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Abstract

Motivated by real-life situations in which exact input data is not available
initially but can be obtained at a cost, one can consider the model of com-
puting with uncertainty where the input to a problem is initially not known
precisely. For each input element, only a set that contains the exact value of
that input element is given. The algorithm can repeatedly perform queries to
reveal the exact value of an input element. The goal is to minimize the num-
ber of queries needed until enough information has been obtained to produce
the desired output. The performance of an algorithm is measured using com-
petitive analysis, comparing the number of queries with the best possible
number of queries for the given instance. We give a survey of known results
and techniques for this model of queryable uncertainty, mention results for
some related models, and point to possible directions for future work.

1 Introduction
In the study of algorithms, we often assume that exact input data is available to
the algorithm, and our goal is to design algorithms that compute good solutions
efficiently. However, there are also scenarios where precise input data is not im-
mediately available. Instead, only rough, uncertain information about the input
may be given, for example intervals or other sets that contain the unknown exact
input values. In some such scenarios, it is possible to obtain exact information
about each part of the input at an additional cost. We refer to the operation of
obtaining exact information for one input element as a query, and we are inter-
ested in minimizing the number of queries to be made until sufficient information
has been obtained for calculating a solution. The performance of an algorithm can



then be measured by comparing the number of queries made by the algorithm with
the best possible number of queries for the given input, following the approach of
competitive analysis for online algorithms.

In this article, we give a survey of known results and techniques for the de-
sign of query-competitive algorithms in the model of computing with uncertainty
sketched above. We also mention results for related questions and point to possi-
ble directions for future work.

1.1 Motivation
There are numerous examples of application scenarios that provide motivation
for studying computing with uncertainty. For example, as in Kahan’s pioneering
paper [12], one can consider applications where the input involves objects (e.g.,
airplanes) that are in motion and whose current positions are not known precisely.
If the exact location of an object was known some time in the past and if the
object moves with limited speed, then the current location of the object must lie
within a known region, and it may be possible to obtain the exact location of the
object by communicating with it (e.g., a radio communication with the pilot of an
airplane). The goal may be to compute a function of the locations of the objects
(e.g., the closest pair of airplanes). A similar application arises in mobile ad-hoc
networks, where estimates of the current positions of the nodes may be easily
available but obtaining the exact position of a node requires extra communication
or measurements. Kahan mentions further applications such as graphic animation
(selecting from moving objects those within the field of vision), integrating the
maximum of a set of functions of bounded variation, and dynamic scheduling of
jobs with time-varying priorities [12].

Another set of applications originates from distributed computing. For exam-
ple, in systems with distributed database caches, an estimate of an aggregate data
value may be available from a local cache, but obtaining the exact value requires
more expensive communication (e.g., a query to the master server). Moreover, a
system could maintain intervals of values in local database caches, so that updates
to data on the master server need to be replicated to a local cache only when the
new value lies outside the interval stored there. When a database query cannot be
answered based on the intervals stored in the local cache, exact values can be re-
trieved from the master server. Olston and Widom propose a concrete replication
mechanism employing this principle, the TRAPP system [16].

1.2 Other Approaches to Dealing with Uncertainty
There are various other approaches to modeling or addressing problems whose
input involves uncertain information. In stochastic optimization, uncertain input



values are assumed to be drawn from (known) probability distributions, and the
goal is to find a solution that optimizes the expected value of the objective func-
tion, or that is good or feasible with high probability. In robust optimization, a
single solution has to be computed that is good in each possible scenario of how
the uncertain values can be realized. In two-stage optimization problems, a partial
solution has to be computed based on the given uncertain values, and the solution
has to be completed in a second stage after the uncertain values have been real-
ized as exact values. This notion can be generalized to multi-stage optimization
problems. Neither of these models or approaches involve querying specific input
elements in order to obtain their exact values. Therefore, we consider such work
outside the scope of this article.

2 Preliminaries
In computing with uncertainty, an instance of a problem typically consists of some
structural information S , a set U of elements with uncertain values, and a function
A that maps each element u ∈ U to an uncertainty set1 Au. The exact values of the
uncertain input elements are represented by a function w that maps each u ∈ U to
its exact value wu, and we require wu ∈ Au. Initially the algorithm might not know
any of the values wu. Querying2 an element u ∈ U reveals its exact value wu. We
can view a query of u ∈ U as the operation of replacing Au by the singleton set
{wu}. Note that depending on the concrete problem under consideration, wu could
be a real number, a vector of real numbers, or any other type of input data. In
cases where the exact values are vectors representing point coordinates, we will
sometimes write pu for wu.

