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The design of efficient algorithms for planar graphs, as a field of research,
is over forty year old and continues to be an exciting area. There are several
new efficient algorithms for a variety of graph optimization problems that exploit
planarity and, in general, the structure of low genus graphs and graphs with
excluded minors.

Efficient space-bounded computations, on the other hand, involve a differ-
ent genre of algorithmic ideas and exploit the planar graph structure somewhat
differently. There has been a flurry of interesting research on this topic in last
decade. In this timely and well-written article, Samir Datta and Raghav Kulka-
rni focus on planar graphs in the context of space complexity. They discuss
several properties of planar graphs and their precise role in the design of space
efficient algorithms.
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S C:
WM P G S?

Samir Datta∗ Raghav Kulkarni†

1 Introduction
The purpose of this article is to survey several useful properties of planar graphs
that can be exploited specifically in the context of space bounded computation to
obtain efficient algorithms. For completeness we also point out some situations
where planar restrictions remain computationally as hard as general graphs.

The classes we will encounter in this survey are mostly variants of determin-
istic logarithmic space, L. They include non-deterministic logarithmic space, NL,
Unambiguous Log-space UL, Stoic Probabilistic Log-space SPL and counting
classes like GapL,⊕L. For a definition of these classes see e.g. [32]. We will
also have occasion to compute functions in Log-space. We say that a function
is computable in Log-space if there is a Log-space transducer, i.e. a determinis-
tic logarithmic space machine with a write-only one-way output tape on which it
writes the function value.

Definition 1. A graph is said to be planar if there is a mapping of the vertices on
the plane such that the edges can be drawn as curves in the plane, which do not
intersect except at their end points.

We are going to make repeated use of the following algorithmic version of
planarity:

Theorem 2 (Allender,Mahajan[3],see also [15]). There is a Log-space algorithm
for constructing an embedding of a planar graph on the plane.

We will also make use of the notion of grid embedding of a graph. This is a
map which identifies a graph with a subgraph of a complete rectangular grid (i.e.
a rectangular array of nodes in which a node is connected to the vertices imme-
diately next to it horizontally and vertically). This is done by a degree reduction
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step, (by replacing a vertex with a binary tree or a cycle) followed by embed-
ding the vertices so that that the edges of the degree reduced graph get elongated
into paths. The crucial point is that this preserves some property of the digraph
or graph e.g. reachability [2] or number of perfect matchings [10] and runs in
Log-space.

In the rest of the paper, in every section, we mention a property (or a collection
of properties) of planar graphs and then give a brief description of how the prop-
erty helps us develop a bounded space algorithm or hardness result. We should
mention at the outset that this survey does not aim at completeness of any sort -
it aims at providing a taste of the planarity magic through a number of examples
drawn according to our preferences and experience.

‘

2 Unique Embedding
The first property of planar graphs that we will exploit is the property of unique
embeddability of 3-connected planar graphs, in the plane. This remarkable prop-
erty which was first shown by Whitney, way back in 1933, allows us to give a
bounded space algorithm canonical description for such highly connected pla-
nar graphs. We should point out it is notoriously difficult to prove good upper
bounds or lower bounds for the general graph isomorphism problem. In contrast,
planarity enables us to prove matching upper and lower space complexity bounds.

The first bounded space algorithm that made use of Whitney’s theorem for
planar isomorphism was by Thierauf, Wagner [29] based on distance computa-
tion in planar graphs. This was soon followed up by an algorithm [13] (which
we describe below) that achieved the optimal Log-space bound by replacing the
distance computation by an exploration from Reingold’s seminal paper[25]. The
result was later extended [14] to arbitrary planar graphs through a careful applica-
tion of Lindell’s Log-space Tree Canonization algorithm to the tree decomposition
of the given planar graph into its 2-connected and 3-connected components.

Whitney’s Unique Embedability Theorem
We will make crucial use of the following theorem by Whitney

Theorem 3. (Whitney[33]) A 3-connected1 planar graph has exactly one combi-
natorial embedding on the plane (up to reflection).

