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Using Quantum Computing to Learn Physics
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Abstract

Since its inception at the beginning of the twentieth century, quantum
mechanics has challenged our conceptions of how the universe ought to
work; however, the equations of quantum mechanics can be too computa-
tionally difficult to solve using existing computers for even modestly large
systems. Here I will show that quantum computers can sometimes be used to
address such problems and that quantum computer science can assign formal
complexities to learning facts about nature. Hence, computer science should
not only be regarded as an applied science; it is also of central importance
to the foundations of science.

1 Introduction
I first became aware that there is a deep problem at the heart of physics in a first
year chemistry class. The instructor began his very first lecture by writing an
equation on the board:

i~
∂ψ(r, t)
∂t

=

[
−~2

2m
∇2 + V(r, t)

]
ψ(r, t), (1)

and asked if anyone knew what this was. When no one did, he continued by say-
ing that this was the Schrödinger equation, the fundamental equation of quantum
mechanics, and that chemisty, biology and everything around us is a consequence
of this equation. He then concluded (perhaps hyperbolically) by saying that the
only problem is that no one knows how to solve it in general and for this reason
we had to learn chemistry. For me, this lesson raised an important question: how
can we be certain that the Schrödinger equation correctly describes the dynamics
of these systems if solving it is computationally intractable?

This is the central question of this article, and in the course of addressing it
we will not only challenge prevailing views of experimental quantum physics but
also see that computer science is fundamental to the foundations of science.

The essence of the problem is that relatively simple quantum systems, such
as chemicals or spin lattices, seem to be performing tasks that are well beyond



the capabilities of any conceivable supercomputer. This may come as a surprise
since (1) is a linear partial differential equation that can be solved in time polyno-
mial in the dimension of the vector ψ, which represents the “quantum state” of an
ensemble of particles. The problem is that the dimension of the vector ψ grows
exponentially with the number of interacting particles. This means that even writ-
ing down the solution to the Schrödinger equation is exponentially expensive, let
alone performing the operations needed to solve it.

Richard Feynman was perhaps the first person to clearly articulate that this
computational intractability actually poses an opportunity for computer science [9].
He suspected that these seemingly intractable problems in quantum simulation
could only be addressed by using a computer that possesses quantum properties
such as superposition and entanglement. This conjecture motivated the field of
quantum computing, which is the study of computers that operate according to
quantum mechanical principles.

The fact that quantum computing has profound implications for computer sci-
ence was most famously demonstrated by Shor’s factoring algorithm, which runs
in polynomial time [20] whereas no polynomial time algorithm currently exists for
factoring. This raises the possibility that a fast scalable quantum computer might
be able to easily break the cryptography protocols that make secure communica-
tion over the internet possible. Subsequently, Feyman’s intuition was shown to
be correct by Seth Lloyd [16], who showed that quantum computers can provide
exponential advantages (over the best known algorithms) for simulating broad
classes of quantum systems. Exponential advantages over existing algorithms
have also been shown for certain problems related to random walks [7], matrix
inversion [13, 24] and quantum chemistry [15], to name a few.

At present, no one has constructed a scalable quantum computer. The main
problem is that although quantum information is very flexible it is also very frag-
ile. Even looking at a quantum system can irreversibly damage the information
that it carries. As an example, let’s imagine that you want to see a stationary elec-
tron. In order to do so, you must hit it with a photon. The photon must carry a
substantial amount of energy (relative to the electron’s mass) to measure the posi-
tion precisely and so the interaction between the photon and electron will impart
substantial momentum; thereby causing the electron’s momentum to become un-
certain. Such effects are completely negligible for macroscopic objects, like a car,
because of they have substantial mass; whereas, these effects are significant in
microscopic systems. This behavior is by no means unique to photons and elec-
trons: the laws of quantum mechanics explicitly forbid learning information about
a general quantum state without disturbing it.

This extreme hypersensitivity means that quantum devices can lose their quan-
tum properties on a very short time scale (typically a few milliseconds or mi-
croseconds depending on the system). Quantum error correction strategies can



correct such problems [18]. The remaining challenge is that the error rates in
quantum operations are still not low enough (with existing scalable architectures)
for such error correction schemes to correct more error than they introduce. Nonethe-
less, scalable quantum computer designs already operate close to this “threshold”
regime where quantum error correction can lead to arbitrarily long (and arbitrarily
accurate) quantum computation [10].

