
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch
 juraj.hromkovic@inf.ethz.ch


Homo Informaticus
Why Computer Science Fundamentals are
an Unavoidable Part of Human Culture

and How to Teach Them

Juraj Hromkovič
Department of Computer Science

ETH Zürich
juraj.hromkovic@inf.ethz.ch

Abstract

The goal of this article is on one hand to introduce informatics as a sci-
entific discipline in the general context of science and to outline its relation-
ships especially to mathematics and engineering, and on the other hand to
propose a way how to integrate computer science into school education.

1 Introduction
The development of human society is mainly determined by the ability to derive
knowledge and to find efficient ways of applying it. Let us explain this claim more
carefully. Human beings sample experiences by observations and experiments
and use them to generate knowledge by combining their experience with logical
thinking. The derived knowledge is used to develop procedures in order to reach
concrete goals. A crucial point in our considerations is that to use such procedures
one usually does not need to fully understand the knowledge used to obtain such
procedures. To an even higher extent, one does not need to understand the way in
which this knowledge was derived and verified. Let us illustrate this on a simple
example. The famous theorem of Pythagoras claims c2 = a2 + b2 in any right
triangle, where c is the length of the longest side (hypotenuse). This theorem
was used to fix the right angles when building houses and temples in the classical
antiquity. The workers only needed to build a triangle of sizes 5 units, 4 units, and
3 units in order to get a right angle, and for sure they did not need to understand
how the theorem of Pythagoras was discovered and how it was proven. Hence,
to successfully apply the derived knowledge, one did not need to master the high

juraj.hromkovic@inf.ethz.ch


qualification of an investigator. In this way, scientists changed and still change
society and became a crucial factor in human development.

Computer science was created as a natural step forward in the above described
development, when the following two conditions were satisfied.

1. Using the exact language of mathematics, one was able to discover and
describe procedures in such a way that no intellect was needed to apply
them. Executing them step by step, everything was unambiguous, and no
educated or trained person was needed to find the right interpretation of the
particular instructions of the procedure executed.

2. The technology enabling to execute the discovered procedures by machines
was developed, and languages providing the opportunity to “explain” uni-
versal machines what they have to do were designed.

In this context, we speak about automation. We let the machine execute not
only physical work, but also such human work considered as intellectual work
in the past. This is the reason why computer science is a mixture of mathemat-
ics and engineering. On the one hand, one uses the concepts, methods, and the
language of mathematics in order to understand the related things so exactly that
algorithms as unambiguously interpretable procedures can be developed in order
to solve a variety of problems everywhere in science, technology, and everyday
life. Here, mathematics is the instrument that has to be mastered together with the
specific area in which one tries to solve problems. On the other hand, developing
and improving the enabling technology is mostly engineering. This is not only
about hardware, but especially about software enabling us to communicate with
computers conveniently in high-level languages.

We see that computer science is a part of the natural development of science,
and it became a discipline that is crucial for the performance of the human society.
This contextual view is important when thinking about what computer science
actual is, and how to teach computer science in schools. We are asked not to teach
specific isolated concepts, but the discoveries, i. e., the paths from the motivation
coming from the general context of science to the final products of the research
work and engineering. As in its fundamentals computer science is very strongly
related to mathematics as its basic research instrument, we start with the question
“What is mathematics and how to teach it?” in the next section, and use the
derived point of view in the final section to propose the way of teaching computer
science in schools. Before the final section, however, we discuss engineering
as a missing subject in schools in Section 3. Again, we use this discussion in
order to show in the final section how teaching computer science can contribute
to understanding some basic concepts of engineering and how it integrates them
in the school curriculum.



2 Mathematics as the Language of Science and
Consequences of this View for Teaching it

What is mathematics? If you pose this question, you can get a lot of different
answers; frequently, even the response that this question is too hard to be an-
swered satisfactorily. A mathematician or a university student can tell you with
high probability that she or he proves theorems and thus investigates the struc-
ture and the properties of artificial mathematical objects, which can be useful to
model reality, or the relationships between different such objects. A high-school
student can tell you that mathematics consists of calculations that can be used to
solve some classes of mathematical tasks (also called problems) such as solving
quadratic equations or systems of linear equations or analyzing the properties of
a curve. Obviously, you can also get a response that mathematics is something
that is hard to understand, and that every “normal” human being can exist and be
successful without it. This is a frequent answer, and unfortunately it is more of a
rule than an exception.