For a given instance I = (S ,U, A,w) of a problem in the model of computing
with uncertainty (we refer to such a problem also as an uncertainty problem), we
let φ(S ,U,w) denote the set of solutions. Note that the set of solutions depends
only on the exact values wu for u ∈ U but not the uncertainty sets Au. An algorithm
only receives (S ,U, A) as input. The goal of the algorithm is to compute a solution
in φ(S ,U,w) (or all solutions in φ(S ,U,w)) after making a minimum number of
queries. Queries are made one by one, and the results of previous queries can
be taken into account when determining the next query to make. Therefore, this
model is also referred to as the adaptive query model.

For a given instance I = (S ,U, A,w), we denote by OPT I (or simply OPT) the
minimum number of queries that provide sufficient information for computing a
solution in φ(S ,U,w). An algorithm that makes ALGI queries to solve an instance
I is called ρ-query-competitive or simply ρ-competitive if ALGI ≤ ρOPT I + c for

1In the literature, the term uncertainty area has also been used.
2In the literature, queries have also been called updates in this context.



all instances I of the problem, where c is a constant independent of the instance.
If c = 0, we say that the algorithm is strongly ρ-competitive. For randomized
algorithms, ALGI is the expected number of queries that the algorithm makes on
instance I. Note that the exact value wu of an uncertain element u ∈ U can be any
value in Au. We do not assume that wu is drawn from a probability distribution
over the set Au.

We should briefly clarify what it means formally to say that a set of queries
is sufficient to solve a problem. Let Q ⊆ U be a set of queries. Let AQ be the
uncertainty sets arising from A by setting AQ

u = {wu} if u ∈ Q and AQ
u = Au

otherwise. The set of queries Q is sufficient for computing a solution x if and only
if x ∈ φ(S ,U,w′) for all w′ such that w′u ∈ AQ

u for all u ∈ U (i.e., if x is a solution
for all choices of exact values w′ that are consistent with AQ). If Q is sufficient
for computing a solution, we also say that the instance (S ,U, AQ,w) is solved (and
that Q is a query solution), and otherwise unsolved.

Another aspect to discuss is which types of sets are allowed as uncertainty
sets Au. In cases where the uncertain elements represent numbers, we will usually
assume that each set Au is either an interval or a singleton set {wu}. In the latter
case, the exact weight of u is already known, and we say that the element u and
its uncertainty set are trivial. Elements that are not trivial (and their uncertainty
sets) are called non-trivial. We write open intervals as (a, b) and closed intervals
as [a, b].

Problems in the model of computing with uncertainty (e.g., the minimum
spanning tree problem) often display the following behavior: If the task is to
compute a single solution, there is a constant-competitive algorithm for the case
of open intervals as uncertainty sets but not for the case of closed intervals. The
difficulty with closed intervals is that a single query of the right interval can prove
that the value of the corresponding element is maximum or minimum among a
number of candidates, while a deterministic algorithm has no chance of identify-
ing that interval without querying a large number of elements. On the other hand,
if the task is to output all solutions, then a constant competitive ratio can often
be achieved also for closed uncertainty sets [12]. Similarly, if the task is to com-
pute the lexicographically first solution, a constant competitive ratio is sometimes
possible for closed uncertainty sets [11].

2.1 Example: MST with Uncertainty
Let us consider the minimum spanning tree problem with edge uncertainty. The
structural part of an instance of the problem is a connected, undirected graph
G = (V, E). The uncertain elements are the edges, and for each edge e ∈ E an
uncertainty set Ae containing its exact weight we is given. The task is to compute
the edge set of a minimum spanning tree (MST) of the graph G with edge weights
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Figure 1: Instance of MST with Uncertainty

given by w, i.e., φ(G, E,w) is the set consisting of the edge sets of all minimum
spanning trees of (G,w).

Consider the example instance I = (G, E, A,w) depicted in Figure 1. The three
edges e, f , g have uncertainty sets Ae = {1}, A f = (4, 9) and Ag = (2, 6). The exact
weights of the edges are we = 1, w f = 5 and wg = 3. Initially, the algorithm is
given only G and A. This information is not sufficient for determining the edge
set of an MST: The edge e is clearly contained in any MST, but without querying
f or g we do not know which of these two edges is the more expensive one and
therefore not contained in the MST. If we decide to query f first, the query reveals
that w f = 5. At this point, we still do not know whether f is cheaper or more
expensive than g as Ag = (2, 6), so we also need to query g. When we receive
the answer wg = 3, we know that g is cheaper than f , and we can determine and
output the edge set {e, g} as a correct minimum spanning tree. Note that querying
only the edge g would also have been sufficient for determining that {e, g} is a
minimum spanning tree. Therefore, OPT I = 1 but we have made two queries,
twice the optimal number. Algorithmic results for the minimum spanning tree
problem with uncertainty will be discussed in Section 6.