What provides quantum computing with its power? Quantum computing su-
perficially looks very much like probabilistic computing [18]. Rather than having
definite bit strings, a quantum computer’s data is stored as a quantum superposi-
tion of different bit strings. For example, if v0 = (1, 0)t and v1 = (0, 1)t (where
·t is the vector transpose) then the state (v0 + v1)/

√
2 is a valid state for a single

quantum bit. This quantum bit or “qubit” can be interpretted as being simultane-
ously 0 and 1 with equal weight. In this case, if the state of the qubit is measured
(in the computational basis) then the user will read (0, 1)t with 50% probability
and (1, 0)t with 50% probability. Quantum computers are not just limited to hav-
ing equal “superpositions” of zero and one. Arbitrary linear combinations are
possible and the probability of measuring the quantum bitstring in the quantum
computer to be k (in decimal) is |vk|

2 for any unit vector v ∈ CN . Therefore, al-
though quantum states are analog (in the sense that they allow arbitrary weighted
combinations of bit strings) the measurement outcomes will always be discrete,
similar to probabilistic computing.

The commonalities with probabilistic computation go only so far. Quantum
states are allowed to be complex vectors (i.e. v ∈ C2n

) with the restriction that
vv∗ = 1 (here ·∗ is the conjugate–transpose operation); furthermore, any attempt to
recast the quantum state as a probability density function will result (for almost all
“pure” quantum states) in a quasi–probability distribution that has negative prob-
ability density for certain (not directly observable) outcomes [23]. The state in a
quantum computer is therefore fundamentally distinct from that of a probabilistic
computer.

In essence, a quantum computer is a device that can approximate arbitrary ro-
tations on an input quantum state vector and measure the result. Of course giving
a quantum computer the ability to perform any rotation is unrealistic. A quantum
computer instead is required to approximate these rotations using a discrete set of
gates.

The quantum gate set that is conceptually simplest consists of only two gates:
the controlled–controlled not (the Toffoli gate), which can perform any reversible
Boolean circuit, and an extra quantum gate known as the Hadamard gate (H).
This extra gate promotes a conventional computer to a quantum computer. The
Hadamard gate which is a linear operator that has the following action on the “0”



and “1” quantum bit states:

H :
[
1
0

]
7→

[
1/
√

2
1/
√

2

]
,

H :
[
0
1

]
7→

[
1/
√

2
−1/
√

2

]
. (2)

In other words, this gate maps a zero–bit to an equal weight superposition of zero
and one and maps a one–bit to a similar vector but with an opposite sign on one of
the components. The Toffoli gate is a three–qubit linear operator that, at a logical
level, acts non–trivially on only two computational basis vectors (i.e. bit string
inputs): 110 7→ 111 and 111 7→ 110. All other inputs, such as 011, are mapped to
themselves by the controlled–controlled not gate. Using the language of quantum
state vectors, the action of the Toffoli gate on the two–dimensional subspace that
it acts non–trivially upon is

Tof :
[
0
1

]
⊗

[
0
1

]
⊗

[
1
0

]
7→

[
0
1

]
⊗

[
0
1

]
⊗

[
0
1

]
Tof :

[
0
1

]
⊗

[
0
1

]
⊗

[
0
1

]
7→

[
0
1

]
⊗

[
0
1

]
⊗

[
1
0

]
(3)

This finite set of gates is universal, meaning that any valid transformation of
the quantum state vector can be implemented within arbitrarily small error using
a finite sequence of these gates [3]. These gates are also reversible, meaning that
any quantum algorithm that only uses the Hadamard and Toffoli gates and no
measurement can be inverted. I will make use of this invertibility later when we
discuss inferring models for quantum dynamical systems.

Measurement is different from the operations described above. The laws of
quantum mechanics require that any attempt to extract information from a generic
quantum state will necessarily disturb it. Measurements in quantum computing
reflect this principle by forcing the system to irreversibly collapse to a compu-
tational basis vector (i.e. it becomes a quantum state that holds an ordinary bit
string). For example, upon measurement

√
2
3

−

√
1
3

−−−−−−−−−−−→measurement


[1, 0]t with P = 2/3

[0, 1]t with P = 1/3
, (4)

where [1, 0]t represents logical 0 and [0, 1]t is the logical 1 state. There clearly
is no way to invert this procedure. In this sense, the act of measurement is just
like flipping a coin. Until you look at the coin, you can assign a prior probability



distribution to it either being heads or tails, and upon measurement the distri-
bution similarly “collapses” to either a heads or tails result. Quantum computa-
tion thus combines elements of reversible computing with probabilistic comput-
ing wherein the inclusion of the Hadamard gate introduces both the ability to have
non–positive quantum state vectors and superposition (the ability for quantum bits
to be in the state 0 and 1 simultaneously) and thereby promotes the system to a
universal quantum computer.

