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The aim of enumeration is to list all the feasible solutions of a given prob-
lem satisfying some constraints. Enumeration algorithms are particularly useful
whenever the goal of a problem is not clear and all its solutions need to be checked.
Since one peculiar property of biological networks is the uncertainty, a scenario
in which enumeration algorithms can be helpful is biological network analysis.
Modelling biological networks indeed introduce bias: arc dependencies are ne-
glected and underlying hyper-graph behaviours are forced in simple graph repre-
sentations to avoid intractability. Moreover regulatory interactions between all the
biological networks are omitted, even if none of the different biological layers is
truly isolated. Last but not least, the dynamical behaviours of biological networks
are often not considered: indeed most of the currently available biological net-
work reconstructions are potential networks, where all the possible connections
are indicated, even if edges/arcs and vertices are hardly present all together at the
same time. More details about these aspects of the biological networks can be
found in [8].

Our Contribution. We have shown four examples of enumeration algorithms
that can be applied to efficiently deal with some biological problems modelled by
using biological networks: enumerating central and peripheral nodes of a network,
enumerating stories, enumerating paths or cycles, and enumerating bubbles. No-
tice that the corresponding computational problems we define are of more general
interest and our results hold in the case of arbitrary networks.

1 Enumerating Central and Peripheral vertices
Structural analysis allows the identification of important and not important ver-
tices within a network and also for this reason has become very popular in many
disciplines. In the biological domain, the importance of a vertex can be defined
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in many different ways. With neighbourhood-based centrality measures, such as
degree, the importance of the vertices is inferred from their local connectivity and
the more connections a vertex has the more central it is. Closeness, eccentricity,
and shortest path based betweenness relies on global properties of a network, such
as distance between vertices.

We have focused on the enumeration of the radial and diametral vertices, i.e.
vertices that are central and peripheral according to the eccentricity notion of cen-
trality, and on the computation of the radius and diameter of biological networks
and of real world graphs in general. The diameter and radius of a graph are re-
spectively the maximum and minimum eccentricity among all its nodes, where
the eccentricity of a node x is the distance from x to its farthest node. Thus, in-
tuitively, the diametral source vertices are the vertices that hardly reach the other
ones, the diametral target vertices are the vertices hardly reachable from the other
ones, and the radial vertices are the vertices that easily reach all the vertices of
the network. In order to calculate the vertices that can be easily reached from any
other vertex, it is sufficient to consider the transposed graph.

We have presented the difub Algorithm, which is able to list all the diametral
sources and targets and to compute the diameter of (strongly) connected compo-
nents of a graph G = (V, E) in time O(|E|) in practice, even if, in the worst case,
the complexity is Θ(|V ||E|). Analogously, we have presented a new algorithm
to list all the central vertices and to compute the radius of (strongly) connected
components of a graph in almost O(|E|) time in practice.

The analysis of real world networks in general, such as citation, collaboration,
communication, road, social, and web networks, has attracted a lot of attention.
The fundamental analysis measures have been reviewed in [12]. Moreover the
size of these networks has been increasing rapidly, so that in order to study such
measures, algorithms able to handle huge amount of data are needed. Since the
algorithms available until now were not able to compute diameter and radius in
the case of huge real world graphs, the contribution of our algorithms is not just
limited to biological networks analysis, but extends also to the analysis of complex
networks in general. We thus have shown their effectiveness also for several other
kinds of complex networks. More details can be found in the work [5], which has
been the generalization of [4, 3]. Our algorithm in [3] has been used to compute
the diameter of Facebook Network (721.1M vertices, 68.7G edges, and diameter
41) with just 17 bfses in a popular work ([9], divulged by New York Times on
November 22, 2011).



2 Enumerating Stories
The problem of enumerating stories was motivated initially by the biological ques-
tion in [10] related to Metabolic networks, in particular to compound graphs, in
which vertices are compounds and there is an arc from a compound x to a com-
pound y if there is a metabolic reaction that consumes x and produces y. A subset
B corresponds to compounds that have been experimentally identified as having a
significantly higher or lower production in a given condition (for instance when an
organism is exposed to some stress). The aim is then to extract all the interaction
dependencies among the compounds in B which do not create cycles but at the
same time involve as many compounds as possible. These may require interme-
diate steps that concern compounds not in B, but the initial and final steps must
involve only compounds in B. A solution, that is a possible scenario of metabolic
dependencies, is called a (metabolic) story.

A metabolic story has to capture the relationship between the vertices of inter-
est in a way that allows us to define a flow of matter from a set of sources to a set
of target compounds. The need for this hierarchy between the compounds led us
to consider acyclic solutions. The maximality condition has been added in order
to capture all alternative paths between the sources and the targets. The problem
is then to “tell" all possible stories given as input a graph G and a subset B of the
vertices of G.

We have presented a polynomial algorithm to find one story and an exact but
exponential approach for the enumeration problem [1]. This definition is a gener-
alization of a well-known problem which is the feedback arc set problem. How-
ever, any polynomial-delay algorithm to enumerate feedback arc sets (ex: [14])
can only be used in some particular instances. Moreover we have shown that
finding a story with a specified set of sources or targets is NP-hard.

Our contribution appeared in [1] and its biological application in [11].