The theorem can be rephrased as: in any planar drawing - the cyclic order
of the edges leaving a vertex in, say, the clockwise order, is identical (except,

1removing any two vertices from the graph does not disconnect it
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Figure 1: A Directed Grid Graph

of course that we may reflect the graph and get another one in which the or-
der of edges is reversed). As an example consider the 3-connected planar graph
Figure 2 (a) with its two embeddings. Figure 2 (b) illustrates the necessity of
3-connectivity for unique embeddability.

Unique Embedding and 3-connected Planar Graph Isomorphism

Given a planar graph, we will compute, using a Log-space transducer, a binary
string that is independent of the presentation of the graph (in terms of the vertex
and edge names) and uniquely characterizes the graph. Thus, if can(G) denotes
the canonical string forG, G1 � G2 if and only if, can(G1) = can(G2). Testing for
isomorphism is then easy - just go through the canonical descriptions bit by bit
and verify that they match.

The rough idea behind the algorithm is to construct a canonical ordered span-
ning tree - a rooted tree that does not depend on the presentation of the graph and
where the children of a node are ordered. Now it is easy to describe the graph
in terms of the tree. First the vertices of the graph can be canonically labeled by
the pre-order numbering of the tree. Next the edges can be listed in lexicographic
order of the numbers of their endpoints (with,say, the smaller endpoint first).

Thus we have to show how to produce a canonical spanning tree. We show
something slightly weaker, that is, we produce a collection of spanning trees
which depends only on the choice of the “root edge” and the choice of one of
the two embeddings. We can “canonize” the graph relative to each of the trees as
described above and then pick the minimum description as our final canon.

For simplicity assume that the graph has degree exactly 3 - this is easy to
ensure by a simple degree reduction step.

We will need to introduce the concept of universal exploration sequence UXS
to describe how to obtain the tree above. A UXS σn is a string (of length polyno-
mial in n) from {0, 1, 2}∗ which encodes a way to explore a cubic graph which is
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(a) A 3-connected graph and its reflection

(b) Distinct embeddings of a 2-connected graph

Figure 2: Embeddings of planar graphs

equipped with a cyclic ordering on the neighbours of each vertex. We will explore
the graph one edge at a time. At the ith-step we will be sitting on an (directed)
edge (u, v), having just visited u and being about to visit v. The next edge will be
some (v,w) depending on the letter σn[i] which tells us the offset of the next edge
relative to the current one : an offset of zero means w = u and offsets 1, 2 indicate
the the first/second neighbours of v after u in the prescribed cyclic order. Some-
what mysteriously the universality of σn implies that given any cubic graph of size
n with an ordering on its vertices, an exploration guided by σn will lead us to visit
every vertex in the graph. It is easy to construct UXS’s using randomization. The
magic of Reingold’s construction [25] is that

• a UXS can in fact be constructed in Log-space!

A planar embedding of a cubic graph naturally induces a cyclic ordering on the
neighbours of a vertex - say the clockwise order. Whitney’s theorem tells us there
are exactly two such cyclic orders. The magic of planarity meets that of Reingold,
at this point. Thus, given a fixed UXS churned out by Reingold’s algorithm and
two choices:

• the directed edge to start the exploration from, and

• one of the two possible embeddings,
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there is a fixed way to visit each vertex in the graph. By considering the edge of
first visit to a vertex we can produce a spanning tree from this exploration. It is
important to note that:

• the tree produced is canonical relative to the two choices above (and a fixed
UXS)

• it can be computed in Log-space since a transducer can output the parent
edge of each vertex by repeating the exploration multiple times

This is all that is needed to prove the following:

Theorem 4. Isomorphism in 3-connected planar graphs can be tested in L.

3 Duality and Flows in Planar Graphs
The next property which we will consider is duality. For this we need to define the
dual of a graph G. Informally, the nodes of the dual consist of the faces of G and
two nodes are joined by an edge whenever the corresponding faces share an edge.
We use this correspondence crucially in our next application viz. computing flows
in planar networks.

We consider the problem of determining if there is a feasible flow in a network
where there are both demands at nodes (i.e. the amount of flow that the vertex
needs - this may be positive or negative) and capacity constraints at edges (i.e.
the maximum amount of flow possible through an edge). Notice that the graph is
bidirected i.e. there is an edge in either direction for every undirected edge and
each of these edges have capacities of their own.