3 The Witness Algorithm
The main approach that has been used to obtain query-competitive algorithms
for computing with uncertainty, as introduced by Bruce et al. [1] and stated in
general form by Erlebach et al. [8], is based on considering witness sets: For a
given instance I = (S ,U, A,w) of an uncertainty problem, a set W ⊆ U is called a
witness set if it is impossible to determine a solution without querying at least one
element of W. In other words, W is a witness set if the instance (S ,U, AU\W ,w) is
unsolved. A natural idea for solving an uncertainty problem is now to repeatedly
determine a witness set and query all elements of that witness set (elements with



while instance is unsolved do
W ← a witness set of the current instance;
query all u in W;

end
Algorithm 1: Witness algorithm

a trivial uncertainty set can be skipped, of course), until the instance is solved.
An algorithm based on this template, shown in Algorithm 1, is called a witness
algorithm. Note that the instance changes in each iteration of the while-loop in the
algorithm, as the uncertainty sets of the elements in W are replaced by singleton
sets.

Most of the known results regarding query-competitive algorithms for uncer-
tainty problems are instantiations or adaptations of the witness algorithm. There
is a direct link between the size of witness sets and the competitive ratio, as shown
by the following lemma.

Lemma 1 ([1, 8]). If the size of each witness set W that a witness algorithm
queries is bounded by ρ, then the algorithm is strongly ρ-competitive

Lemma 1 can be proved by showing that any query solution must contain at
least one distinct element from each witness set queried by the algorithm.

We remark that if an algorithm during its execution queries k sets of elements
that are witness sets (and possibly some additional elements), we can infer that
any query solution must make at least k queries.

4 Selection and Related Problems

4.1 Identifying All Solutions
Kahan [12] considers the setting where the input consists of a set U of n elements
with uncertain values. The uncertainty set of each element u ∈ U is assumed to be
either a closed interval [ul, uh] or trivial (in which case the lower bound ul equals
the upper bound uh).

Maximum. For the problem of identifying all elements of U whose value is
equal to the maximum value maxu∈U wu in U, Kahan presents an algorithm that
makes at most OPT+1 queries [12]. The algorithm repeatedly queries a non-trivial
element u with largest upper bound uh until all elements with maximum value V
have been queried and no non-trivial element u with uh ≥ V remains. Kahan shows
that in any query solution at most one non-trivial element u with value uh ≥ V is



not queried. As the algorithm queries only elements u with uh ≥ V , it makes at
most OPT + 1 queries.

Considering the input U = {u, v} with Au = [1, 5] and Av = [3, 10] and either
wu = 2,wv = 4 or wu = 4,wv = 7, it is clear that making OPT + 1 queries in the
worst case is optimal among deterministic algorithms.

Median. Assume that n = |U | is odd. For the problem of identifying all elements
of U whose value is equal to the value of the median (i.e., the dn/2e-smallest value)
of {wu | u ∈ U}, Kahan also presents an algorithm that makes at most OPT + 1
queries [12]. Let k = dn/2e. It is clear that the value of the median must lie
in the range [ml,mh], where ml is the k-smallest lower bound and mh is the k-
largest upper bound. Kahan shows that there must be at least one element u ∈ U
with [ml,mh] ⊆ [ul, uh]. The algorithm for the median problem now works as
follows: Compute [ml,mh]. If there is only one element u whose interval intersects
[ml,mh], return u as the unique median and quit. If every element whose range
contains [ml,mh] has already been queried, we must have ml = mh and we output
all those elements as the set of medians and quit. Otherwise, we query any element
whose interval contains [ml,mh] and repeat. Again, Kahan shows that in any query
solution at most one non-trivial element u whose interval contains the median
value is not queried. As the algorithm queries only elements u whose intervals
contain the median value, it makes at most OPT + 1 queries, and this is again
optimal among deterministic algorithms.

