
Structure vs Combinatorics in Computational
Complexity∗

Boaz Barak
Microsoft Research

Abstract

Some computational problems seem to have a certain “structure” that is manifested
in non-trivial algorithmic properties, while others are more “unstructured” in the sense
that they are either “very easy” or “very hard”. I survey some of the known results
and open questions about this classification and its connections to phase transitions,
average-case complexity, quantum computing and cryptography.

Computational problems come in all different types and from all kinds of applications,
arising from engineering as well the mathematical, natural, and social sciences, and in-
volving abstractions such as graphs, strings, numbers, and more. The universe of potential
algorithms is just as rich, and so a priori one would expect that the best algorithms for
different problems would have all kinds of flavors and running times. However natural
computational problems “observed in the wild” often display a curious dichotomy— either
the running time of the fastest algorithm for the problem is some small polynomial in the
input length (e.g., O(n) or O(n2)) or it is exponential (i.e., 2εn for some constant ε > 0).
Moreover, while indeed there is a great variety of efficient algorithms for those problems
that admit them, there are some general principles such as convexity (i.e., the ability to
make local improvements to suboptimal solutions or local extensions to partial ones) that
seem to underly a large number of these algorithms.1 This phenomenon is also related to
the “unreasonable effectiveness” of the notion of NP-completeness in classifying the com-
plexity of thousands of problems arising from dozens of fields. While a priori you would
expect problems in the class NP (i.e., those whose solution can be efficiently certified) to
have all types of complexities, for natural problems it is often the case that they are either

∗This is an adaptation of the blog post http://windowsontheory.org/2013/10/07/
structure-vs-combinatorics-in-computational-complexity/

1The standard definition of “convexity” of the solution space of some problem only applies to continuous
problems and means that any weighted average of two solutions is also a solution. However, I use “convexity”
here in a broad sense meaning having some non-trivial ways to combine several (full or partial) solutions to
create another solution; for example having a matroid structure, or what’s known as “polymorphisms” in the
constraint-satisfaction literature [5, 25, 31].

http://windowsontheory.org/2013/10/07/structure-vs-combinatorics-in-computational-complexity/
http://windowsontheory.org/2013/10/07/structure-vs-combinatorics-in-computational-complexity/


in P (i.e., efficiently solveable) or are NP-hard (i.e., as hard as any other problem in NP,
which often means complexity of 2εn, or at least 2nε for some constant ε > 0).

To be sure, none of these observations are universal laws. In fact there are theorems show-
ing exceptions to such dichotomies: the Time Hierarchy Theorem [20] says that for essen-
tially any time-complexity function T (·) there is a problem whose fastest algorithm runs
in time (essentially) T (n). Also, Ladner’s Theorem [27] says that, assuming P,NP, there
are problems that are neither in P nor are NP-complete. Moreover, there are some natural
problems with apparent “intermediate complexity”. Perhaps the most well known exam-
ple is the Integer Factoring problem mentioned below. Nevertheless, the phenomenon of
dichotomy, and the related phenomenon of recurring algorithmic principles across many
problems, seem far too prevalent to be just an accident, and it is these phenomena that are
the topic of this essay.

I believe that one reason underlying this pattern is that many computational problems, in
particular those arising from combinatorial optimization, are unstructured. The lack of
structure means that there is not much for an algorithm to exploit and so the problem is
either “very easy”— e.g., the solution space is simple enough so that the problem can be
solved by local search or convex optimization2— or it is “very hard”— e.g., it is NP-hard
and one can’t do much better than exhaustive search. On the other hand there are some
problems that posses a certain (often algebraic) structure, which typically is exploitable in
some non-trivial algorithmic way. These structured problems are hence never “extremely
hard”, but they are also typically not “extremely easy” since the algorithms solving them
tend to be more specialized, taking advantage of their unique properties. In particular, it is
harder to understand the complexity of these algebraic problems, and they are more likely
to yield algorithmic surprises.

I do not know of a good way to formally classify computational tasks into combinato-
rial/unstructured vs. algebraic/structured ones, but in the rest of this essay I try to use
some examples to get a better sense of the two sides of this divide. The observations be-
low are not novel, though I am not aware of explicit expositions of such a classification
(and would appreciate any pointers, as well as any other questions or critique). As argued
below, more study into these questions would be of significant interest, in particular for
cryptography and average-case complexity.