Many graph theory problems can be recast in this framework, e.g. bipartite
matching. We will of course restrict our attention to the case when the network is
planar. The approach we are going to delineate is based on a paper by Miller and
Naor [24] which proposes a parallel algorithm for the problem.

Cut-Cycle duality in Planar Graphs and Miller-Naor’s Algo-
rithm
We first reduce the problem with edge capacities and vertex demands to one in
which the vertex demands are all zero and edge capacities are appropriately mod-
ified. Zero demands imply that the flow across any cut is zero. Thus if the sum of
capacities of edges in any directed cut are strictly negative we have a contradic-
tion to the actual flow being zero i.e. the flow is infeasible. It is not too hard to
prove that this sufficient condition for infeasibility is also necessary. But finding
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if a graph has negative cuts seems to be a hard problem. We can of course reduce
the problem to finding a minimal cut2 that is negative.

This is where the planarity magic comes into play:

• Minimal cuts in the primal graph correspond to cycles in the dual.

Thus with appropriately weighed dual edges, the problem reduces to detecting
a negative cycle in the dual. But there exists a negative cycle in a graph if and
only if there exists a negative closed walk. And detecting the existence of a
negative closed walk is easy in NL - just start from a vertex keeping and non-
deterministically walk along the graph keeping track of only the current vertex
and the sum of weights encountered so far (along with the initial vertex). If the
initial vertex is reached with a negative sum within polynomial number of steps
then accept else reject.

The idea can be refined to find the flow if indeed the dual graph has no negative
cycles. The intuitive idea being that since there are no negative cycles shortest
distance between any pair of dual nodes is well defined. Miller and Naor [24]
show these dual shortest distances can in fact be converted to a primal feasible
flow.

Space Complexity of Miller-Naor’s algorithm
The basic ingredients needed in the proof are:

• a planar embedding of the graph

• a spanning tree algorithm (for reduction to the zero-demand case)

• an algorithm to detect a negative cycle in a (planar) digraph

• a directed shortest path algorithm in a (planar) digraph with no negative
cycles

The first two are known to be in deterministic Log-space through non-trivial algo-
rithms [3, 15, 25] while the latter two are easily seen to be reducible to reachability
i.e. in NL.

4 Duality and Deterministic Isolation in Planar
Graphs

Mulmuley, Vazirani and Vazirani’s isolation lemma informally states that a uni-
form random assignment of small weights to the elements of a universe makes the

2a minimal set of edges removing which disconnects the graph
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weight of the minimum weight set of any given set system, unique. Derandomiz-
ing the lemma in general is not possible [1] but for several set systems arising from
planar graphs, there exists a simple deterministic weighing scheme that isolates
the min weight set [2, 6, 12]. This deterministic isolation can then be translated to
a space efficient algorithm for finding the min-weight set using known extraction
procedures like [26, 4]. Our focus in this article will be on the isolation rather
than the extraction part of the algorithm, since it is the former that makes crucial
use of planarity.

In describing these algorithms it is often convenient for the purposes of visual-
ization to first embed the graph in a a 2-d rectangular grid, after a degree reduction
step. This is how the algorithms [6, 12] historically came about. But it is possible
to work directly on the graph (and its dual) rather than invoke grid embedding
[28, 8]. In this survey we will stick to grid embedding for the ease of exposition.

Deterministic Isolation in Planar Structures

We will consider two important set systems in this article:

• the system of directed s, t-paths in a grid-digraph G, where s, t are vertices
of G

• the system of perfect matchings in a grid-graph G.

A path or matching will be regarded as a set of edges.
We want to prescribe a weighing scheme for the grid edges such that the min-

weight set is unique. For technical reasons we will insist that the weighing scheme
in the first case is skew-symmetric i.e. reversing an edge just flips the sign of the
weight.

By definition, if we have two distinct min-weight sets S 1, S 2 then their weights
must be equal. Let us first consider the case of s, t-reachability. If we reverse
the edges of,say S 2 we get a closed walk of zero weight. An easy substitution
argument shows that every simple cycle C contained in this closed walk must
have zero total weight.

We follow a similar argument in the case of perfect matchings. The symmetric
difference S 1 ⊕ S 2, of two perfect matchings is exactly a collection of disjoint
cycles. Thus an easy substitution argument again shows that the difference w(S 1∩

C) − w(S 2 ∩ C) = 0 for any of these cycles C. Because there is strict alternation
between edges of S 1, S 2 in C this is equivalent to saying that the alternating sum
of each cycle C is zero.

