nested Parallelism in Transactional Memory.
In Proc. of the 13th ACM Symp. on Principles and Practice of Parallel Program-
ming, Salt Lake City, UT, Feb. 2008.



[5] G. Barnes. A Method for Implementing Lock-Free Shared Data Structures. In Proc.
of the 5th ACM Symp. on Parallel Algorithms and Architectures, Velen, Germany,
June–July 1993.

[6] H. W. Cain, B. Frey, D. Williams, M. M. Michael, C. May, and H. Le. Robust
Architectural Support for Transactional Memory in the Power Architecture. In Proc.
of the 40th Intl. Symp. on Computer Architecture, Tel Aviv, Israel, June 2013.

[7] C. Click Jr. And now some Hardware Transactional Memory comments. Au-
thor’s Blog, Azul Systems, Feb. 2009. blogs.azulsystems.com/cliff/2009/
02/and-now-some-hardware-transactional-memory-comments.html.

[8] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions as the Foundation of a
Memory Consistency Model. In Proc. of the 24th Intl. Symp. on Distributed Com-
puting, Cambridge, MA, Sept. 2010. Earlier but expanded version available as TR
959, Dept. of Computer Science, Univ. of Rochester, July 2010.

[9] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F.
Spear. Hybrid NOrec: A Case Study in the Effectiveness of Best Effort Hardware
Transactional Memory. In Proc. of the 16th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Newport Beach, CA, Mar. 2011.

[10] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Commercial
Hardware Transactional Memory Implementation. In Proc. of the 14th Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems, Wash-
ington, DC, Mar. 2009.

[11] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On The Power of Hardware Trans-
actional Memory to Simplify Memory Management. In Proc. of the 30th ACM Symp.
on Principles of Distributed Computing, San Jose, CA, June 2011.

[12] C. Ferri, A. Viescas, T. Moreshet, I. Bahar, and M. Herlihy. Energy Implica-
tions of Transactional Memory for Embedded Architectures. In Wkshp. on Exploit-
ing Parallelism with Transactional Memory and Other Hardware Assisted Methods
(EPHAM), Boston, MA, Apr. 2008. In conjunction with CGO.

[13] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention Management in
SXM. In Proc. of the 19th Intl. Symp. on Distributed Computing, Cracow, Poland,
Sept. 2005.

[14] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Transactional Con-
tention Managers. In Proc. of the 24th ACM Symp. on Principles of Distributed
Computing, Las Vegas, NV, Aug. 2005.

[15] R. Guerraoui and M. Kapałka. On the Correctness of Transactional Memory. In
Proc. of the 13th ACM Symp. on Principles and Practice of Parallel Programming,
Salt Lake City, UT, Feb. 2008.

[16] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable Memory Trans-
actions. In Proc. of the 10th ACM Symp. on Principles and Practice of Parallel
Programming, Chicago, IL, June 2005.

blogs.azulsystems.com/cliff/2009/02/and-now-some-hardware-transactional-memory-comments.html
blogs.azulsystems.com/cliff/2009/02/and-now-some-hardware-transactional-memory-comments.html


[17] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, Synthesis Lectures on
Computer Architecture. Morgan & Claypool, second edition, 2010.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional
Memory for Dynamic-sized Data Structures. In Proc. of the 22nd ACM Symp. on
Principles of Distributed Computing, Boston, MA, July 2003.

[19] M. Herlihy. The Transactional Manifesto: Software Engineering and Non-blocking
Synchronization. In Invited keynote address, SIGPLAN 2005 Conf. on Programming
Language Design and Implementation, Chicago, IL, June 2005.

[20] M. Herlihy and E. Koskinen. Transactional Boosting: A Methodology for Highly-
Concurrent Transactional Objects. In Proc. of the 13th ACM Symp. on Principles
and Practice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

[21] M. Herlihy and Y. Lev. tm_db: A Generic Debugging Library for Transactional
Programs. In Proc. of the 18th Intl. Conf. on Parallel Architectures and Compilation
Techniques, Raleigh, NC, Sept. 2009.

[22] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In Proc. of the 20th Intl. Symp. on Computer Architec-
ture, San Diego, CA, May 1993. Expanded version available as CRL 92/07, DEC
Cambridge Research Laboratory, Dec. 1992.

[23] M. D. Hill, D. Hower, K. E. Moore, M. M. Swift, H. Volos, and D. A. Wood. A Case
for Deconstructing Hardware Transactional Memory Systems. Technical Report
1594, Dept. of Computer Sciences, Univ. of Wisconsin–Madison, June 2007.