Minimum Gap. Now consider the Minimum Gap problem, where the goal is
to identify all pairs of elements u, v ∈ U such that their distance |wu − wv| is
minimum. Note that for any two elements of U, their uncertainty sets imply lower
and upper bounds on the distance between these two elements (and we thus also
have an upper bound on the minimum gap). For the Minimum Gap problem,
Kahan presents a (weakly) 2-competitive greedy algorithm. The algorithm first
queries all non-trivial elements whose interval contains the interval of at least one
other element. These elements (except possibly one of them) must be queried by
any query solution. The algorithm then repeatedly queries a non-trivial element
u for which there is another element v such that the lower bound on the distance
between u and v is smaller than the current upper bound on the minimum gap, and
is the smallest current lower bound among all pairs of elements (with ties broken
in favor of an element whose interval minimizes the maximum distance to non-
trivial intervals on the left and right). Kahan analyzes the algorithm by considering
connected components of elements in an auxiliary graph that contains an edge
between any two elements whose distance lower bound is less than or equal to
the minimum gap. He shows that any query solution must contain at least half the



elements in a component (with at most one exception), while the greedy algorithm
may contain all its elements. Hence, the algorithm is 2-competitive. Furthermore,
one can show that no deterministic algorithm can achieve weak competitive ratio
smaller than 2 [12].

We remark that an alternative 2-competitive algorithm can be obtained using a
witness algorithm: Let L be the current lower bound on the minimum gap. While
there are two elements u, v whose distance lower bound is at most L (and at least
one of which is non-trivial), query all non-trivial elements in {u, v}. It is not dif-
ficult to see that the set {u, v} is a witness set, except possibly in the case where
u, v is the unique pair of elements whose distance equals the minimum gap. If
the algorithm terminates after k iterations, the algorithm makes at most 2k queries
and, by the remark after Lemma 1, any query solution makes at least k−1 queries.
Hence, the algorithm makes at most 2OPT + 2 queries, matching the performance
of Kahan’s algorithm.

4.2 Identifying One Solution
Khanna and Tan [13] also consider the setting where the input consists of a set
U of n elements with uncertain values and the uncertainty set of each element
u ∈ U is either a closed interval [ul, uh] or trivial. Defining ω to be the maximum
clique size of the interval graph induced by the uncertainty sets of the elements
of U, they present an ω-competitive algorithm for the problem of identifying a
k-smallest u ∈ U, for given k ∈ {1, . . . , n}. They generalize their result also to
the case where queries have different costs, i.e., querying u ∈ U has a cost of cu

instead of unit cost. Furthermore, they consider the variations of the problem
where the goal is to identify an element whose rank in U differs from the given
rank k at most by a factor of α (relative precision) or by an absolute difference
of α (absolute precision). They present O(ω)-competitive algorithms for these
variations. To show that no algorithm can be better than ω-competitive for the
problem of identifying an element with smallest value, Khanna and Tan consider
an instance with n elements where all uncertainty sets are [0, 2], one element has
value 0, and n − 1 elements have value 1. This instance has clique size ω = n. A
deterministic algorithm can be forced to query all n elements (all queries except
the last one return the value 1), while the optimal query set has size 1 and consists
of only the minimum element.

4.3 Computing or Approximating the Solution Value
Khanna and Tan [13] additionally consider the problem of approximating the sum
(or average) of the values of the n elements in U up to a certain relative preci-
sion α ≥ 1. They present an O(min{ω, α})-competitive algorithm that can also



handle different query costs. For the problem of approximating the sum of the
values of the elements in U with absolute precision in the case of unit query
costs, they remark that a simple greedy algorithm yields the optimal query set.
Furthermore, they consider the computation of functions that are composed of
aggregation functions and selection functions.

Charikar et al. [3] consider the evaluation of AND/OR trees and generaliza-
tions including MIN/MAX trees and present query algorithms with best possible
competitive ratio (or within a factor of 2 of the best possible competitive ratio in
the generalized case).

5 Geometric Problems
Bruce et al. [1] consider geometric problems in the Euclidean plane in the model
of computing with uncertainty. Each input element u ∈ U corresponds to a point
pu = (xu, yu) in the Euclidean plane. The uncertainty set Au of each u ∈ U is
assumed to be either trivial or the closure of an open, connected region. We refer
to an uncertainty set also as an uncertainty region in the following.

Bruce et al. introduce the concepts of witness sets and witness algorithms and
apply them to the maximal points problem and the convex hull problem. For a
property φ (such as being a maximal point or a point lying on the convex hull),
they classify each uncertainty region Au as always φ, partly φ, dependent φ or
never φ, depending on whether all points or some point in Au satisfy the property
φ and on whether this depends on the point locations in the other uncertainty
regions or not.