As a notational convenience we have the following definitions of circulation
for reachability and matching. Let circulation of a simple cycle be
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• the sum of weights of the (directed) edges of the cycle in case of reachability

• the alternating sum (which is well-defined up to its sign) of weights of an
undirected simple cycle in the case of matching

Thus the two paragraphs prior to the definition can be summarized as: distinct
min-weight sets imply zero circulation for some simple cycle. Contrapositively,
if we can produce a weighing scheme such that all simple cycles in the complete
grid have non-zero circulations then the min-weight set for any grid graph will be
unique. We now proceed to construct such a weighing scheme.

In order to do so we again invoke planarity magic and ensure that:

• the circulation of a (simple) cycle equal in magnitude to the area enclosed
by the cycle.

This is easy to argue for reachability, suppose we could assign skew symmetric
weights to the edges of a unit square such that they sum to 1 in the clockwise ori-
entation. Then if we consider two adjacent unit squares both oriented clockwise,
skew symmetry ensures that their circulations adds up to 2 since the common edge
cancels out. Inductively, it is easy to see that any clockwise cycle will get a circu-
lation equal to its area (and counter-clockwise cycle will have a circulation equal
to the negative of its area).

By a somewhat more complicated argument we can ensure that the (matching)
circulation of a cycle in the grid equals the signed sum of circulations of the
squares enclosed by it. The sign of square being a quantity that flips between
adjacent squares and the bipartiteness of the dual grid permits us such a function.
Now we need to make sure that the circulation of every square equals its sign
which ensures that the circulation of a simple cycle equals its signed area.

Two simple sets of linear equations reveal what assignments of weights will
work - we illustrate this for perfect matchings in Figure 4.

Isolation and Extraction in Planar Graphs
We have sketched the proof of the following result by Bourke, Tewari and Vinod-
chandran [6]: Let G be a sub-digraph of the n × n square grid. There is a constant
c and a Log-space computable weighing function w : E → [−cn, cn] under which
the min-weight s, t-path is unique (if it exists) for any two vertices s, t ∈ V(G). As
a consequence, due to the extraction procedure in Reinhardt and Allender [26],
s, t-reachability in planar digraphs is in UL ∩ co − UL.

The following result by Datta, Kulkarni and Roy [12] mirrors the previous
one for planar bipartite perfect matchings: Let G be a sub-graph of the n × n
square grid. There is a constant c′ Log-space computable weighing function w′ :
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▽Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs – p.1/1

Figure 3: The weighing scheme and signs for isolating perfect matching in grid
graphs

E → [−c′n, c′n] under which the min-weight perfect matching of G is unique (if it
exists). As a consequence, due to the extraction procedure in Allender, Reinhardt
and Zhou [4], finding a perfect matching in planar bipartite graphs is in SPL.

5 Bounded Local Tree Width
The concept of tree-width of graphs has turned out to be very useful for designing
efficient algorithms. See for instance [17]. Although the tree-width of planar
graphs could be arbitrarily large, they enjoy a weaker property that is equally
useful, namely that of having bounded local tree width, i.e., if we do breadth
first search (BFS) on a planar graph starting from any given vertex then the tree-
width of any constant number of BFS layers is bounded above by a constant. This
weaker property suffices to obtain fast algorithms for several problems.

Baker’s Algorithm

In a well-known paper [5], Baker first exploited the bounded local tree width
property of planar graphs to give an approximation scheme ((1+ ε) approximation
algorithm for every ε > 0) for a variety of problems (for instance Max-Cut) that
are hard to approximate in general graphs. The basic idea of Baker’s algorithm is
as follows:

• (Step 1) Remove some edges from the graph so that:

– the optimum solution is not affected by much: say it is affected only
by ε fraction
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– the rest of the edges can be partitioned into disjoint union of graphs
whose tree-width is a constant that depends on the approximation guar-
antee, i.e., ε

• (Step 2) Solve the problem on the bounded tree width graphs using dynamic
programming and combine the solution on the disjoint pieces to obtain a
solution in the original graph.