Although quantum computing is distinct from probabilistic computing, it is
unclear whether quantum computation is fundamentally more powerful. Using
the language of complexity theory, it is known that the class of decision problems
that a quantum computer can solve efficiently with success probability greater
than 2/3, BQP, obeys BPP ⊆ BQP ⊆ PSPACE. Here BPP is the class of deci-
sion problems that can be efficiently solved with success probability greater than
2/3 using a probabilistic Turing machine, and PSPACE is the class of problems
that can be solved using polynomial space and (possibly) exponential time using
a deterministic Turing machine. It is strongly believed that BPP ⊂ BQP since ex-
ponential separations exist between the number of times that quantum algorithms
and the best possible conventional algorithms have to query an oracle to solve cer-
tain problems [18, 7]; however, the precise relationship between the complexity
classes remains unknown.

The apparent difficulty of simulating large quantum systems creates an inter-
esting dilemma for quantum computing: although true quantum computers are
outside of our capabilities at present, it would appear that purpose built analog
devices could be used to solve problems that are truly difficult for conventional
computers. Recent experiments by the NIST group have demonstrated that a
two–dimensional lattice of ions with over two hundred and seventeen ions with
programmable interactions can be created [6]. This device can be thought of as a
sort of analog quantum simulator in the sense that these interactions can be cho-
sen such that the system of ions approximate the dynamics of certain condensed
physics models known as Ising models.

On the surface, it would seem that this system of ions may be performing
calculations that are beyond the reach of any conceivable supercomputer. If the
quantum state for such a system were “pure” (which roughly speaking means that
it is an entirely quantum mixture) then the state vector would be in C2217

. If the
quantum state vector were expressed as an array of single precision floating point
numbers then the resultant array would occupy roughly 1.3 × 1061 megabytes of
memory. It is inconceivable that a conventional computer could even store this
vector, let alone solve the corresponding Schrödinger equation.

A conventional computer does provide us with something that the analog sim-
ulator does not: the knowledge that we can trust the computer’s results. The
analog simulator has virtually no guarantees attached that the dynamical model



that physicists believe describes the system is actually correct to a fixed number
of digits of accuracy. Finding a way to use computers to inexpensively certify that
such quantum devices function properly not only remains an important challenge
facing the development of new quantum technologies but it also poses a funda-
mental restriction on our abilities to understand the dynamics of large quantum
systems, provided that Feynman’s conjecture is correct.

2 Why is Certification A Problem?
In essence, the central question of this paper is that of whether we can practically
test quantum mechanical models for large quantum systems. Although this is
a question about physics, it can only be resolved by using the tools computer
science. In particular, we will see that formal costs can be assigned to model
inference and that computational complexity theory can provide profound insights
about the limitations of our ability to model nature using computers.

The importance of computational complexity to the foundations of physics has
only recently been observed. In particular, the apparent emergence of thermody-
namics in closed quantum systems is, in some cases, a consequence of the cost
of distinguishing the “true” quantum mechanical probability distribution from the
thermodynamical predictions scaling exponentially with the number of particles
in the ensemble [21, 19]. This is especially intriguing since it provides further
evidence for the long held conjecture that there is an intimate link between the
laws of thermodynamics in physics and computational complexity [17].

The problem of modeling, or certifying, quantum systems is essentially the
problem of distinguishing distributions. Although the problem of distinguishing
distributions has long been solved, the problem of doing so under particular op-
erational restrictions can actually be surprisingly subtle (even in the absence of
quantum effects). To see this, consider the following problem of deciding whether
a device yields samples from a probability distribution p(x) or from another distri-
bution q(x). The probability of correctly distinguishing which one of two possible
discrete probability distributions p(x) and q(x) based on a single sample, using the
best possible data processing technique, is given by the variational distance:

Pdist =
1
2

1 +
1
2

∑
x

|p(x) − q(x)|

 . (5)

Given any non–zero bias in this measurement, the Chernoff bound shows that the
success probability can be boosted to nearly 100% by repeating the experiment a
logarithmically large number of times.

For typical quantum systems, Pdist is of order one [21] which means that in
principle such systems are easy to distinguish. In practice, the processing method



that efficiently distinguishes p(x) from q(x) may be impractically difficult to find
in quantum mechanical problems. Thus distinguishing typical quantum systems
can still be challenging.

As a motivating example, assume that you have a dice with 10, 000 sides that
is promised to either be fair (i.e. p(x) = 1/10, 000) or that the probability dis-
tribution describing the dice was itself randomly drawn from another distribu-
tion such that Ex(p(x)) = 1/10, 000 and the variance in the probabilities obeys
Vx(p(x)) = 10−8. This problem is substantially different from the base problem of
distinguishing two known distributions because q(x) is unknown but information
about the distribution that q(x) is drawn from is known. A number of samples that
scales at least as the fourth–root of the dimension are needed to distinguish the dis-
tributions with high probability (over samples and p(x)) [21, 11]. This problem
is not necessarily hard: a rough lower bound on the number of samples needed is
10.