Maximal points. The task of the maximal points problem is to output all ele-
ments u ∈ U that are maximal, i.e., all u such that there is no element v ∈ U with
xv ≥ xu and yv ≥ yu where at least one of the two inequalities is strict. Bruce
et al. show that if there is a partly maximal region, then there is a witness set of
size 2, and if there is a dependent maximal region but no partly maximal region,
then there is a witness set of size 3. Hence, one can always find a witness set
of size at most 3 until the instance is solved (i.e., until all uncertainty regions
are either always maximal or never maximal), and by Lemma 1 the algorithm is
strongly 3-competitive. They also give a lower bound showing that no determin-
istic algorithm can be better than 3-competitive and prove that there is a linear
lower bound on the competitive ratio if arbitrary connected sets are allowed as
uncertainty regions.

Convex hull. The task of the convex hull problem is to identify all elements
u ∈ U that correspond to points that lie on the boundary of the convex hull of the



point set {pu | u ∈ U}. Assuming that the intersection between any two non-trivial
uncertainty regions that is non-empty contains at least an ε-ball for some ε > 0,
Bruce et al. show that there is always a witness set of size 3, implying a strongly 3-
competitive algorithm by Lemma 1. Furthermore, they show that no deterministic
algorithm can achieve competitive ratio less than 3, and that there is a linear lower
bound on the competitive ratio if arbitrary connected uncertainty sets are allowed.

6 Minimum Spanning Tree
Erlebach et al. [8] consider two variants of the minimum spanning tree (MST)
problem in the model of computing with uncertainty. In both variants, the task
of the algorithm is to output the edge set of a minimum spanning tree of a given
graph G = (V, E). The graph G here represents the structural information S that is
provided to the algorithm in addition to the uncertain information.

In the MST problem with edge uncertainty, the edge weights of the given graph
G = (V, E) are given in the form of uncertainty sets, i.e., we have U = E and the
weight of each edge e ∈ E is a value we contained in the uncertainty set Ae. The
uncertainty set of each edge is either trivial or an open set. Each edge has a lower
bound and an upper bound (the infimum and the supremum of its uncertainty set).
A strongly 2-competitive algorithm is obtained by adapting Kruskal’s algorithm
to the setting of uncertainty. Edges are inserted into a growing forest in non-
decreasing order of lower bounds. When a cycle is formed and if it is not possible
to identify an edge of maximum weight in the cycle, a witness set consisting of
two edges of the cycle can be identified and queried, and the algorithm is restarted.
Otherwise, an edge of maximum weight in the cycle is removed and the algorithm
continues. Erlebach et al. also show that no deterministic algorithm can achieve
competitive ratio smaller than 2. We illustrate the proof of this lower bound using
the graph shown in Figure 1 in Section 2.1: If the algorithm queries f first, the
weights of f and g are as shown in the figure. If the algorithm queries g first, the
weights are set to w f = 8 and wg = 5. In either case, the algorithm must make two
queries while there is a query solution with just one query, and the example can
be scaled up arbitrarily by repeating the triangle.

In the MST problem with vertex uncertainty, each vertex v ∈ V corresponds to
a point pv in the Euclidean plane and the weight of an edge {u, v} is the Euclidean
distance between pu and pv. Instead of the exact point locations, only an uncer-
tainty set Av is given for each vertex v. It is assumed that each uncertainty set is
either trivial or an open region. Erlebach et al. address the problem by observing
that it can be viewed as an edge uncertainty problem since the uncertainty sets of
the two endpoints of an edge e = {u, v} yield an uncertainty set for the weight of
e that is trivial or an open set. Hence, the 2-competitive algorithm for the edge



uncertainty case can be applied to the vertex uncertainty case, where the query
of an edge is replaced by queries of both endpoints of the edge. This yields a
strongly 4-competitive algorithm for MST with vertex uncertainty, and it is also
shown that no deterministic algorithm can achieve a better competitive ratio.

In [6], it is shown that the strongly 2-competitive algorithm for MST with edge
uncertainty can be generalized to the minimum weight matroid base problem.