1 Combinatorial/Unstructured problems

The canonical example of an unstructured combinatorial problem is SAT— the task of
determining, given a Boolean formula ϕ in variables x1, . . . , xn with the operators ¬,∧,∨,
whether there exists an assignment x to the variables that makes ϕ(x) true. SAT is an NP-

2Of course even if the algorithm is simple, analyzing it can be quite challenging, and actually obtaining
the fastest algorithm, as opposed to simply one that runs in polynomial time, often requires additional highly
non-trivial ideas.



Figure 1: An illustration of the solution space geometry of a random SAT formula, where each point
corresponds to an assignment with height being the number of constraints violated by the assignment. The
left figure depicts the “ball” regime, where a satisfying assignment can be found at the bottom of a smooth
“valley” and hence local algorithms will quickly converge to it. The right figure depicts the “shattered”
regime where the surface is very ragged, with an exponential number of crevices and local optima, thus local
algorithms (and as far as we know any algorithm) will likely fail to find a satisfying assignment. Figures
courtesy of Amin Coja-Oghlan.

complete problem, which means it cannot be solved efficiently unless P=NP. In fact, the
Exponential Time Hypothesis [21] posits that every algorithm solving SAT must take at
least 2εn time for some ε > 0. SAT illustrates the above dichotomy in the sense that its
natural restrictions are either as hard as the general, or become easily easily solvable, as in
the case of the 2SAT problem (where the formula is in conjunctive normal form with each
clause of arity 2) that can be solved efficiently via a simple propagation algorithm. This
observation applies much more generally than SAT. In particular the widely believed Feder-
Vardi dichotomy conjecture [17] states that every constraint satisfaction problem (CSP) is
either NP hard or in P. In fact, researchers conjecture [5] (and have partially confirmed)
the stronger statement that every CSP can either be solved by some specific algorithms of
low polynomial-time (such as propagation or generalizations of Gaussian elimination) or is
NP hard via a linear blowup reduction from SAT, and hence (under the Exponential Time
Hypothesis) cannot be solved faster than 2εn time for some ε > 0.3

Random SAT formulas also display a similar type of dichotomy. Recent research into
random k-SAT (based also on tools from statistical physics) suggests that they have multiple
thresholds where the problem changes its nature (see, e.g. [12, 16, 14] and the references
within). When the density α (i.e., ratio of constraints to variables) of the formula is larger
than some number αs (equal roughly to 2k ln 2) then with high probability the formula is
“overconstrained” and no satisfying assignment exists. There is some number αd < αs

(equal roughly to 2k ln k/k), such that for α < αd, the space of satisfying assignments
3The main stumbling block for completing the proof is dealing with those CSPs that require a Gaussian-

elimination type algorithm to solve; one can make the argument that those CSP’s actually belong to the
algebraic side of our classification, further demonstrating that obtaining precise definitions of these notions
is still a work in progress. Depending on how it will be resolved, the Unique Games Conjecture, discussed
here [3], might also give rise to CSP’s with “intermediate complexity” in the realm of approximation al-
gorithms. Interestingly, both these issues go away when considering random, noisy, CSP’s, as in this case
solving linear equations becomes hard, and solving Unique Games becomes easy.



for a random formula looks roughly like a discrete ball, and, due to this relatively simple
geometry some local-search type algorithms can succeed in finding satisfying assignments.
However for α ∈ (αd, αs), satisfying assignments still exist, but the geometry of the solution
space becomes vastly different, as it shatters into exponentially many clusters, each such
cluster separated from the others by a sea of assignments that violate a large number of
the constraints, see Figure 1. In this regime no efficient algorithm is known to find the
satisfying assignment, and it is possible that this is inherently hard [2, 37].4

Dichotomy means that when combinatorial problems are hard, then they are typically very
hard, not just in the sense of not having a subexponential algorithm, but they also can’t
be solved non-trivially in some intermediate computational models that are stronger than
P but cannot solve all of NP such as quantum computers, statistical zero knowledge, and
others. In particular it’s been observed by several people that for combinatorial problems
the existence of a good characterization (i.e., the ability to efficiently verify both the ex-
istence and non-existence of a solution) goes hand-in-hand with the existence of a good
algorithm. Using complexity jargon, in the realm of combinatorial optimization it seems to
hold that P=NP∩coNP, even though we believe this is false in general. Indeed, for many
combinatorial problems such as matching, max flow, planarity, etc.. demonstrating a good
characterization is an important step toward finding an efficient algorithm. This is related
to the notion of duality in convex programming, which is often the method of choice to
solve such problems.