Distinguishing typical probability distributions that arise from quantum me-
chanics from the uniform distribution is similar to the dice problem except that in
large quantum systems “the dice” may have 2200 sides or more. In the aforemen-
tioned example a minimum of roughly 250 samples will be needed to distinguish
a quantum distribution from the uniform distribution with probability greater than
2/3 [21, 11]. Although collecting 250 samples may already be prohibitively large,
the number of samples needed at least doubles for every 4 qubits that are added to
the quantum system. This means that distinguishing typical quantum probability
becomes prohibitively expensive as quantum bits (i.e. particles) are added to the
system, despite the fact that Pdist is of order one.

In short, quantum dynamics tend to rapidly scramble an initial quantum state
vector, causing the predictions of different quantum mechanical models to become
practically indistinguishable given limited computational resources. We will see
below that complexity theory provides strong justification for the impracticality
of distinguishing quantum distributions in general. In the following I will assume
that the reader is familiar with standard complexity classes P, NP, the polynomial
hierarchy, #P and so forth. For brevity, the term efficient will mean “in polynomial
time”.

3 Boson Sampling
Scott Aaronson and Alex Arkhipov provided the strongest evidence yet that quan-
tum systems exist that are exponentially difficult to simulate using conventional
computers in their seminal 2011 paper on “Boson Sampling” [1]. Their work pro-
poses a simple experiment that directly challenges the extended Church–Turing
thesis, which conjectures that any physically realistic model of computation can



be efficiently simulated using a probabilistic Turing machine. Their Boson sam-
pler device is not universal and is trivial to simulate using a quantum computer.
The remarkable feature of this device is that it draws samples from a distribution
that a conventional computer cannot efficiently draw samples from under reason-
able complexity theoretic assumptions. In particular, an efficient algorithm to
sample from an arbitrary Boson sampler’s outcome distribution would cause the
polynomial hierarchy to collapse to the third level, which is widely conjectured to
be impossible.

A Boson sampling experiment involves preparing n photons (which are Bosons)
in n different inputs of a network of beam splitters, which are pieces of glass that
partially reflect and transmit each incident photon. An illustration of this device is
given in Figure 1 (a). The Boson sampler is analogous to the Galton board, which
is a device that can be used to approximately sample from the binomial distribu-
tion. The main difference between them is that the negativity of the quantum state
(manifested as interference between the photons) causes the resultant distribution
to be much harder to compute than the binomial distribution, as we will discuss
shortly. At the end of the protocol, detectors placed in each of m different possible
output “modes” count the number of photons that exit in each mode.

The sampling problem that needs to be solved in order to simulate the action
of a Boson sampler is as follows. Let A ∈ Cm,n be the transition matrix mapping
the input state to the output state for the Boson sampling device. Let us define
S = (s1, . . . , sm) to be the experimental outcome observed, i.e. a list of the number
of photons observed in mode 1, . . . ,m. Then let AS ∈ C

n×n be the matrix that has
s1 copies of the first row of A, s2 copies of the second and so forth. Then the
probability distribution over S given A is [1]

Pr(S |A) =
|Per(AS)|2

s1! · · · sm!
, (6)

where Per(·) is the permanent of a matrix, which is like a determinant with the
exception that positive cofactors are always used in the expansion by minors step.
It is important to note, however, that a quantum computer is not known to be able
to efficiently learn these probabilities and in turn the permanent.

Permanent approximation is known to be #P complete [22, 1], where #P is
the class of problems associated with counting the number of satisfying assign-
ments to problems whose solutions can be verified efficiently. Such problems can
be extremely challenging (much harder than factoring in the worst cases), which
strongly suggests that the distribution for these experiments will be hard to find for
certain cases if n � 100. The work of Aaronson and Arkhipov use the hardness of
permanent approximation (albeit indirectly) to show that even drawing a sample
from this distribution can be computationally hard under reasonable complexity
theoretic assumptions. In contrast, drawing a sample from the quantum device
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Figure 1: (a) Schematic representation of boson sampling experiment where blue
squares are beam splitters. (b) Quantum inference experiment where pink squares
represent a quantum computer simulation of the inverse of a hypothetical transfor-
mation carried out by (a). If the guess is correct (or nearly so) all the output bosons
will be measured in the same mode that they were input with high probability.

is easy (modulo the engineering challenges involved in preparing and detecting
single photons [4]) since it involves only measuring the number of photons that
leave the Boson sampling device in each of the m possible modes. This provides a
compelling reason to believe that there are simple physical processes that are too
difficult to simulate using any conceivable conventional computer.