Mathematics is the most powerful instrument humans ever have developed in
order to investigate the world around us. But it is taught in such a way that the
students do not realize this fact. Especially in high schools, they learn methods
(algorithms) to solve some given problems (for instance, to find a maximum of
a function). This may be also viewed positively as an intellectual challenge, be-
cause several methods are not easy to manage. But the bad news is that they can
learn to successfully apply methods for solving different problems without really
understanding why these methods work properly. High-school students often do
not have a good intuition of what infinity or limits are about, but they use these
concepts in a fuzzy way in order to analyze artificial functions without any rela-
tion to reality. What are we doing wrong? A lot. We have to start to think first
about what mathematics is, and then to try to find a way how to teach mathematics
in a proper way.

From my point of view, the best way to view mathematics is as a special lan-
guage developed for science, i. e., for knowledge generation. Going a few thou-
sand years back, people wanted to discover “objective” knowledge. The important
word here is the word objective. If you want to reach that, first of all you need
a language in which each statement has an unambiguous interpretation for every-
body who mastered this language. How to reach this? First of all, you need to give
an absolutely exact meaning to the words (notions) you use, because the words are
semantically the corner stones of each language. In this context, mathematicians
speak about axioms. Many people have the wrong impression that axioms are
claims in whose truthfulness we believe, but of which one is not able to prove
that they are true. This is wrong. Axioms are the precise definitions of basic no-



tions that describe our intuition about the meaning of these notions. Probably the
first concepts people tried to fix were notions such as number, equality, infinity,
point, line, distance, etc. What is very important to observe is that people needed
hundreds and in some cases thousands of years to come up with such definitions
that the community of philosophers and later mathematicians has accepted. Why
was all of this done? First of all, the language of mathematics is able to describe
objects, structures, properties, and relationships in an unambiguous way. In this
context we speak about the “descriptional” power of mathematics. Thus, people
were able to formulate exact claims this way, and so to express our knowledge
unambiguously. But this was only one side of the language of mathematics. The
language of mathematics was also used to derive new knowledge from the given
knowledge, i. e., as a knowledge generator. Leibniz formulated this role of mathe-
matics in a very nice way. He wanted to omit all political discussions and fighting
in different committees by simply expressing the real problems in the language
of mathematics, and then using calculations and logical derivations to obtain the
right solution. Interestingly, he called this “automation” of the human work. By
now we know that this dream of Leibniz cannot be achieved. There are two rea-
sons for that. First of all, because of its exactness, the language of mathematics
is restricted in its descriptional power, and so we cannot translate all real-world
problems into this language. Secondly, one of the most important discoveries of
the last century made by GÎŞÂűdel tells us that the argumentational power of
the language of mathematics is smaller than its descriptional power. This means
that one can formulate claims in current mathematics for which there do not exist
proofs of whether they are true or not.

What do scientists learn from that? The development of the language of math-
ematics is similar to the development of natural languages. You need to create new
words and describe their meaning in order to increase its descriptional power, and
to be able to speak about things you were not able to speak about before. More-
over, you need new concepts and words to be able to argue about matters you were
not able to argue before, i. e., in order to strengthen your capability of deriving new
knowledge by thinking. A very important point is that the process of developing
the language of mathematics is infinite. As long the number of basic, axiomatic
words of the language of mathematics is finite, one can always formulate claims
that are not provable within this mathematical language, and one has to introduce
new words in order to be able to prove them and so to make new discoveries. A
very nice example is the notion of infinity. Nobody saw anything infinite in the
real world, and even the physicists believe that the universe is finite. This means
that infinity is something artificial, simply an artificial product of mathematics.
But without this concept, most of the current science would not exist. Without
the notion of infinity, there would be no concept of limits and so we would not
be able to exactly express notions like actual speed or actual acceleration. Our



science simply would be somewhere before the discoveries of Newton. Hence,
without the “artificial” concept of infinity, one is strongly restricted in the ability
to discover our finite, real world.

Another example of a crucial notion is the concept of probability. Most of the
sciences, even the non-exact ones such as didactics, psychology, medicine, and
economy, heavily use this concept to model and investigate reality, and if they
would make predictions without this concept, they would have serious trouble to
convince society that their results are trustable to some extent and not only expert
opinions.

Why did we focus on the view of mathematics presented above? Because it
is the nature of mathematics that shows us which changes are necessary in or-
der to improve the education in mathematics for everybody. Based on this, we
recommend to adopt the following concepts.