Combinatorial problems can be quite useful for cryptography. It is possible to obtain
one-way functions from random instances of combinatorial problems such as SAT and
Clique [2, 24]. Moreover, the problem of attacking a cryptographic primitive such as a
block cipher or a hash function can itself be considered a combinatorial problem (and in-
deed this connection was used for cryptanalysis [29]). However, these are all private key
cryptographic schemes, and do not allow two parties to communicate securely without first
exchanging a secret key. For the latter task we need public key cryptography, and as we
discuss below, the currently known and well-studied public key encryption schemes all rely
on algebraic computational problems.

2 Algebraic/Structured problems

Factoring is a great example of an algebraic problem; this is the task of finding, given an
n-bit integer N, the prime numbers p1, . . . , pk such that N = p1 · · · pk. No polynomial time
algorithm is known for Factoring, but it had seen some non-trivial algorithmic advances.

4The Survey Propagation Algorithm [10] is a very interesting algorithm that arose from statistical physics
intuition, and is experimentally better than other algorithms at solving random k-SAT formulas for small k
such k = 3, 4. However, it is believed, that at least for larger k, it too cannot succeed in the regime where the
solution space geometry shatters [34, 15]. The current best known algorithm for random k-SAT for large k is
given in [13].



While the natural trial-division algorithm takes roughly 2n/2 steps to solve Factoring, the
Number Field Sieve algorithm, which is the current best, takes roughly 2n1/3 polylog(n) steps
(see [30]). Factoring can also be solved in polynomial-time on quantum computers us-
ing Shor’s Algorithm [35]. Finally, Factoring (or more accurately, the decision problem
obtained by looking at individual bits of the output) is also in the class NP∩coNP, which
means that one can efficiently verify the value of a particular bit of the answer, no matter
if this value is zero or one. These results almost certainly mean that Factoring is not NP
complete.

There is another, more subjective sense, in which I find Factoring different from SAT.
I personally would be much more shocked by a 2

√
n-time algorithm for SAT than by a

2n1/6
-time algorithm for Factoring. The reason is that, while people have found clever

ways to speed up the 2n time exhaustive search algorithm for SAT (especially on certain
types of instances), these approaches all seem to inherently require exponential time, and
are not as qualitatively different from exhaustive search in the way that the number field
sieve is different from trial division. In contrast, Factoring clearly has strong algebraic
structure that we do not completely understand, and perhaps have not reached the limit of
its exploitation by algorithms. To see that this is not completely implausible, consider the
problem of computing the discrete logarithm in fields of small characteristic. This problem
shares many properties with Factoring, and it also shared the property of having a best-
known running time of 2n1/3 polylog(n) until this was recently improved to 2n1/4 polylog(n) and then
to 2polylog(n) [23, 4].

Not all algebraic problems are hard. Factoring univariate polynomials over finite fields can
be solved efficiently using the Berlekamp or Cantor-Zassenhaus algorithms (see e.g. [36,
Chapter 21]). This algorithm also exemplifies the statement above, that algorithms for al-
gebraic problems are often very specialized and use non-trivial properties of the problem’s
structure. For this reason, it’s harder to predict with confidence what is the best algorithm
for a given algebraic problems, and over the years we have seen several surprising algo-
rithms for such problems, including, for example, the fast matrix multiplication algorithms,
the non-trivial factoring algorithms and deterministic primality testing, as well as the new
algorithm for discrete logarithm over small-characteristic fields mentioned above.

