THE DISTRIBUTED COMPUTING COLUMN

BY

PANAGIOTA FATOUROU

Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and

Institute of Computer Science (ICS)
Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton
GR-700 13 Heraklion, Crete, Greece

faturu@csd.uoc.gr

AN INTRODUCTORY TUTORIAL TO
CONCURRENCY-RELATED DISTRIBUTED RECURSION

Sergio Rajsbaum
Instituto de Matemáticas, UNAM,
Mexico
rajsbaum@im.unam.mx

Michel Raynal
Institut Universitaire de France,
IRISA, Université de Rennes,
35042 Rennes Cedex,
France
raynal@irisa.fr
Abstract

Recursion is a fundamental concept of sequential computing that allows for the design of simple and elegant algorithms. Recursion is also used in both parallel or distributed computing to operate on data structures, mainly by exploiting data independence (independent data being processed concurrently). This paper is a short introduction to recursive algorithms that compute tasks in asynchronous distributed systems where communication is through atomic read/write registers, and any number of processes can commit crash failures. In such a context and differently from sequential and parallel recursion, the conceptual novelty lies in the fact that the aim of the recursion parameter is to allow each participating process to learn the number of processes that it sees as participating to the task computation.

Keywords: Asynchrony, Atomic read/write register, Branching time, Concurrency, Distributed algorithm, Concurrent object, Linear time, Participating process, Process crash failure, Recursion, Renaming, Shared memory, Task, Write-snapshot.

1 Introduction

Recursion is a powerful algorithmic technique that consists in solving a problem of some size (where the size of the problem is measured by the number of its input data) by reducing it to problems of smaller size, and proceeding the same way until we arrive at basic problems that can be solved directly. This algorithmic strategy is often capture by the Latin terms “divide ut imperes”.

Recursive algorithms are often simple and elegant. Moreover, they favor invariant-based reasoning, and their time complexity can be naturally captured by recurrence equations. In a few words, recursion is a fundamental concept addressed in all textbooks devoted to sequential programming (e.g., [10, 14, 19, 25] to cite a few). It is also important to say that, among the strong associations linking data structures and control structures, recursion is particularly well suited to trees and more generally to graph traversal [10].

Recursive algorithms are also used since a long time in parallel programming (e.g., [2]). In this case, parallel recursive algorithms are mainly extensions of sequential recursive algorithms, which exploit data independence. Simple examples of such algorithms are the parallel versions of the quicksort and mergesort sequential algorithms.

Recursion and distributed computing In the domain of distributed computing, the first (to our knowledge) recursive algorithm that has been proposed is the algorithm solving the Byzantine general problem [22]. This algorithm is a message-passing synchronous algorithm. Its formulation is relatively simple and elegant, but it took many years to understand its deep nature (e.g., see [7] and textbooks such as [6, 24, 29]). Recursion has also been used to structure distributed systems to favor their design and satisfy dependability requirements [28].
Similarly to parallelism, recursion has been used in distributed algorithms to exploit data independence or provide time-efficient implementations of data structures. As an example, the distributed implementation of a store-collect object described in [4] uses a recursive algorithm to obtain an efficient tree traversal, which provides an efficient adaptive distributed implementation. As a second example, a recursive synchronous distributed algorithm has been introduced in [5] to solve the lattice agreement problem. This algorithm, which recursively divides a problem of size n into two sub-problems of size $n/2$, is then used to solve the snapshot problem [1]. Let us notice that an early formal treatment of concurrent recursion can be found in [12].

Capture the essence of distributed computing The aim of real-time computing is to ensure that no deadline is missed, while the aim of parallelism is to allow applications to be efficient (crucial issues in parallel computing are related to job partitioning and scheduling). Differently, when considering distributed computing, the main issue lies in mastering the uncertainty created by the multiplicity and the geographical dispersion of computing entities, their asynchrony and the possibility of failures.