7 Cheapest Set Problems
Many combinatorial problems can be viewed as set selection problems: The input
contains a set U of elements, some subsets of U are feasible solutions, and the
goal is to output a feasible solution of minimum cost (where the cost of a solution
could be the sum of the costs of its elements). Examples of problems that can be
seen as set selection problems include the minimum spanning tree problem (the
feasible solutions are the edge sets of all spanning trees), the minimum-weight
perfect matching problem (the perfect matchings are the feasible subsets of the
edge set), or minimum cut problems (the set of edges crossing a cut is a feasible
solution). Erlebach et al. [6] study the general formulation of the set selection
problem where the input specifies a set U and the family F of all feasible subsets
of U. Instead of the exact weight wu of each element u ∈ U, an uncertainty set
Au that can be an open interval or trivial is given. The task of the cheapest set
problem is to identify a set C in F that has minimum weight, i.e.,

∑
u∈C wu is

minimum among all sets in F .
For the case that all sets in F have cardinality at most d, it is shown that there

is an algorithm for the cheapest set problem that makes at most dOPT + d queries,
and that this is best possible among deterministic algorithms. The algorithm re-
peatedly queries all elements of a robust cheapest set until a cheapest set can be
identified. Here, a robust cheapest set is a set C in F with the following property:
For any choice of exact weights wu ∈ Au for the elements of u ∈ U \ C, there
are weights wu ∈ Au for each element u ∈ C such that C is a cheapest set. The
analysis shows that a robust cheapest set always exists and that all sets queried by
the algorithm, except at most one, are witness sets. By the remark after Lemma 1,
this shows that the algorithm makes at most dOPT + d queries.

For cheapest set problems where the sets have a special structure, better algo-
rithms are possible. As we have seen, the minimum spanning tree problem, al-
though corresponding to a cheapest set problem with sets of size n − 1 for graphs
with n vertices, admits a 2-competitive algorithm. Another family of cheapest
set problems with special structure considered in [6] is the family of problems
that satisfy the 1-gap property: If the instance is not solved, there exist two sets
B,C ∈ F such that |B ∪ C| ≤ d + 1, C is a robust cheapest set, and B is a set



that is potentially cheaper than C. An algorithm is presented that makes at most
dOPT + 1 queries to solve a cheapest set problem that satisfies the 1-gap property.
Furthermore, it is shown that the minimum-multicut problem in trees with d ter-
minal pairs satisfies the 1-gap property and can hence be solved with dOPT + 1
queries. A matching lower bound showing that this is best possible among deter-
ministic algorithms is also presented.

8 Computing OPT: The Verification Problem
In the competitive analysis of algorithms for computing with uncertainty, the num-
ber of queries is always compared with the best possible number OPT of queries
that suffice to produce the desired output. (Kahan [12] refers to this number OPT
as the lucky number.) The question then arises how difficult it is to calculate the
value of OPT (and possibly also a query solution consisting of OPT queries) if the
whole instance (S ,U, A,w) of a problem is provided as input (i.e., if also the exact
weights of all elements in U are provided to the algorithm). There are at least two
scenarios that motivate the computation of an optimal query solution: On the one
hand, if the performance of algorithms for computing with uncertainty is evalu-
ated in computational experiments, it is useful to be able to calculate OPT in order
to compare the number of queries made by different algorithms with OPT . On the
other hand, there may be application scenarios where the values of uncertain ele-
ments can change over time, but changes are rare events. Assume that the exact
values wu of all uncertain elements u ∈ U were known at a point in the past. Let
w′u denote the (unknown) current exact value of each uncertain element u ∈ U.
For each u ∈ U, an uncertainty set Au that guarantees w′u ∈ Au is given. The val-
ues w′u are unknown to the algorithm. We would now like to have an algorithm,
called a verification algorithm, that queries elements of U and produces one of
the following outputs:

(1) A valid solution x with respect to the current weights w′u.

(2) At least one element u ∈ U has changed its value (i.e., wu , w′u).

In scenarios where the typical case is that w′u = wu for all u ∈ U, querying the
elements of an optimal query set for (S ,U, A,w) is the best possible strategy for
a verification algorithm since it minimizes the number of queries that need to be
made until a valid solution x can be identified. Following the terminology of the
latter application setting, we refer to the (off-line) problem of computing an opti-
mal query set for a given instance (S ,U, A,w) (which is wholly presented to the
algorithm) as a verification problem (or the verification version of an uncertainty
problem).



It is easy to see that the verification versions of the maximum, median and
minimum gap problems discussed in Section 4 can be solved in polynomial time.
In [5], we show that the verification version of MST with edge uncertainty can
be solved in polynomial time while the verification version of MST with vertex
uncertainty is NP-hard.

For general cheapest set problems, Erlebach et al. [7] show that the verification
problem is NP-hard for sets of size d for any d ≥ 2. For the minimum multi-
cut problem in trees with d terminal pairs under uncertainty, they prove that the
verification version can be solved in polynomial time for fixed d and is NP-hard
if d is part of the input.

For the problem of outputting all maximal points for a given uncertain point
set, Charalambous and Hoffmann [2] show that the verification problem is NP-
hard. In their reduction, every uncertainty set is either trivial or consists of just
two points. The complexity of the verification problem for the case of connected
uncertainty sets is left open.