Although the Boson sampling distribution can be hard to compute, it can
be easily to distinguished from the uniform distribution because information is
known about the asymptotic form of the distribution is known [2]. Despite this,
there are other distributions that are easy to sample from but are hard to distinguish
from typical Boson sampling distributions [2]. Thus certifying Boson samplers
can still be a difficult. A more general paradigm is needed to approach certifying,
or more generally learning, an underlying dynamical model. Bayesian inference
provides a near ideal framework to solve such problems.



4 Bayesian Inference
Bayes’ theorem provides a convenient way to find the probability that a particular
model for a system is true given an observed datum D and a set of prior assump-
tions about the model H. The prior assumptions about the model can be encoded
as a probability distribution Pr(H) that can be interpreted as a probability that you
subjectively assign to represent your belief that the true model is H. Constraints
on the classes of models allowed can also be naturally included in this framework
by changing the support of the prior distribution (i.e. disallowed models are given
zero a priori probability). The probability that model H is correct, given the prior
distribution and D is

Pr(H|D) =
Pr(D|H) Pr(H)

Pr(D)
, (7)

where Pr(D) is a normalizing constant. The resultant distribution is known as the
posterior distribution, which then becomes the prior distribution for the next ex-
periment. This procedure is called “updating” and Pr(D|H) is called the likelihood
function.

There is a strong connection in Bayesian inference between learning and simu-
lation. This link is made explicit through the likelihood function, Pr(D|H), whose
computation can be thought of as a simulation of H. It further suggests that if
the likelihood function cannot be computed efficiently then updating your beliefs
about the correct model for the system, given an observation of the system, is also
not efficient. This can make Bayesian inference intractable.

Let’s return to the problem of testing models for quantum systems. In this con-
text, Bayesian inference can be extremely difficult to perform using conventional
computers because the likelihood function is evaluated by simulating a quantum
system, which we have argued can be exponentially expensive modulo reasonable
complexity theoretic assumptions. This raises an interesting philosophical ques-
tion: does computational complexity place fundamental limitations on our ability
to understand systems in nature? Although this may be difficult to show in gen-
eral (owing to the plethora of ways that a quantum system can be probed and the
data can be analyzed), it is possible to show that this conjecture holds in certain
limiting cases:

Claim 1. There exist finite-dimensional models Ha and Hb for a quantum me-
chanical system and fixed observablesM such that models Ha and Hb cannot be
efficiently distinguished using Bayesian inference based on outcomes ofM with-
out causing the polynomial hierarchy to collapse and yet quantum computing can
be used to efficiently distinguish these models using Bayesian inference and the
sameM.



The proof of the first half of this claim is straight forward. Let us consider
Ha and Hb to be Boson sampling experiments with different matrices Aa and Ab

which are taken to be Gaussian random matrices. Let us further take M to rep-
resent the measurement of the number of Bosons in each of the modes. We saw
that the likelihood of a particular outcome D being observed involves calculating
the permanents of (Aa)S and (Ab)S [1]. Efficient approximation of the permanent
causes the polynomial hierarchy to collapse [1] and hence, modulo reasonable
complexity theoretic assumptions, Bayesian inference cannot be used to distin-
guish between these models efficiently usingM.

A quantum computer cannot be expected to inexpensively compute the like-
lihood function directly because that entails computing a permanent: a task for
which neither a fast quantum or conventional algorithm is known. So how is it
that a quantum computer can provide an advantage? The answer is that a quan-
tum computer can be used to change the problem to one that is easily decidable.
The key freedom that a quantum computer provides is the ability to perform basis
transformations that, in effect, allow M to be transformed into a different mea-
surement operator whose outcomes provide clear evidence for some models over
others. The presence of a quantum computer (that is coupled to the experimental
system) therefore gives us the ability to solve the problem of model distinction in
a completely different way.

Boson samplers can be efficiently simulated by a quantum computer. Indeed, a
Boson sampler is simply a linear optical quantum computer without the ability to
adaptively control quantum gates based on prior measurements (which is needed
for universality). This means that a universal quantum computer trivially has all
of the computational power of a Boson sampler [1]. Furthermore, closed system
quantum dynamics are always be invertable (unless the system is measured) as
we discussed in the context of quantum computing above. This means that we can
scramble the initial state v by running it through the Boson sampler and attempt to
approximately unscramble it using a quantum computer that simulates the inverse
of the map that the Boson sampler Ha would perform. This inversion experiment is
illustrated in Figure 1 (b). The forward evolution under the experimental system
and approximate inversion under the quantum computer of the initial quantum
state vector is

v 7→ U−1
a Uv, (8)

where Ua is the quantum transformation generated by Ha, Ub is the quantum trans-
formation generated by Hb and U is an unknown transformation promised to be
either Ua or Ub. If, for example, U = Ua then this protocol performs:

v 7→ U−1
a Uav = v, (9)

meaning that we will always observe as output the same state that was used as the



input. In contrast, if U = Ub then this process leads to

v 7→ U−1
a Ubv , v. (10)