Relation to cryptography. Algebraic problems are very related to public key cryptogra-
phy. The most widely used public key cryptosystem is RSA, whose security relies on the
hardness of Factoring. The current subexponential algorithms for Factoring are the reason
why we use RSA keys of 1024 or 2048 bits, even though even the yet-to-built exaflop super-
computers would take thousands of years to perform, say, 2100 computational operations.
This also demonstrates how fragile is RSA to any surprising algorithmic advances. If the
exponent of the best factoring algorithm would halve (i.e., change from 1/3 to 1/6) then,
roughly speaking, to get equivalent security we would need to square the size of the key.
Since the RSA encryption and decryption algorithms take time which is at least quadratic
in the size of the key, that would make RSA pretty impractical.



Cryptosystems based on the discrete logarithm problem in elliptic curves yield one alter-
native to RSA which currently is not known to be broken in subexponential time. Elliptic-
curve discrete log is of course also very much an algebraically structured problem, and so,
I would argue, one in which further algorithmic surprises are hard to rule out. Moreover,
like factoring, this problem can be solved in polynomial time by quantum computers, using
Shor’s algorithm.

The only other public key cryptosystems that are researched enough to have some confi-
dence in their security are based on decoding problems for linear codes or integer lattices.
These problems are not known to have subexponential algorithms, classical or quantum.
Moreover, some variants of these problems are actually NP-hard. Specifically, theses prob-
lem are parameterized by a number α which is the approximation factor, where smaller α
means the problem is harder. For example, the shortest vector problem in a lattice can be
solved efficiently for α ≥ cn (where c > 1 is some constant and n is the dimension of the
lattice, which is related to the length of the input), and the problem is NP hard for α ≤ nδ

(where δ = δ(n) is some function of n tending slowly to zero). For this reason lattice prob-
lems were once seen as a potential approach to getting both private and public crypto based
on the minimal assumption that P,NP, which in particular would yield public key crypto
based on unstructured problems such as SAT. However, we only know how to get public
key crypto from these problems for α = ne for some e > 1/2 while we have reason to
believe that for α > n1/2 the problem does actually possess algebraic (or at least geometric)
structure; this is because in this range the problem has a “good characterization” (i.e., in
NP∩coNP or AM∩coAM). A similar phenomenon also occurs for other problems such as
learning parity with noise and random 3SAT (see discussion in [1])— there seem to be two
thresholds αG < αE such that for α < αG the problem is hard and arguably unstructured,
for α ∈ (αG, αE) the problem becomes useful for public key cryptography, but also seems
to suddenly obtain some structure such as a “good characterization”, while for α > αE the
problem becomes easy. Another sign of potential structure in lattice problems is the exis-
tence of a subexponential quantum algorithm for the hidden subgroup problem in dihedral
groups, which is related to these problems [26, 32].

The bottom line is that based on the currently well studied schemes, structure is strongly
associated with (and perhaps even implied by) public key cryptography.5 This is troubling
news, since it makes public key crypto somewhat of an “endangered species” that could be
wiped out by a surprising algorithmic advance. Therefore the question of whether structure
is inherently necessary for public key crypto is not only of mathematical interest but also
of practical importance as well. Cryptography is not just an application of this classifica-
tion but also provides a useful lens on it. The distinction between private key and public

5I stress that it is not known that public key cryptography necessitates any structure beyond that needed
for private key cryptography. It is known one cannot base public key cryptography on private key cryptogra-
phy via black-box reductions [22, 9]. The best non-black-box negative result is that the existence of a secure
homomorphic encryption scheme implies that AM∩coAM * BPP, as any such scheme has a statistical reran-
domization procedure [33] which implies that it can be broken using an oracle to the Statistical Difference
problem which is in the class SZK⊆ AM∩coAM, see also [7].



key crypto mirrors the distinction between unstructured and structured problems. In the
private key world, there are many different constructions of (based on current knowledge)
apparently secure cryptosystems; in fact, one may conjecture (as was done by Gower [18])
that if we just combined a large enough number of random reversible local operations then
we would obtain a secure block cipher. In contrast, for public key cryptography, finding
a construction that strikes the right balance between structure and hardness is a very hard
task, and we still only know of a handful or so such constructions.