At some abstract level and from a “fundamentalist” point of view, such a distributed context is captured by the notion of a task, namely, the definition of a distributed computing unit which capture the essence of distributed computing [17]. Tasks are the distributed counterpart of mathematical functions encountered in sequential computing (where some of them are computable while others are not).

At the task level, recursion is interesting and useful mainly for the following reasons: it simplifies algorithm design, makes their proofs easier, and facilitates their analyze (thanks to topology [15, 26]).

Content of the paper: recursive algorithms for computable tasks This paper is on the design of recursive algorithms that compute tasks [13]. It appears that, for each process participating to a task, the recursion parameter x is not related to the size of a data structure but to the number of processes that the invoking process perceives as participating to the task computation. In a very interesting way, it follows from this feature that it is possible to design a general pattern, which can be appropriately instantiated for particular tasks.

When designing such a pattern, the main technical difficulty come from the fact that processes may run concurrently, and, at any time, distinct processes can be executing at the same recursion level or at different recursion levels. To cope with such an issue, recursion relies on an underlying data structure (basically, an array of atomic read/write registers) which keeps the current state of each recursion level.

After having introduced the general recursion pattern, the paper instantiates it to solve two tasks, namely, the write-snapshot task [8] and the renaming task [3]. Interestingly, the first instantiation of the pattern is based on a notion of linear time (there is single sequence of recursive calls, and each participating process executes a prefix of it), while the second instantiation is based on a notion of branching time (a process executes a prefix of a single branch of the recursion tree whose branches individually capture all possible execution paths).

In addition to its methodological dimension related to the new use of recursion in a distributed setting, the paper has a pedagogical flavor in the sense that
it focuses on and explains fundamental notions of distributed computing. Said
differently, an aim of this paper is to provide the reader with a better view of the
nature of fault-tolerant distributed recursion when the processes are concurrent,
asynchronous, communicate through read/write registers, and are prone to crash
failures.

Road map The paper is made up of six sections. Section 2 presents the computa-
tion model and the notion of a task. Then, Section 3 introduces the basic recursive
pattern in which the recursion parameter of a process represents its current approx-
imation of the number of processes it sees as participating. The next two sections
present instantiations of the pattern that solve the write-snapshot task (Section 4)
and the renaming task (Section 5), respectively. Finally, Section 6 concludes the
paper. (While this paper adopts a programming methodology perspective, the in-
terested reader will find in 26 a topological perspective of recursion in distributed
computing).

2 Computation Model, Notion of a Task,
and Examples of Tasks

2.1 Computation model

Process model The computing model consists of \(n \) processes denoted \(p_1, \ldots, p_n \).
A process is a deterministic state machine. The integer \(i \) is called the index of
\(p_i \). The indexes can only be used for addressing purposes. Each process \(p_i \) has a
name –or identity– \(id_i \). Initially a process \(p_i \) knows only \(id_i \), \(n \), and the fact that
no two processes have the same initial name. Moreover, process names belong to
a totally ordered set and this is known by the processes (hence two identities can
be compared).

The processes are asynchronous in the sense that the relative execution speed
of different processes is arbitrary and can varies with time, and there is no bound
on the time it takes for a process to execute a step.

Communication model and local memory The processes communicate by ac-
cessing atomic read/write registers. Atomic means that, from an external observer
point of view, each read or write operation appears as if it has been executed at a
single point of the time line between it start and end events 18, 20.

Each atomic register is a single-writer/multi-reader (SWMR) register. This
means that, given any register, a single process (statically determined) can write
in this register, while all the processes can read it. Let \(X[1..n] \) be an array of
atomic registers whose entries are the process indexes. By convention, \(X[i] \) can
be written only by \(p_i \). Atomic registers are denoted with uppercase letters. All
shared registers are initialized to a default value denoted \(\perp \) and no process can
write \(\perp \) in a register. Hence, the meaning of \(\perp \) is to state that the corresponding
register has not yet been written.