In fact, with high probability over the matrices Aa and Ab this transformation will
lead to a vector that is nearly orthogonal to v if N is large [2, 11], i.e. v∗U−1

a Ubv ≈
0, where ∗ is the conjugate transpose operation. In Boson sampling experiments,
v is taken to be a Boson number eigenstate meaning that a measurement of the
number of Bosons in each mode will yield the same value every time. This means
that we can easily use the same M to determine whether U−1

a U maps v back to
itself, which should happen with probability 1 if U = Ua and with low probability
if U = Ub. Thus the decision problem can be solved efficiently using Bayesian
inference in concert with quantum computing, which justifies the above claim.

Quantum computation can therefore be used to convert seemingly intractable
problems in modeling quantum systems into easily decidable ones. Also, by using
a quantum computer in place of an experimental device we can assign a computa-
tional complexity to performing experiments. This allows us to characterize facts
about nature as “easy” or “hard” to learn based on how computationally expen-
sive it would be to do so using an experimental system coupled to a quantum
computer; furthermore such insights are valuable even in absentia of a scalable
quantum computer.

5 A New Way to Approach Physics
A quantum computer is more than just a computational device: it also is a univer-
sal toolbox that can emulate any other experimental system permitted by quantum
theory. Put simply, if a quantum computer were to be constructed that accepts
input from external physical systems then experimental physics would become
computer science. When seen in this light, computational complexity becomes
vital to the foundations of physics because it gives insights into the limitations
of our ability to model, and in turn understand, physical systems that are no less
profound than those yielded by the laws of thermodynamics.

It is assumed that the reader is familiar with quantum computing in the fol-
lowing. In particular, Theorem 2 and Algorithm 1 are provided for the benefit of
experts in quantum computation. The details of these results can, nonetheless, be
safely ignored by the reader.

This approach to learning physics using quantum computers is simply an elab-
oration on the strategy used above in (8) to (10). As an example of this paradigm
(see [26, 25]) consider the following computational problem: assume that you are
provided with an experimental quantum system that you can evolve for a spec-
ified evolution time t. We denote the transformation that this system enacts by



E(t) : CN 7→ CN that can be applied to an arbitrary input quantum state for any
t ∈ R. The computational problem is to estimate the true model for E(t), denoted
H, in a (potentially continuous) family of models {H} using a minimal number of
experiments and only efficient quantum computations.

In order to practically learn H, we need to have a concise representation of
the model. We assume that each H is parameterized by a vector x and explicitly
denote a particular model H as H(x) when necessary. As a clarifying example, let
us return to the case of the Schrödinger equation (1) with the case where V(r) =
1
2kr2:

i~
∂ψ(r, t)
∂t

=

[
−~2

2m
∇2 +

1
2

kr2
]
ψ(r, t). (11)

This problem, which corresponds to a quantum mechanical mass–spring sys-
tem (harmonic oscillator), it may be that neither the mass of the particle m nor
the spring constant k are known accurately. In this case, the model parame-
ters can be thought of as a vector x = [m, k] and the model itself is speci-
fied by H(x) =

[
−~2

2m ∇
2 + 1

2kr2
]
. Such models are known in quantum mechan-

ics as Hamiltonians and they uniquely specify the quantum dynamical system:
ψ(r, t) = e−iH(x)t/~ψ(r, 0). For finite–dimensional systems the rule is exactly the
same: v 7→ e−iH(x)tv (in units where ~ = 1), which means E(t) = e−iHt.

The problem of inferring the model parameters, x, can be addressed by using
Bayesian inference by following steps identical to those discussed in (8) to (10)
in the context of Boson sampling. The following theorem illustrates that the like-
lihood functions that can be efficiently computed using a quantum computer for
many quantum systems.

Theorem 2. Let E(t) = e−iHt where H ∈ H is the model “Hamiltonian” and we
assume that

1. For every X ∈ H , X ∈ CN×N is a d–sparse Hermitian matrix whose non–
zero entries in each row can be efficiently located and computed.

2. There exists Λ ∈ R such that every X ∈ H , |Xi, j| ≤ Λ for all i, j.

3. t is an arbitrary real valued evolution time for the quantum system that is
specified by the user.

then for any such hypothetical model, the likelihood of obtaining a measure-
ment outcome D, Pr(D|H), under the action of

(
e−iH−t

)−1
E(t) = eiH−tE(t), where

H− ∈ H , can be computed with high probability within error ε using a number of
accesses to the entries of the matrices H amd H− that, at most, scales as

(log∗(N))1+o(1)d3+o(1)(Λt)1+o(1)

ε1+o(1) ,



and a number of elementary operations that scales polynomially in log(N) given
that the initial state can be efficiently prepared using a quantum computer.