1. Focus more on the genesis of the fundamental notions (concepts) of mathe-
matics. To define them took centuries, to prove most of the theorems took a
few years. Each new concept enabled to investigate so many things that no
single discovery can compete with introducing a fundamental concept. The
strengthening of mathematics as a research instrument is the main job of
mathematics, and deriving new concepts (not necessarily on the axiomatic
level) in mathematics provides the best, true picture of its nature. Without
this, nobody can really understand its role and usefulness. And only if one
understands the genesis of mathematics as the development of a language of
science and as a research instrument, one can be able to apply it regularly to
all areas of our life. Teaching mathematics this way can completely change
the behaviour of the members of our society. Instead of memorizing and
sampling facts provided, one would start to verify the degree of trustability
of claims sold as knowledge and to understand to which extent and under
which conditions one is allowed to take them seriously.

2. Concrete examples first, abstraction as a final discovery. One first has to
touch concrete problem instances and objects in order to get some intuition
about their properties. Then, one can formalize her or his intuition into a
formal concept. One has to follow the natural way of discovering that usu-
ally goes from concrete to abstract. To sell methods and theorems as final
products is as poor as teaching manuals for washing machines or Microsoft
office instead of teaching discoveries of physics, mechanics, and computer
science that enabled to develop these products.

3. Teach algorithmics instead of training calculation methods. Pupils learn
in schools to multiply arbitrarily large integers in decimal representations,
to solve quadratic equations and systems of linear equations, or to analyze



functions, etc. In all cases, most pupils learn to apply given methods, but
most of them do not understand why they work. It is more of a challeng-
ing memorizing than a deep understanding of the nature of the algorithms
used. One has to start to introduce problems instead of presenting methods
solving them, and ask the pupils and students to solve concrete problem in-
stances first and finally to discover an algorithm as a robust procedure that
is able to solve any of the infinitely many concrete problem instances of
the given problem. Discovering algorithms as well-functioning calculation
procedures offers another quality of education in mathematics than execut-
ing a given calculation method, which any pocket calculator can do faster
and more reliable. Teach programming as the art of exactly describing the
methods discovered in an unambiguously interpretable way in the language
of the machines, and strengthen the ability of exact communication this way.

4. Teach the principles of correct argumentation. Teach the notions of impli-
cation and quantifiers, and train direct and indirect proofs. Do not believe
that the pupils in high schools cannot learn to verify and to derive simple
proofs. They did not manage this in the past, because there was no effort
made to teach proving claims, or most effort in this direction was done in a
wrong way.

5. Guarantee the opportunity to the pupils to deal with the subjects as many
time as needed at an individual speed. Mathematics is one of the sciences
that needs a large number of iterative touchings of particular topics until one
is allowed to say “Eureka,” and gets a reasonable understanding of what it
is about. The trouble is that no teacher can assure this by herself or him-
self for everybody in the class. Another problem is that most textbooks of
mathematics are good collections of exercises, but explanations are written
more for teachers than for pupils. One way out is to change the style of
the textbooks. The textbooks should be written in such a way that pupils
and students would be able to learn from them by their own with a minimal
support from outside. Partitioning the discoveries into a number of small,
natural steps written in the language mastered by the pupils at the corre-
sponding age, and regularly giving the opportunity to verify whether one
understands the topic up to now properly are some of the basic principles
used to create good textbooks for mathematics.

Finally, one can ask how to reach the new teaching style for mathematics de-
scribed above. For sure, one cannot ask the high-school teachers to make this
change without showing them how to do this in detail. One also cannot ask ed-
ucationalists, who do not have a sufficiently deep contextual knowledge of math-
ematics to master these changes. The movement has to start at the universities,



where the teaching style has to change first. In order to speed up this process in
Switzerland, in our department at ETH ZÎŞÎŇrich we develop new textbooks for
teaching different topics of mathematics and computer science for all school lev-
els. Our experiments prove that mathematics can become one of the most favorite
subjects of pupils and students if taught in the way described above. Students can
successfully master topics that were considered to be too hard for them before,
and the marks in mathematics can be significantly higher than the average marks
over all topics.

For me, it is not a question of whether the proposed evolution of the education
in mathematics will come. It is only the question of the time at which particular
countries will need to adopt it. Since this is a service for the future generation, the
earlier the better.