9 Model Variations

9.1 Refinement Queries

We have assumed so far that the query of an uncertain element u ∈ U returns
its exact value wu. One may also consider settings where the answer to a query
is not the exact value, but a reduction of uncertainty. For example, the query of
an uncertainty interval [5, 10] could produce a smaller uncertainty interval [7, 9].
The same uncertain element may now have to be queried several times, each query
reducing the uncertainty interval further. We can then again aim to minimize the
number of queries needed until a solution can be computed.

Tseng and Kirkpatrick [17] consider this problem variation in a setting where
each input number is given as a finite stream of bits (given in decreasing order of
significance) that are initially unknown to the algorithm. Reading an additional
bit from one of the bit streams corresponds to a query. The goal is to minimize the
number of bits that the algorithm needs to read before it can compute a solution.
Algorithms that perform well with respect to this measure are called input-thrifty
algorithms. Tseng and Kirkpatrick analyze the performance of input-thrifty al-
gorithms relative to a suitably defined intrinsic cost of the given instance. They
present an algorithm for the extrema testing problem that is within a logarithmic
factor of the intrinsic cost of the given instance. They mention that their results
also hold in a more general model where a query does not yield one extra bit of a
number but the query results are nested uncertainty intervals.

Gupta et al. [11] study the selection problem and the minimum spanning tree



problem in a general framework where queries yield refined estimates in the form
of sub-intervals. They distinguish all possible cases of combinations of closed in-
tervals, open intervals and trivial sets for the input uncertainty and for the results
of queries. Although there are 49 possible models in principle, they are able to
classify them into five different main categories and present results on the compet-
itive ratio for selection problems and minimum spanning tree problems for them.
For example, they show that the approach of witness algorithms can be general-
ized to the model with refinement queries for several of the five categories. They
also show that for models with closed intervals, query-competitive algorithms be-
come possible if the output is required to be a lexicographically smallest solution
rather than an arbitrary solution.

9.2 Non-adaptive Queries
Instead of allowing the algorithm to make queries one by one and take into account
the results of previous queries when selecting the next query, one can also require
that the algorithm specifies a set Q ⊆ U of queries only once. The queries are
then executed in parallel and the algorithm receives the exact values wu for all
queries u ∈ Q. This information must be enough for the algorithm to solve the
problem, i.e., no further queries are allowed. This means that the query results,
no matter which element of Au turns out to be the exact value of u ∈ Q, must be
sufficient to be able to identify a solution. A query set Q with this property is
called feasible. The problem of computing a smallest feasible query set Q in this
non-adaptive model is actually an off-line problem, as the feasibility of a query
set Q does not depend on the exact values of u ∈ U. Note that the problem of
determining a smallest feasible query set for the non-adaptive model is different
from the verification problem discussed in Section 8.

Much of the existing work on the non-adaptive query model has considered
the generalization where different queries have different costs, i.e., each u ∈ U
has a cost cu ≥ 0 and the goal is to compute a feasible query set Q of minimum
total cost. For given elements with closed intervals as uncertainty sets, Olston and
Widom consider selection and aggregation problems in the non-adaptive model,
assuming that the goal is to output a range [L,H] that contains the exact solution,
where H − L ≤ δ for a given precision requirement δ [16]. For example, it turns
out that for the problem of computing the sum of uncertain values up to a given
precision, determining an optimal feasible query set boils down to solving a knap-
sack problem. Feder et al. [10] further study the problem of determining the value
of the k-th smallest element, for any 1 ≤ k ≤ n, up to a precision of δ in the same
model and show that a feasible query set of minimum cost can be computed in
polynomial time via linear programming.

In another paper, Feder et al. [9] consider the shortest s-t path problem in the



non-adaptive query model. The input consists of a directed acyclic graph G =

(V, E) with distinguished vertices s, t ∈ V . The edge weights are uncertain. Each
uncertainty set Ae that contains the exact weight we of an edge e ∈ E is assumed to
be a closed interval. A set P of candidate s-t-paths is given explicitly as part of the
input or implicitly via a description in a certain recursive form (that captures, e.g.,
the set of all s-t paths in a series-parallel graph). For a given precision parameter
δ > 0, the task is to determine a range [L,H] with H − L ≤ δ that contains the
length of a shortest s-t-path in P with respect to the exact weights we ≥ 0 for all
e ∈ E. They show that the problem of computing a feasible query set of minimum
total cost can be solved in polynomial time if δ = 0, i.e., if the exact length of the
shortest path in P is sought. For δ > 0, they show that different restrictions of the
problem are NP-hard or co-NP-hard and so the general problem cannot be in NP
nor co-NP if NP , co-NP. They also show that the general problem is in Σ2.