Space Complexity of Baker’s Algorithm
In fact, for Step 1, Baker observes that the vertices at any fixed distance from the
root form an outer-planar graph. Thus any k consecutive layers constitute k-outer-
planar graphs, which happen to have tree-width at most O(k).

Thus: the efficiency of Baker’s algorithm relies mainly on the following two
components:

• (Component 1) distance computation in planar graphs,

• (Component 2) exact solution on bounded tree-width graphs.

The first component is crucial for obtaining the BFS layers, which in turn
help in obtaining the desired decomposition of the planar graph into graphs of
bounded tree width. The second component gives an efficient algorithm for solv-
ing the problem exactly on the bounded tree width graphs. This is achieved via
a dynamic programming approach. The bounded tree-width property guarantees
the efficiency of the dynamic programming.

The exact solution on bounded tree-width graphs more or less directly com-
bine to give an approximate solution in the original graph. In the end, one has
to argue that the solution obtained after Step 2 is good enough, i.e., the removed
edges do not affect the optimal solution by much. This is guaranteed by the deli-
cate choice of edges in Step 1.

In the context of the space complexity, Datta and Kulkarni [9] observe that
both these components are less expensive than their counter-parts in general graphs!

For the first component, we can use an elegant result by Bourke, Tewari, and
Vinodchandran [6] showing that the directed planar reachability is in UL∩co − UL
as opposed to the directed reachability in general graphs being NL-complete. As a
consequence, BFS in planar graphs can be performed in UL ∩ co − UL The exact
space complexity of BFS in planar graphs is still not known. It is still possible
that in fact BFS in planar graphs could be performed as efficiently as Log-space!
The current best known upper bound in this context is (deterministic) O(log2 n)
space, which follows from the famous Savitch’s Theorem [27] that the class NL is
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contained in O(log2 n) space. This means that the decomposition of planar graphs
into bounded tree width graphs can performed in a space efficient way.

As for the second component in Baker’s algorithm, a recent theorem of El-
berfeld et. al. [17] comes to our help. They show that any optimization problem
expressible in monadic second order logic can be solved in Log-space on bounded
tree width graphs. It turns out that many optimization problems (e.g. Max-Cut)
can be expressed in MSO. Thus the second component of Baker’s algorithm can
be made space efficient for problems like Max-Cut.

This simple combination gives space efficient algorithms for some optimiza-
tion problems in planar graphs. The best bound on space complexity that one
can currently obtain via this approach is O(log2 n) space. It is an interesting open
question whether this space bound can be further improved possibly using some
other type of decomposition. For instance: does Max-Cut in planar graph have a
Log-space approximation scheme ?

6 Algebraic Properties
The adjacency matrix of an undirected graph G on n vertices is an n×n symmetric
matrix A, i.e., A(i, j) = A( j, i) and whose entries are A(i, j) = 1 if and only if (i, j)
is an edge in G; A(i, j) = 0 otherwise. Similarly one can define the adjacency
matrix of a weighted as well as directed graphs. Let D denote the diagonal matrix
whose ith diagonal entry is the degree of the vertex i. The Laplacian matrix of
an undirected graph is L := D − A. Suppose we have an undirected graph G
together with a fixed orientation of its edges, i.e., every undirected edge {i, j} of
G is oriented either (i, j) or ( j, i). The oriented matrix M of G with respect to a
fixed orientation is a skew symmetric matrix, i.e., M(i, j) = −M( j, i) such that
M(i, j) = 0 if {i, j} is not an edge in G; otherwise it is equal to 1 if (i, j) is the
orientation of the edge; otherwise it is equal to −1. The matrices A, L, and M
hold some crucial information about graphs. In the context of planar graphs the
algebraic properties of these matrices can be exploited to obtain space efficient
algorithms.

Counting Perfect Matchings in Planar Graphs
An orientation of an undirected graph is called Pfaffian if the determinant of the
skew symmetric matrix M with respect to the orientation is exactly equal to the
square of the number of perfect matchings in the graph. Thus immediately sug-
gests the following approach for counting perfect matchings in a graph that has a
Pfaffian Orientation.

• obtain a Pfaffian Orientation via an efficient algorithm



55 55

55 55

The Bulletin of the EATCS

47

• compute the determinant of the skew symmetric matrix M associated to the
Pfaffian Orientation; the square root of this determinant is the # perfect
matchings.