3 A different approach to average case complexity

I am particularly interested in this classification in the context of average-case complexity.
In the case of worst-case complexity, while we have not yet managed to prove that P,NP,
complexity theorists achieved something like the next best thing— classifying a large num-
ber of problems into hard and easy ones based on this single assumption. We have not been
able to replicate this success in average case complexity, and there is a good reason for that.
Our main tool for basing one assumption on another one— the reduction— is extremely
problematic in average case complexity, since there are inherent reasons why a reduction
would not preserve the distribution of the inputs. To illustrate this, suppose that we tried
to show that an average-case problem A is no harder than an average-case problem B using
a standard Karp reduction f (i.e., f : {0, 1}n → {0, 1}m is a function mapping an A-input
x into a B-input y such that B(y) = A(x)). For simplicity, assume that the input distribu-
tion for both problems is the uniform distribution. This would imply that for a random
x ∈ {0, 1}n, f (x) should be distributed close to the uniform distribution over {0, 1}m. But
we cannot expect this to happen in any reasonable reduction, as all of them add gadgets or
blow up the size of the instance in some way, meaning that m > n, in which case f (x) is
distributed over a subset of {0, 1}m of size less than 2m−1 and hence is far from the uniform
distribution.6

This difficulty is one reason why the theory of average-case complexity is much less de-
veloped than the theory for worst-case complexity, even though average-case complexity is
much more relevant for many applications. The observations above suggest that at least for
combinatorial problems, we might hope for a different approach: define a meta conjecture
that stipulates that for a whole class of average-case problems, a certain algorithmic frame-
work yields the optimal efficient algorithm, meaning that beating the performance of that
algorithm would be infeasible (e.g., take exponential time). To make things more concrete,

6As further argument that reductions should increase the input length, note that if A and B were shown
equivalent by reductions f and g that shrink the size of the input even by a single bit, then by repeating these
reductions recursively shows that both A and B can be solved in polynomial time. This argument can be
extended to the case that f and g are length preserving, under the assumption that f ◦ g is not too close to the
identity permutation and that the inputs of length n− 1 are embedded in the set of inputs of length n. One can
also use similar arguments to rule out certain types of probabilistic reductions, even those that increase the
input size, if we assume the reduction is efficiently invertible.



consider the following hypothesis from the paper [6]:

Random CSP Hypothesis. For every predicate P : {0, 1}l → {0, 1}, if we let
RandomMax(P) be the problem of estimating the fraction of constraints that
can be satisfied for an instance chosen at random, then no efficient algorithm
can obtain a better approximation to RandomMax(P) than α(P), where α(P) is
the approximation obtained by the canonical semidefinite program (a type of
convex relaxation) to this problem.7

Note that this is a much more general conjecture that P, NP, which can be reduced to the
statement that a single problem (say worst-case SAT) cannot be efficiently solved. In con-
trast, the Random CSP Hypothesis contains an unbounded number of hardness conjectures
(one for every predicate) that (except in very special cases) are not known to be reducible
to one another. Of course, to derive a concrete assumption about a predicate P from this
hypothesis one needs to calculate α(P), but fortunately for random CSP’s this can be done
easily— one can of course run the algorithm, but there is also an analytical expression for
this quantity.

Despite it being such a general hypothesis, I don’t think the Random CSP Hypothesis is
yet general enough— there may well be significant extensions to this hypothesis that are
still true, involving combinatorial problems different than CSP’s, and distributions different
than the uniform one. Perhaps with time, researchers will find the “right” meta conjecture
which will capture a large fraction of the problems we consider “combinatorial”.

At first brush, it might seem that I’m suggesting to trivialize research in average-case com-
plexity by simply assuming all the hardness results we wish for. But of course, there is still
a very real challenge to find out if these assumptions are actually true! Given our current
state of knowledge, I don’t foresee an unconditional proof of these types of assumptions,
or even a reduction to a single problem, any time soon. But this doesn’t mean we can’t
gather evidence on these meta assumptions. Moreover, such assumptions form very “fat
targets” for potential refutations. For example, all we have to do to refute the Random
3CSP Hypothesis is to find a single predicate P and a single efficient algorithm A such
that A gives a better approximation factor than α(P) for RandomMax(P). In fact, there
are very natural candidate algorithms to do just that, including in particular more compli-
cated convex programs known as semidefinite programming hierarchies. Analyzing the
performance of such algorithms raises some fascinating mathematical questions, many of
which we haven’t yet been able to solve, and this is a very interesting research area in its
own right. With effort and time, if no refutation is found, we might gain confidence in