3 Why Engineering is Not Allowed Not to be a Part
of Basic Education

As mentioned in the introduction, human society uses the knowledge discovered
in order to reach different goals more efficiently by developing various procedures
or different products. This is highly creative work that is beyond the pure learning
of facts and making calculations that can be completely automatized. The whole
process of engineering work starts with a description of the goals to be achieved.
After that, one starts to combine experience and fundamental knowledge of sci-
ence in order to design a solution that has to be implemented as a prototype. Next,
one has to test this prototype, modify, and improve it until an acceptable product
is produced.

In today’s schools, we find almost nothing about the concept of iterative spec-
ifying, testing, modifying, and improving the product of our work, not speaking
about fundamental constructive ways of creating original products. But this is
fundamental to human activities since forever. The current school systems ignore
this fact to a high extent and are more about teaching to memorize than teaching
to work in a creative way. One can explain this educational misconception by the
fact that, in contrast to basic scientific models of reality, the engineering work is
heavily dependent on experience that can be hardly formalized and thus taught.
The work of engineers as human experts cannot be described by an algorithm (a
method). However, this must not be a reason to remove engineering from educa-
tion, because one has also to learn to build her or his own experience over a longer
period of time in order to become an expert for a special area.

The crucial fact we want to point out is that computer science mastered to
formalize several basic concepts of engineering and made them available to our



schools as a result. Teaching computer science is a chance to introduce engineer-
ing as a highly creative, constructive activity to our educational system.

4 Teaching Computer Science as a Fundamental
Step in the Evolution of Our Educational Systems

In the two previous sections, we already outlined, with respect to improving teach-
ing of mathematics and introducing engineering, the principal contributions that
could be offered by teaching computer science in schools in a proper way. This
word “proper” is crucial for us, and thus we start by listing what we are not al-
lowed to do if we want to avoid a disaster when introducing computer science
to schools. In what follows, we present the most frequent mistakes that already
caused frustrations in different countries.

1. To teach how to work with concrete software products and call it computer
science. This activity destroyed the image of computer science as a scien-
tific discipline in the past.

2. To let computer science be taught as a part of “social media” by teachers
educated in human sciences only, and focusing on social, emotional and
psychological aspects of communication by new technologies.

3. To choose the topic to be taught by committees of experts offering their
favourite topic without looking at the whole context of science as presented
above in Section 2.

4. To sell computer science as the ability to work with computers.

5. To sell computer science as a special branch of mathematics.

6. To sell computer science as a pure engineering discipline.

7. To try to teach the newest achievements of computer science. Think about
what would happen if physics would try to do that instead of following the
history, and thus developing step by step our view of the physical world.

8. To try to sell computer science as a joy much easier than mathematics and
physics by avoiding any depth and thus a spiral curriculum, and instead
presenting one simple application after the other.

9. Going too much into technical details about concrete programming lan-
guages, software systems, or hardware.



While 1, 2, and 4 have been the main reasons for destroying the image of
computer science in the society, currently the points 7 and 8 are the major danger
for establishing computer science as a school subject.

After listing what we are not allowed to do, it is now time to switch to positive
recommendations and conceptual work. We do not want to make a proposal for the
content of a computer science curriculum, because our goal is not to go too much
into detail, and because, for sure, there are various good implementations of the
computer science subject in schools. What we try here is to recommend a strategy
and principles that are useful for designing a computer science curriculum that
can be accepted as a fundamental part of education in its generality for everybody,
and that essentially contributes to. . .

1. the understanding of our world (in this case with the focus on the artificial
world created by humans),

2. developing our way of thinking in a dimension that cannot be compensated
by teaching other school subjects,

3. providing knowledge that is useful and sometimes even expected for the
study of a variety of specialized scientific disciplines later (university stud-
ies, etc.).

As a byproduct, we have to aim to improve teaching overall, especially by
strengthening the subjects mathematics and natural sciences. We already pre-
sented the basic strategy how to design a computer science curriculum in Sec-
tion 2 about mathematics. We have to follow the genesis of computer science and
think about motivations and fundamental concepts introduced and discovered by
computer scientists from the point of view of science as a whole. For sure, we
have to think about or even discover which concepts are available to which extent
in which age, and to follow all the ideas for creating good teaching materials as
presented in Section 2. Let us be more concrete and present a few examples.