3 Enumerating Cycles or Paths
Studying paths or cycles of biological networks can be useful for several pur-
poses. In the case of interaction graphs, such as Gene Regulatory networks, the
importance of enumeration has been shown in [7]. These networks are directed,
their vertices are genes, and their arcs are signed, where the sign or weight of the
arcs indicates the causal relationship between the vertices, such as activation or
inhibition. In particular cycles and paths can be useful for studying dependencies
among vertices, the steady state and multistationarity of dynamic models.

We have considered the problem of enumerating paths and cycles in the case
of undirected graphs. This result can be useful for undirected Protein-Protein



Interaction networks, where nodes are proteins and edges are interactions, but in
the case of interaction networks in general, our approach neglects the effects of
the controls, i.e. the sign and direction of the arcs. In this latter case, the cycles
can be enumerated in the underlying undirected graph and a posteriori filtered or
ad hoc algorithms can be applied. The main question arising from our work, is
whether it is possible to extend our result to directed graphs in order to efficiently
deal also with this kind of networks.

On the other hand, our contribution is not just restricted to biological undi-
rected networks, but extends also to arbitrary undirected graphs. Listing all the
paths and cycles in a graph is a classical problem whose efficient solutions date
back to the early 70s. The best known solution in the literature is given by John-
son’s algorithm [6] and takes O((|C(G)|+1)(|E|+|V |)) and O((|Pst(G)|+1)(|E|+|V |))
time for a graph G = (V, E), where C(G) and Pst(G) denote respectively the set of
cycles and (s, t)-paths in G. However there exists graphs for which this algorithm
is not optimal.

We have presented the first optimal algorithm to list all the paths and cycles
in an undirected graph G. Our algorithm requires O(|E| +

∑
c∈C(G) |c|) time and is

asymptotically optimal: indeed, Ω(|E|) time is necessarily required to read G as
input, and Ω(

∑
c∈C(G) |c|) time is necessarily required to list the output. Moreover,

our algorithm lists all the (s, t)-paths in G optimally in O(|E| +
∑
π∈Pst(G) |π|) time,

observing that Ω(
∑
π∈Pst(G) |π|) time is necessarily required to list the output.

Our algorithm exploits the decomposition of the graph into biconnected com-
ponents and without loss of generality restricts to study paths and cycles in a same
biconnected component. Thus it recursively lists the cycles or (s, t)-paths using
the classical binary partition: given an edge e in G, list all the solutions containing
e, and then all the solutions not containing e, at each time modifying the graph. In
order to avoid recursive calls (in the binary partition) that do not list solutions, we
have used a certificate, as a data structure, whose cost for dynamically updating is
constant with respect to the number of solutions produced. In order to prove the
complexity obtained, we have exploited the properties of the binary recursion tree
corresponding to the binary partition. For more details, see [2].

4 Enumerating Bubbles
A DNA fragment, that is an RNA-coding sequence, is transformed in a Pre-mRNA
sequence, through the transcription phase, in which sequences of exons and se-
quences of introns alternatively occur. The removal of all the sequences of introns
and of some sequences of exons leads to the mRNA sequence, that is a protein-
coding sequence, that translated leads to a protein. Since not any exon is tran-
scribed in the mRNA sequence, there can be many possible mRNA sequences.



For instance, let 〈e1, i1, e2, i2, e3, i3, e4, i4〉 be a fragment of DNA, where for any
j, with 1 ≤ j ≤ 3, e j and i j are the j-th sequence of exons and introns respec-
tively. The possible resulting mRNA sequences containing e1 are 〈e1, e2, e3, e4〉,
〈e1, e2, e3〉, 〈e1, e2, e4〉, 〈e1, e3, e4〉, 〈e1, e2〉, 〈e1, e3〉, 〈e1, e4〉. The underlying phe-
nomenon is called alternative splicing and checking all the alternative events has
been shown in [13] to correspond to checking recognisable patterns in a de Bruijn
graph built from the reads provided by a sequencing project. The pattern corre-
sponds to an (s, t)-bubble: an (s, t)-bubble is a pair of vertex-disjoint (s, t)-paths
that only shares s and t.

Since the k-mers correspond to all words of length k present in the reads
(strings) of the input dataset, and only those, in relation to the classical de Bruijn
graph for all possible words of size k, the de Bruijn graph for NGS data may
then not be complete. We have ignored all the details related to the treatment of
NGS data using De Bruijn graphs, and consider instead the more general case of
finding all (s, t)-bubbles in an arbitrary directed graph. In particular we show the
first linear delay algorithm to identify all bubbles. A previous known algorithm
presented in [13] was an adaptation of Tiernan’s algorithm for cycle enumeration
[15] which does not have a polynomial delay. In the worst case the time elapsed
between the output of two solutions is proportional to the number of paths in the
graph, i.e. exponential in the size of the graph. Our algorithm is a non trivial
adaptation of Johnson’s cycle enumeration algorithm [6] in a directed graph with
the same theoretical complexity. Notably, the method we propose enumerates all
bubbles with a given source with O(|V |+ |E|) delay. The algorithm requires an ini-
tial transformation of the graph, for each source s, that takes O(|V |+ |E|) time and
space; this transformation reduces the enumeration of bubbles to the enumeration
of constrained cycles in a special graph.
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