A process can have local variables. Those are denoted with lowercase letters
and sub-scripted by the index of the corresponding process. As an example, \(aaa_i \)
denotes the local variable \(aaa \) of process \(p_i \).
Failure model The atomic read/write registers are assumed to experience no failure. (For the interested reader, the construction of atomic reliable registers from basic atomic registers which can fail –crash, omission, or Byzantine failures– is addressed in [30]).

A process may crash (halt prematurely). A process executes correctly until it possibly crashes, and after it has crashed (if ever it does), it executes no step. Given a run, a process that crashes is faulty, otherwise it is non-faulty.

Any number of processes may crash (wait-free model [15]). Let us observe that the wait-free model prevents implicitly the use of locks (this is because a process that owns a lock and crashes before releasing it can block the whole system). (Locks can be implemented from atomic read/write registers only in reliable systems [30].)

2.2 The notion of a task

Informal definition As indicated in the Introduction, a task is the distributed counterpart of a mathematical function encountered in sequential computing.

In a task each process p_i has a private input value in_i and, given a run, the n input values constitute the input vector I of the considered run. Each process knows initially only its input value, which is usually called proposed value. Then, from an operational point of view, the processes have to coordinate and communicate in such a way that each process p_i computes an output value out_i and the n output values define an output vector O, such that $O \in \Delta(I)$ where Δ is the mapping defining the task. An output value is also called decided value. The way a distributed task extends the notion of a sequential function is described in Figure 1, where the left side represents a classical sequential function and the right side represents a distributed task.

As in sequential computing (Turing machines) where there are computable functions and uncomputable functions, there are computable tasks and uncomputable tasks. As we will see later write-snapshot and renaming are computable in asynchronous read/write systems despite asynchrony and any number of process failures, while consensus is not [11, 15, 23].

![Figure 1: Function (left) and task (right)](image-url)
Formal definition A task is a triple \(\langle I, O, \Delta \rangle\) where
- \(I\) is the set of allowed input vectors,
- \(O\) is the set of allowed output vectors, and
- \(\Delta\) is a mapping of \(I\) into \(O\) such that \((\forall I \in I) \Rightarrow (\Delta(I) \in O)\).

Hence, \(I[i]\) and \(O[i]\) are the values proposed and decided by \(p_i\), respectively, while \(\Delta(I)\) defines the set of output vectors that can be decided from the input vector \(I\).

(More developments on the definition of tasks and their relation with topology can be found in \([16,17]\)).

If one or several processes \(p_i, \ldots, p_j\), do not participate or crash before deciding an output value, we have \(O[i] = \ldots = O[j] = \bot\), and the vector \(O\) has then to be such that there is a vector \(O' \in \Delta(I)\) that covers \(O\), i.e., \((O[i] \neq \bot) \Rightarrow (O'[i] = O[i])\).

A simple example: the binary consensus task In this task, a process proposes a value from the set \(\{0, 1\}\), and all the non-faulty processes have to decide the same value which has to be a proposed value. Let \(X_0\) and \(X_1\) be the vector of size \(n\) containing only zeros and only ones, respectively.

The set \(I\) of input vectors is the set of all the vectors of zeros and ones. The set \(O\) of output vectors is \(\{X_0, X_1\}\). The mapping \(\Delta\) is such that (i) \(\Delta(\text{any vector except } X_0, X_1) = O\), (ii) \(\Delta(X_0) = X_0\), and (iii) \(\Delta(X_1) = X_1\).

Solving a task In the context of this paper, a distributed algorithm \(\mathcal{A}\) is a set of \(n\) local automata (one per process) that communicate through atomic read/write registers.

The algorithm \(\mathcal{A}\) solve a task \(T\) if, in any run in which each process proposes a value such that the input vector belongs to \(I\), each non-faulty process decides a value, and the vector \(O\) of output values belongs to the set \(\Delta(I)\).

Tasks vs Objects A task is a mathematical object. From a programming point of view, a concurrent object can be associated with a task (a concurrent object is an object that can be accessed by several processes). Such an object is a one-shot object that provides the processes with a single operation ("one-shot" means that a process can invoke the object operation at most once).