7The notion of “chosen at random” roughly corresponds to the uniform distribution over inputs, or the
uniform distribution with an appropriately “planted” satisfying assignment, with the precise notion of “es-
timation” being the appropriate one for these different models; see the paper for details. The Random CSP
Hypothesis deals with the overconstrainted regime of random SAT formulas, as opposed to the undercon-
strained regime in discussed above in the the context of phase transitions.



the veracity of such meta assumptions, and obtain a much clearer view of the landscape of
average-case complexity, and complexity at large.

Conclusions

While much of what I discussed consists of anecdotal examples, I believe that some works,
such as those related to the Feder-Vardi conjecture or to phase transitions in random CSP’s,
offer a glimpse of a potential general theory of the complexity of combinatorial problems.
I think there is room for some ambitious conjectures to try to illuminate this area. Some of
these conjectures might turn out to be false, but we can learn a lot from exploring them. Un-
derstanding whether the “markers of structure” such as subexponential algorithms, quan-
tum algorithms, good characterization, usefulness for public key cryptography, etc.. need
always go together would be extremely useful for many applications, and in particular cryp-
tography. Even more speculatively, perhaps thinking about these issues can help towards
the goal of unconditional results. The richness of the space of algorithms is one of the main
“excuses” offered for our relatively little success in proving unconditional lower bounds. If
indeed this space is much more limited for combinatorial problems, perhaps this can help
in finding such proofs.8

Acknowledgements. I thank Scott Aaronson, Dimitris Achlioptas, Amin Coja-Oghlan,
Tim Gowers, Joshua Grochow, David Steurer, and Moshe Vardi for useful comments and
discussion.

References

[1] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Leonard J. Schulman, editor, STOC, pages 171–180. ACM,
2010.

[2] Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transi-
tions. In FOCS, pages 793–802, 2008.

8In some sense, such an approach to proving lower bounds is dual to Mulumley’s approach of “Geometric
Complexity Theory” (GCT) [28, 8, 11, 19]. The GCT approach attempts to use specific properties of struc-
tured functions such as the permanent to obtain a lower bound; these properties are actually “constructive” in
the Razborov-Rudich sense of Natural Proofs. If we focused on combinatorial, “unstructured”, problems then
we would need to come up with general properties guaranteeing hardness, that would also apply to random
functions (which are the ultimate unstructured functions). The Razborov-Rudich result implies such proper-
ties would be inherently non-constructive. Valiant’s approach for proving certain types of lower bounds via
Matrix Rigidity [38] can be thought of as an instance of the latter approach.



[3] Boaz Barak. Truth vs. proof in computational complexity. Bulletin of the EATCS,
108:130–142, 2012.

[4] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A quasi-
polynomial algorithm for discrete logarithm in finite fields of small characteristic.
IACR Cryptology ePrint Archive, 2013:400, 2013.

[5] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.
Preliminary version in ICALP ’00.

[6] Boaz Barak, Guy Kindler, and David Steurer. On the optimality of semidefinite relax-
ations for average-case and generalized constraint satisfaction. In Robert D. Kleinberg,
editor, ITCS, pages 197–214. ACM, 2013.

[7] Andrej Bogdanov and Chin Ho Lee. Limits of provable security for homomorphic
encryption. In Ran Canetti and Juan A. Garay, editors, CRYPTO (1), volume 8042 of
Lecture Notes in Computer Science, pages 111–128. Springer, 2013.

[8] Peter Bürgisser, J. M. Landsberg, Laurent Manivel, and Jerzy Weyman. An overview
of mathematical issues arising in the geometric complexity theory approach to vp;vnp.
SIAM J. Comput., 40(4):1179–1209, 2011.

[9] Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are optimal - an
o(n2)-query attack on any key exchange from a random oracle. In Shai Halevi, ed-
itor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages 374–390.
Springer, 2009.