Proof. The proof follows by combining two well known quantum algorithms.
First the Childs and Kothari simulation algorithm [8] shows that the action of
e−iHt can be simulated within error at most ε/2 using

(log∗(N))1+o(1)d3+o(1)(Λt)1+o(1)

εo(1) ,

accesses to the matrix elements of H. The likelihood Pr(D|H) can then be es-
timated to within precision ε/2 by repeating this algorithm O(1/ε2) times and
measuring the fraction of times that outcome D is observed. The overall error is
at most ε since these errors are at worst additive [18].

A faster quantum algorithm called amplitude estimation exists for such sam-
pling problems [5]. It can be used to estimate the likelihood using a number of
queries that scales quadratically better with ε than statistical sampling and is suc-
cessful at least 81% of the time. The caveat is that we need to be able to reflect
quantum state vectors about the space orthogonal to the marked state and also the
initial state, which is efficient under the assumptions made above. Both algorithms
require a number of auxiliary operations that scale polynomially in log(N) which
justifies the above claims of efficiency. ut

This shows that the likelihood function can be efficiently approximated within
constant error for a broad class of quantum systems using a quantum computer:
quantum chemistry, condensed matter systems and many other systems fall into
this class. Now let us assume that M possible hypothetical models are posited to
describe E(t) that each satisfy the properties of Theorem 2. Using (7) requires M
simulations resulting in an overall cost of

M(log∗(N))1+o(1)d3+o(1)(Λt)1+o(1)

ε1+o(1) .

Here N can be as large as 2200 for reasonably large quantum systems and d is often
on the order of a few hundred. The cost will therefore likely be modest if M is
small, the Hamiltonian matrix is sparse and (Λt) is not unreasonably long. These
requirements can be met in most physically realistic cases.

These results show efficiency for fixed ε, but does ε need to be to prohibitively
small to guarantee stability? If, for example, D is an outcome such that Pr(D|H) ∈
O(poly(N−1)) for hypothetical model H then ε will have to be extremely small in
order to compute the likelihoods to even a single digit of accuracy. Cases where
every model predicts P(D|H(x)) ∈ Θ(1/N) are therefore anathema to Bayesian
inference.



Fortunately, inversion removes this possibility because it reduces each exper-
iment to two effective outcomes. If H− = H then eiH−tE(t)v = v for all v, which
precludes the possibility of exponentially small likelihoods if v is a computational
basis vector (or more generally if v can be efficiently transformed to a computa-
tional basis vector using the quantum computer). Conversely, it is well known that
with high probability over models, eiH−tE(t)v , v in the limit as N → ∞ if H , H−
and t > 0 is taken to be a constant [12]. In contrast if t is small then it is trivial to
see that almost all models and choices of H− will result in eiH−tE(t)v = v. Thus:

1. Each experiment has two outcomes: either eiH−tE(t) : v 7→ v or eiH−tE(t) :
v 7→ v⊥ where v⊥ is in the orthogonal complement of v.

2. The variable t can be chosen by the user and hence can be chosen to ensure
that roughly half of the most likely models for the quantum system will
approximately yield v with high probability over models [26].

These properties will typically allow Bayesian inference to identify the correct
model using a logarithmic number of experiments, similar to binary search. Algo-
rithm 1 provides a concrete method that uses these principles to learn an approxi-
mate model for a quantum system.

The question is, how well does Algorithm 1 work in practice? Since we lack
quantum hardware that can implement it directly, we cannot assess Algorithm 1’s
performance directly; however, we can estimate how it ought to scale in practice
using small numerical experiments. We will see that it works extremely well for
the examples considered.

A good benchmark of the performance of the algorithm is given in [26],
wherein it is shown that this approach can be used to learn inter–atom couplings
of frustrated Ising models (which are used condensed matter physics to model
magnetic systems). The Hamiltonian matrix that describes these systems is

H(x) =

n−1∑
i=0

n∑
j=i+1

xi, j

[
1 0
0 −1

](i)

⊗

[
1 0
0 −1

]( j)

,

where this notation means that the state is assumed to be a tensor product of n
two–dimensional subsystems and each term in H(x) acts non–trivially only on
the ith and jth subsystems. This application is slightly more complex than the
simple one discussed in Algorithm 1 because the model is continuous rather than
discrete, but by discretising the problem and using a technique called resampling,
this process essentially reduces to that in Algorithm 1.