[24] A. Israeli and L. Rappoport. Disjoint-Access Parallel Implementations of Strong
Shared Memory Primitives. In Proc. of the 13th ACM Symp. on Principles of Dis-
tributed Computing, Los Angeles, CA, Aug. 1994.

[25] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Architecture and Imple-
mentation for IBM System z. In Proc. of the 45th Intl. Symp. on Microarchitecture,
Vancouver, BC, Canada, Dec. 2012.

[26] A. Matveev and N. Shavit. Reduced Hardware Transactions: A New Approach to
Hybrid Transactional Memory. In Proc. of the 25th ACM Symp. on Parallelism in
Algorithms and Architectures, Montreal, PQ, Canada, July 2013.

[27] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L. Hudson, B.
Saha, and A. Welc. Practical Weak-Atomicity Semantics for Java STM. In Proc.
of the 20th ACM Symp. on Parallelism in Algorithms and Architectures, Munich,
Germany, June 2008.

[28] M. Moir. Transparent Support for Wait-Free Transactions. In Proc. of the 11th Intl.
Wkshp. on Distributed Algorithms, 1997.

[29] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B.
Moss, B. Saha, and T. Shpeisman. Open Nesting in Software Transactional Mem-
ory. In Proc. of the 12th ACM Symp. on Principles and Practice of Parallel Pro-
gramming, San Jose, CA, Mar. 2007.



[30] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proc. of
the 32nd Intl. Symp. on Computer Architecture, Madison, WI, June 2005.

[31] M. L. Scott. Shared-Memory Synchronization. Morgan & Claypool, 2013.

[32] M. L. Scott. Transactional Semantics with Zombies. In Invited keynote address, 6th
Wkshp. on the Theory of Transactional Memory, Paris, France, July 2014.

[33] N. Shavit and D. Touitou. Software Transactional Memory. Distributed Computing,
10(2):99-116, Feb. 1997. Originally presented at the 14th ACM Symp. on Principles
of Distributed Computing, Aug. 1995.

[34] A. Shriraman, S. Dwarkadas, and M. L. Scott. Implementation Tradeoffs in the De-
sign of Flexible Transactional Memory Support. Journal of Parallel and Distributed
Computing, 70(10):1068-1084, Oct. 2010.

[35] J. Turek, D. Shasha, and S. Prakash. Locking Without Blocking: Making Lock
Based Concurrent Data Structure Algorithms Nonblocking. In Proc. of the 11th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, Van-
couver, BC, Canada, Aug. 1992.

[36] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,
and M. Michael. Evaluation of Blue Gene/Q Hardware Support for Transactional
Memories. In Proc. of the 21st Intl. Conf. on Parallel Architectures and Compilation
Techniques, Minneapolis, MN, Sept. 2012.

[37] C. Wang, Y. Liu, and M. Spear. Transaction-Friendly Condition Variables. In Proc.
of the 26th ACM Symp. on Parallelism in Algorithms and Architectures, Prague,
Czech Republic, June 2014.

[38] L. Xiang and M. L. Scott. Conflict Reduction in Hardware Transactions Using Ad-
visory Locks. In Proc. of the 27th ACM Symp. on Parallelism in Algorithms and
Architectures, Portland, OR, June 2015.

[39] L. Xiang and M. L. Scott. Software Partitioning of Hardware Transactions. In Proc.
of the 20th PPoPP, San Francisco, CA, Feb. 2015.

[40] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of In-
tel Transactional Synchronization. In x. f. H.-P. Computing, editor, Proc., SC2013:
High Performance Computing, Networking, Storage and Analysis, pages 1-11. Den-
ver, Colorado, Nov. 2013.


	326-1262-1-PB
	1o

	BEATCS-DC-Column-June-2015
	Introduction
	Modeling Issues
	Generating and Distributing a System Clock
	Pulse Synchronization
	Approaches by the Distributed Community
	Approaches by the Hardware Community
	DARTS
	FATAL

	Counting
	Equivalence to Consensus
	Counting Using Shared Coins
	Constructing Large Counters from Small Counters
	Counting from Pulse Synchronization
	Constructing Counters from Scratch

	Clock Distribution

	Conclusion
	Review of the key contributions
	Impact
	Rack-Scale Systems
	Shared Memory Without Cache Coherence
	Non-Volatile Byte-Addressable Memory
	Discussion
	Motivation
	The Original Paper
	Subsequent Development
	Maurice's Contributions
	Status and Challenges
	Usage Patterns
	Theory and Semantics
	Language and System Integration
	Building and Using TM Hardware

	Concluding Thoughts