[10] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina. Survey propagation: An
algorithm for satisfiability. Random Structures & Algorithms, 27(2):201–226, 2005.

[11] Peter Bürgisser. Prospects for geometric complexity theory. In IEEE Conference on
Computational Complexity, page 235. IEEE, 2012.

[12] Amin Coja-Oghlan. Random constraint satisfaction problems. Electronic Proceedings
in Theoretical Computer Science, 9, 2009. Available as arXiv preprint 0911.2322.

[13] Amin Coja-Oghlan. A better algorithm for random k-sat. SIAM J. Comput.,
39(7):2823–2864, 2010.

[14] Amin Coja-Oghlan and Konstantinos Panagiotou. Going after the k-sat threshold. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC, pages 705–714.
ACM, 2013.

[15] Amin Coja-Oghlan and Angelica Y. Pachon-Pinzon. The decimation process in ran-
dom k-sat. SIAM J. Discrete Math., 26(4):1471–1509, 2012.

[16] Amir Dembo, Andrea Montanari, Allan Sly, and Nike Sun. The replica symmetric
solution for potts models on d-regular graphs. arXiv preprint arXiv:1207.5500, 2012.

[17] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
snp and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput., 28(1):57–104, 1998.

[18] W. T. Gowers. An almost m-wise independent random permutation of the cube. Com-
binatorics, Probability and Computing, 5:119–130, 6 1996.



[19] Joshua A. Grochow. Unifying and generalizing known lower bounds via geometric
complexity theory. arXiv, abs/1304.6333, 2013.

[20] Juris Hartmanis and Richard E Stearns. On the computational complexity of algo-
rithms. Transactions of the American Mathematical Society, 117:285–306, 1965.

[21] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[22] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-
way permutations. In David S. Johnson, editor, STOC, pages 44–61. ACM, 1989.

[23] Antoine Joux. A new index calculus algorithm with complexity l(1/4+o(1)) in very
small characteristic. IACR Cryptology ePrint Archive, 2013:95, 2013.

[24] Ari Juels and Marcus Peinado. Hiding cliques for cryptographic security. Designs,
Codes and Cryptography, 20(3):269–280, 2000.

[25] Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. In
STOC, pages 725–734, 2009.

[26] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal on Computing, 35(1):170–188, 2005.

[27] Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM,
22(1):155–171, 1975.

[28] Ketan Mulmuley. The gct program toward the p vs. np problem. Commun. ACM,
55(6):98–107, 2012.

[29] Ilya Mironov and Lintao Zhang. Applications of sat solvers to cryptanalysis of hash
functions. In Armin Biere and Carla P. Gomes, editors, SAT, volume 4121 of Lecture
Notes in Computer Science, pages 102–115. Springer, 2006.

[30] Carl Pomerance. A tale of two sieves. In Notices Amer. Math. Soc. Citeseer, 1996.

[31] Prasad Raghavendra. Complexity of constraint satisfaction problems: Exact and
approximate, 2010. Talk at the Institute for Advanced Study, video available on
http://video.ias.edu/csdm/complexityconstraint.

[32] Oded Regev. Quantum computation and lattice problems. SIAM J. Comput.,
33(3):738–760, 2004.

[33] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In Yuval
Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 219–
234. Springer, 2011.

[34] Federico Ricci-Tersenghi and Guilhem Semerjian. On the cavity method for decimated
random constraint satisfaction problems and the analysis of belief propagation guided
decimation algorithms. Journal of Statistical Mechanics: Theory and Experiment,
2009(09):P09001, 2009.

[35] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In FOCS, pages 124–134. IEEE Computer Society, 1994.

[36] Victor Shoup. A computational introduction to number theory and algebra. Cambridge
University Press, 2006.

http://video.ias.edu/csdm/complexityconstraint


[37] Allan Sly. Computational transition at the uniqueness threshold. In FOCS, pages
287–296. IEEE Computer Society, 2010.

[38] Leslie Valiant. Graph-theoretic arguments in low-level complexity. Mathematical
Foundations of Computer Science 1977, pages 162–176, 1977.


	Combinatorial/Unstructured problems
	Algebraic/Structured problems
	A different approach to average case complexity