In this context, planar graphs have been extremely lucky. Around 1965, Kaste-
lyn [21] discovered that the planar graphs are endowed with an amazing property:

Theorem 5 (Kastelyn). Every planar graph has a Pfaffian Orientation.

In fact, Kastelyn discovered a simple and elegant criteria for a planar graph
to have a Pfaffian Orientation. This criteria has lead to efficient algorithms for
obtaining a Pfaffian Orientation. We need a definition for further explanation. We
call a cycle oddly oriented if we traverse the cycle in the clockwise direction then
we encounter odd number of edges oriented in the direction of traversal. Kastelyn
showed the following:

• an orientation of a planar graph is Pfaffian if every simple cycle is oddly
oriented.

• furthermore: there is an oddly oriented simple cycle if and only if there is
an oddly oriented face of the planar graph, i.e., facial cycle

Thus to construct a Pfaffian orientation it suffices to give the orientation to
the edges so that every face is oddly oriented. This local criteria for constructing
the Pfaffian Orientation turns out to be useful in the context of space complexity.
In fact, Mahajan and Vinay [23] observe that using parity tree evaluation tech-
niques one can obtain a Log-space algorithm for computing such an orientation!
A consequence of having a Log-space computable Pfaffian Orientation is that one
can compute the number of perfect matchings in planar graph in the class NC,
and hence in poly-logarithmic space. To note the contrast, recall that the problem
of counting perfect matchings in general graphs is known to be #P-hard by the
classic result of Valiant [30].

Counting Spanning Trees modulo 2k in Planar Graphs
Another setting where planarity works like magic is that of modular counting of
spanning trees. In particular, Braverman, Kulkarni, and Roy [7] show that for any
fixed k, computing the number of spanning trees modulo 2k in planar graphs can
be done in Log-space! To show the contrast, we note that same problem in general
graphs is known to be ⊕L-complete [7], i.e., as hard as computing the determinant
of an integer matrix modulo 2.

This result uses two interesting connections.
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• connection of certain type of knots to the co-rank of Laplacian matrix
(mod 2)

• the Matrix-Tree Theorem that connects # spanning trees to the determinant
of a minor of the Laplacian

First we give some explanation on the first connection: There are certain type
of knots that are called left-right walks (cf. Godsil and Royle [19]) that one can
associate to a planar graph. These knots can be constructed in Log-space. The
number of these knots is exactly equal to the co-rank of the Laplacian matrix
(modulo 2) of the planar graph. Counting the number of these knots can be done
by a simple reduction to undirected connectivity problem, which is known to be
in Log-space; thanks to the celebrated result of Reingold [25]. Now the magic is
handed over to the Kirchoff’s Matrix-Tree Theorem:

Theorem 6 (Kirchoff). Let L be the Laplacian matrix of graph G and let L′ denote
the matrix obtained from L by deleting the first row and the first column. Then:
determinant of L′ is exactly equal to the number of spanning trees in G.

Thus the number of spanning trees is odd if and only if determinant of L′

modulo 2 is odd. This happens if and only if the co-rank of L is at most 1. This
immediately gives a Log-space algorithm for counting (modulo 2) the spanning
trees in planar graphs. In fact, Braverman, Kulkarni, and Roy extend this result
to mod 2k setting for any fixed k using somewhat sophisticated techniques from
Algebraic Topology.

7 Planarizing Gadgets
Every graph can be drawn on plane. One can represent the nodes of the graph by
some points in the plane and one can represent the edges of the graph by curves
joining the points. We say that two edges cross if the curves representing the two
edges intersect in a point other than the end points of the edges. A graph is planar
if and only if one can draw the graph on plane so that no two edges cross. Hence
the only (and the big) difference between planar graphs and arbitrary graphs is that
planar graph has no crossings while arbitrary graph might have many crossings.

A planarizing gadgets is loosely speaking a local replacement for crossings
to obtain a planar graph. The replacement is done in order to maintain certain
properties. Such gadgets can be used in two ways:

• to obtain an efficient algorithm for a problem in general graphs

• to obtain a hardness result for problems planar graphs.