Figure 2 shows that the number of updates needed to learn the couplings
in an Ising model that has n = 3, 5, 7, 9 qubits with pairwise interactions be-
tween every qubit in the system (i.e. the interaction graph is complete) where



Algorithm 1: Quantum Hamiltonian learning algorithm.

Input: Prior probabilities wi, i ∈ {1, . . . ,M}, hypothetical model specifications
xi, i ∈ {1, . . . ,M}, number of samples used to estimate probabilities Nsamp, to-
tal number of updates used Nexp, state preparation protocol Q for the initial
states v0, protocol for implementing measurement operator P such that v0v∗0 is
a POVM element, an error tolerance ε and k the number of votes used to boost
the success probability of amplitude estimation.

Output: Hamiltonian parameters x such that H(x) ≈ H(xtrue).
function QHL({wi}, {xi}, Nsamp, Nexp, P, Q,ε, k)

for i ∈ 1→ Nexp do
v0 ← Q(i). . Prepare initial state.
Draw x− and x′ from Pr(x) := wi/

∑
i wi.

t ← 1/‖H(x) − H(x′)‖. . Choose t according to guess heuristic
H− ← H(x−).
D← measurement of eiH(x−)tE(t)v0 using P. . Perform experiment on

untrusted system.
for j ∈ 1→ M do . Compute likelihoods using quantum computer

for κ ∈ 1→ 2k − 1 do
Yκ ← result of amplitude estimation . Estimate Pr(D|H(x j))

on eiH−te−iH(x j)tv0, to within error ε.
end for
pm ← median(Y). . Vote on correct likelihood

end for
Z ←

∑
m=1,M wm pm.

wi ← wi pi/Z. . Perform update.
end for
return

∑
m wmxm . Return Bayes estimate of xtrue.

end function

v0 = [1/
√

2n, . . . , 1/
√

2n]t. The error decreases exponentially with the number
of updates for any fixed n. In other words, there exist γ(n) > 0 such that the er-
ror scales as e−γ(n)Nsamp . Figure 3 shows that the decay constants, γ(n), for these
exponential curves scale as Θ(1/dim(x)), where dim(x) is the number of param-
eters in the model. In general dim(x) need not be a function of n but for the
data above, each qubit interacts with all other qubits in the system and hence
dim(x) =

(
n
2

)
= O(n2). We find that x can be learned to within error ∆ using a

number of experiments that empirically scales as Θ(n2 log(1/∆)).
The prior results allow us to estimate the complexity of inferring an Ising
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model H ∈ C2n×2n
using a quantum computer as an experimental device. The

algorithm requires a number of queries to E(t) that scales as O(n2 log(1/∆)) and a
number of elementary operations that scale as

Mn2+o(1)

(∆ε)1+o(1) ,

where M is the number of models used in the discretization (M is known to scale
sub–exponentially with n but experimentally M ∈ O(polylog(n)) and a constant
value of ε = 0.05 seems to suffice) and d = 1.

These scalings are not only show that a formal complexity can be assigned to
the experimental problem of learning a physical model for a large quantum sys-
tem, but also suggest that quantum computing could make the learning problem
tractable even for cases where n > 100. The combination of quantum computa-
tion and statistical inference may therefore provide our best hope of deeply under-
standing the physics of massive quantum systems that seem to be too complex to
understand directly.

6 Conclusion
Returning now to our original question, we see that there is good reason (based on
complexity theoretic conjectures) to suspect that solving the equations of quantum
dynamics, such as the Schrödinger equation, may be intractable even for certain
modestly large quantum systems. This would seem to suggest that some quan-
tum systems exhibit dynamics that, for all practical purposes, cannot be directly



compared to the predictions of quantum theory. Quantum computation offers the
possibility that such problems can be circumvented by indirectly comparing the
dynamics of the system with simulations performed on the quantum computer.
This also provides a surprising insight: experimental quantum physics can be re-
cast in the language of quantum computer science, allowing formal time complex-
ities to be assigned to learning facts about nature and reinforcing the importance
of computer science to the foundations of science.

A quantum computer does not, however, allow us to address all of the deep
problems facing us in physics: they are not known to be capable of simulating
the standard model in quantum field theory [14], which is arguably the most suc-
cessful physical theory ever tested. Simulation algorithms are also unknown for
string theory or quantum loop gravity, meaning that many of the most important
physics questions of this generation remain outside of reach of quantum comput-
ing. Much more work may be needed before physicists and computer scientists
can truly claim that quantum computers (or generalizations thereof) can be used
to rapidly infer models for all physical systems.

I would like to thank Christopher Granade and Yuri Gurevitch for valuable
feedback and Robert Browne for the inspiration behind this work.
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