One can decide to introduce programming at the age between 8 and 14. The
first step is to deal with abstractions that enable us to unambiguously describe the
problem instances. Then we teach to sample experience by trying to find solutions
to concrete, special problem instances, whose size and complexity may grow with
growing experience. After some time, one can develop a strategy that works suc-
cessfully for a small collection of problem instances that we subsequently call a
problem. Having a solution strategy, one has to learn to communicate it, i. e., to
unambiguously describe it for anybody else. After that, we are allowed to start
teaching proper programming by describing our strategy as a program in a suit-
able programming language. We are not allowed to teach the list of all instruc-
tions (fundamental words) of a programming language. We have to start with very



few (10 to 15) fundamental instructions, and use modularity to create new words
(instructions) in order to make our communication with the computer more con-
venient. After writing programs, we let them run in order to verify their correct
functionality and learn to correct, improve, and modify our programs in order to
get a final product with which we are satisfied. Let us list some of the added values
when teaching the introduction to programming in the way described above.

1. Training and strengthening the abstraction in representing real situations by
drawing graphs, writing lists or tables with different kinds of elements.

2. Contributing to teaching mathematics by searching for a solving strategy,
instead of simply learning a method as a given product of the work of others.

3. Strengthening the ability to express matters and procedures in an exact way,
and so to improve the way used to communicate.

4. Recognizing that a language is not a given final product of human work, but
that any language is continuously developed, and that in case of a program-
ming language one can develop the language on her or his own with respect
to her or his personal demand.

5. Defining new instructions by describing the meaning of the new words by
subprograms, one learns the principle of a modular design that is common
and fundamental in engineering.

6. Introducing the concepts of testing, verifying, modifying, and improving is
the first contact with the creative, constructive work of engineers.

A really good teaching sequence for introductory programming can be created
if one focuses on the above listed added values and not on technical details of
programming languages and other software used.

Another nice example is teaching cryptography. Cryptography can be viewed
as the history of developing the notion “secure cryptosystem.” One can start with
the historical examples in order to introduce the basic terms decryption, encryp-
tion, key, and cryptosystem with a lot of creative work by designing and breaking
new, own cryptosystems. After defining the concept of “security” by Kerckhoff,
one can build the bridge to probability theory. The concept of probability was
used to design new cryptosystems and later to break them. One can wonder-
fully understand the importance and the usefulness of the concept of probability
studying the history of secret communication in this way. Then one can introduce
the formal mathematical definition of absolutely secure cryptosystems with re-
spect to the concept of probability, and recognize that such system cannot be built



for practical purposes. Finally, the concept of computational complexity offering
public-key cryptosystems is the way out, leading to the recent e-commerce.

What we try to repeatedly present as the key strategy is to follow the history
of the discoveries of particular concepts, methods, and ideas, and not to try to sell
finalized products of science. The creative work is the most (and may be even
the only really) exciting part of the study. Let us teach creativity by repeatedly
discovering things that were already discovered, up to the point where one is able
to discover something completely new. Forget about teaching facts, teach how to
verify the trustability of claims made by others. We are lucky, because we are
allowed to create a curriculum for a completely new subject. We can implement
principles, which the other subjects still did not recognize, and so contribute to
the evolution of the system of education. For those who would like to see de-
tailed implementations of the design principles presented above, we recommend
to following textbooks from our production [1, 2, 3, 6] or the book “Algorithmic
Adventures – from Knowledge to Magic” [4, 5].

References
[1] H.-J. Böckenhauer and J. Hromkovič. Formale Sprachen. Springer Vieweg,

2013.

[2] K. Freiermuth, J. Hromkovič, L. Keller, and B. Steffen. Einführung in die
Kryptologie. 2nd Edition. Springer Vieweg, 2014.

[3] J. Hromkovič. Berechenbarkeit. Vieweg+Teubner, 2011.

[4] J. Hromkovič. Sieben Wunder der Informatik – Eine Reise an die Grenze des
Machbaren. Vieweg+Teubner, 2008.

[5] J. Hromkovič. Algorithmic Adventures – From Knowledge to Magic.
Springer, 2009.

[6] J. Hromkovič. Einführung in die Programmierung mit LOGO. 3rd Edition.
Springer Vieweg, 2014.


	Introduction
	Mathematics as the Language of Science andConsequences of this View for Teaching it
	Why Engineering is Not Allowed Not to be a Part of Basic Education
	Teaching Computer Science as a FundamentalStep in the Evolution of Our Educational Systems