Below we illustrate the two with some examples.
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(a) Planarizing Gadget for Determinant

(b) Planarizing Gadget for Permanent

Upper Bounds using Planarizing Gadgets
A perfect example of the power of planarizing gadgets for obtaining upper bounds
is given by the framework of so called Holographic Algorithms. This framework
was introduced by Valiant [31] and was further developed by Cai et. al. [34]. It ex-
ploits the fact that perfect matchings in planar graphs can be computed efficiently,
to obtain non-trivial polynomial time algorithms for several seemingly hard prob-
lems. The key to this framework is the construction of so called Match-Gates,
which are the planarizing gadgets satisfying certain properties. It is a beautiful
piece of art to construct such Match-gates, see for instance a survey by Cai [34].

The framework works as follows:

• model a counting problem in general graphs in terms of Match-Gate circuits

• design appropriate Match-Gates and replace the crossings by these Match-
Gates

In fact the only computationally expensive step in these algorithms is the com-
putation of determinant. This step can be performed in NC, and hence in poly-
logarithmic space. So all these algorithms can be considered space efficient.
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Hardness Results using Planarizing Gadgets
One of the main uses of planarizing gadgets is to obtain hardness results. The
basic strategy for proving hardness results for problems in planar graphs is as
follows:

• start with a hard instance of the problem in general graphs

• replace each crossing by a suitable planar graph such that the solution is
preserved under this replacement

Classically several hardness results are known for planar graphs via such gad-
gets: for instance Hamiltonian Cycle in planar graph is NP-hard [18]. Oftentimes
the gadgets are simple once they are discovered but could be challenging to con-
struct. In the context of space bounded computation (and this article) we would
like to mention the following:

Datta, Kulkarni, Limaye, and Mahajan [10] study the Determinant and Per-
manent when restricted to adjacency matrices of planar graphs. They show that
planar restrictions of Determinant and Permanent remain as hard as general graph.

Using an interesting use of the gadgets developed by Datta, Kulkarni, Limaye,
and Mahajan together with some additional gadgets, Kulkarni [22] shows that the
extension of Datta, Kulkarni, and Roy’s [11] method of isolation from bipartite
to non-bipartite planar graphs is hard; in the sense that such an extension would
imply several strong results such as Bipartite Matching is in NC, NL ⊆ ⊕L, and
NP ⊆ ⊕P.

Using the result of Kulkarni [22], recently Datta and Kulkarni [9] show that
Max-Cut in planar graphs is NL hard.

Recently there have been some results on proving that certain type of planariz-
ing gadgets do not exist (see for instance [20]).

8 Conclusion and Open Ends
We have shown several examples where studying the space complexity of prob-
lems in planar graphs could be fruitful. Several useful properties of planar graphs
naturally lead to space efficient algorithms. We list some open questions that could
be further explored:

Space Complexity of Recognizing Bounded Genus Graphs
It is known that one can recognize planar graph and in fact construct a combina-
torial embedding of it in Log-space [3]. It is still open whether or not one can
generalize it for constant-genus graphs. The best known bound is NC [16].
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Space Complexity of Reachability in Planar Graphs
Is reachability in directed planar graphs in Log-space ? A related question is
whether or not the distance computation in undirected planar graphs is in Log-
space?

Isolation in Non-bipartite Planar Graphs
Can one extend the method of non-vanishing circulation of Datta, Kulkarni, and
Roy [11] to non-bipartite planar graphs ? Such an extension would have non-
trivial consequences such as NL ⊆ ⊕L [22].

Space Complexity of Max-Cut in Planar Graphs
We have observed that Max-Cut in planar graphs admits UL ∩ co − UL approx-
imation scheme. Furthermore: we have shown that Max-Cut in planar graphs is
NL hard. A natural question is whether or not there is a Log-space approximation
scheme for Max-Cut in planar graphs.

Space Complexity of Matching in Planar Graphs
Perfect Matching in bipartite planar graphs is known to have space efficient al-
gorithms [11] but non-bipartite case remains open for long time. Kulkarni [22]
shows that Minimum Weight Perfect Matching in planar graphs is NL hard even
when the weights are 0 or 1. Can one show NL hardness for Perfect Matching or
Maximum Matching in planar graphs? Does Perfect Matching in planar graphs
have poly-log space algorithm?
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