9.3 Solutions of Minimum or Maximum Objective Value
Another question that has been studied for optimization problems with uncertain
input is determining the minimum or maximum possible objective value of an
optimal solution, where the minimum/maximum is taken over all possible exact
values that the uncertain input elements could take. This is an off-line problem,
and queries are not considered in this setting.

For example, Löffler and van Kreveld study the problem of minimizing or
maximizing a number of basic geometric measures for input point sets whose
locations are described by uncertainty sets. They consider measures such as di-
ameter, width, closest pair, smallest enclosing circle, smallest enclosing bounding
box, length of the convex hull, area of the convex hull, or length of a tour visiting
the points in a given order. For all these measures and different types of uncer-
tainty sets (e.g., disks, squares, line segments), they present hardness results or
efficient algorithms [14, 15]. Dorrigiv et al. [4] consider the setting where the
input consists of points in the plane whose uncertainty regions are disjoint disks.
They prove that even for this restricted setting it is NP-hard to determine the min-
imum or maximum possible cost of a Euclidean spanning tree of the exact points,
and that there is no FPTAS for these problems unless P = NP. They also give ap-
proximation algorithms with ratios depending on a certain separability parameter
of the given instance.

10 Directions for Future Work
We have aimed to give an overview of the existing body of work for computing
with uncertainty in models where the algorithm can query the exact values of



uncertain elements. Interesting questions that could be addressed in future work
include:

• For which uncertainty problems can randomized algorithms achieve bet-
ter competitive ratios than the best possible deterministic algorithms? In
particular, it would be interesting to see whether a randomized algorithm
can improve over the 2-competitive algorithm for the minimum spanning
tree problem under edge uncertainty [8]. The adversarial construction that
yields the lower bound of 2 for deterministic algorithms can be adapted to a
lower bound of 1.5 for randomized algorithms, but it is open whether there
exists a randomized algorithm with competitive ratio better than 2.

• Existing work has considered the adaptive query model where queries are
asked one by one, and the non-adaptive query model where all queries are
asked in parallel. It may be interesting to consider a model where queries
are asked in rounds. Each round makes a number of queries in parallel, and
the results of queries made in previous rounds can be taken into account
when determining the queries for the next round. For example, one could
study the trade-off between the number of rounds and the total query cost or
consider settings where the number of rounds is constrained to be at most a
given value k. Another direction would be to restrict the number of queries
that can be made in one round to a given number and aim to minimize the
number of query rounds.

• As far as we are aware, in the existing published work on computing with
uncertainty it has been assumed that the uncertainty of different input ele-
ments is independent, in the sense that receiving the answer of one query
does not provide any information about the exact values of the remaining
uncertain elements. One could imagine settings where querying one ele-
ment also reduces the uncertainty of other elements. For example, if the
input consists of three uncertain numbers together with the exact value of
their sum, learning the exact value of one number may potentially reduce
the size of the uncertainty sets of the other two numbers. It would be inter-
esting to study uncertainty problems with such dependencies between the
uncertainty sets of different input elements.

• As discussed in Section 9.3, for every uncertain problem input one can ask
for the minimum and maximum possible objective value of the solution,
over all possible exact input values that lie in the given uncertainty sets. One
can view the difference between the minimum and the maximum objective
value as uncertainty in the solution value, and an interesting direction could
be to study query strategies that reduce the uncertainty in the solution value
to a given target value.



• It would be interesting to develop additional techniques or even a general
theory that allows us to classify problems with respect to the best possible
query-competitive ratio that can be achieved. For example, we know that
the existence of small witness sets (that can be found by the algorithm) for
a problem leads to algorithms with small competitive ratio by Lemma 1,
but it is unclear whether there are further general criteria with this prop-
erty. As an example of a more general type of result, we mention that Ka-
han [12] considers the problem of computing a function f of n uncertain
real-valued elements. The n exact input values can be represented as a point
in n-dimensional space. The function f maps Rn to R and partitions its do-
main into regions where the function value is constant. Kahan relates the
achievable competitive ratio to the existence of a point on some partition
boundary that is tangent to an (n − 1)-dimensional hyperplane intersecting
k co-ordinate axes.

• As a query algorithm that solves an uncertainty problem can be viewed as
trying to learn the solution by asking queries about the input, it appears
that there may be connections to work in machine learning that could be
explored further.
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