To adopt a more intuitive presentation, the two tasks that are presented below use their object formulation. This formulation expresses the mapping \(\Delta\) defining a task by a set of properties that the operation invocations have to satisfy. These properties can be more restrictive than \(\Delta\). This comes from the fact that there is no notion of time/concurrency/communication pattern in \(\Delta\), while the set of properties defining the object can implicitly refer to such notions.

2.3 The write-snapshot task

The write-snapshot task was introduced in \([8]\) (where it is called immediate snapshot). A write-snapshot object provides processes with a single operation denoted \(\text{write}_\text{snapshot}()\). When a process \(p_i\) invokes this operation, it supplies as input
parameters its identity id_i and the value it wants to deposit into the write-snapshot object. Its invocation returns a set $view_i$ composed of pairs (id_i, v_i).

As previously indicated, the specification Δ is expressed here a set of properties that the invocations of `write_snapshot()` have to satisfy.

- **Self-inclusion.** $\forall i: (id_i, v_i) \in view_i$.
- **Containment.** $\forall i, j: (view_i \subseteq view_j) \lor (view_j \subseteq view_i)$.
- **Simultaneity.** $\forall i, j: [((id_j, v_j) \in view_i) \land ((id_i, v_i) \in view_j)] \Rightarrow (view_i = view_j)$.
- **Termination.** Any invocation of `write_snapshot()` by a non-faulty process terminates.

A write-snapshot combines in a single operation the write of a value (here a pair (id_i, v_i)) and a snapshot of the set of pairs already or concurrently written. Self-inclusion states that a process sees its write. Containment states the views of the pairs deposited are ordered by containment. Simultaneity states that if each of two processes sees the pair deposited by the other one, they have the same view of the deposited pairs. Finally, the termination property states that the progress condition associated with operation invocations is wait-freedom, which means that an invocation by a non-faulty process terminates whatever the behavior of the other processes (which can be slow, crashed, or not participating). An iterative implementation of write-snapshot can be found in [8, 30].

2.4 The adaptive renaming task

This task has been introduced in [3] in the context of asynchronous crash-prone message-passing systems. Thereafter, a lot of renaming algorithms suited to read/write communication have been proposed. An introduction to shared memory renaming, and associated lower bounds, is presented in [9].

While there are only n process identities, the space name is usually much bigger than n (as a simple example this occurs when the name of a machine is the IP address). The aim of the adaptive renaming task is to allow the processes to obtain new names from a new name space which has to depend only on the number p of processes that want to obtain a new name ($1 \leq p \leq n$), and be as small as possible. It is shown in [17] that $2^p - 1$ is a lower bound on the size of the new name space.

When considering the adaptive renaming task from the point of view of its associated one-shot object, a process p_i that wants to acquire a new name invokes an operation denoted `new_name(id_i)`. The set of invocations has to satisfy the following set of properties.

- **Validity.** The size of the new name space is $2^p - 1$.
- **Agreement.** No two processes obtain the same new name.
- **Termination.** Any invocation of `new_name()` by a non-faulty process terminates.

As for the write-snapshot task, the termination property states that a non-faulty process that invokes the operation `new_name()` obtains a new name whatever the behavior of the other processes. Agreement states the consistency condition associated with new names. Validity states the domain of the new names: if a
single process wants to obtain a new name, it obtains the name 1, if only two processes invoke `new_name()` they obtain new names in the set \{1, 2, 3\}, etc. This show that the termination property (wait-freedom progress condition) has a cost in the size of the new name space: while only \(p \) new names are needed, the new name space needs \((p - 1)\) additional potential new names to allow the invocations issued by non-faulty processes to always terminate.

3 A Concurrency-related Recursive Pattern for Distributed Algorithms

The recursion parameter As already announced, the recursion parameter (denoted \(x \)) in the algorithms solving the tasks we are interested is the number of processes that the invoking process perceives as participating processes. As initially a process has no knowledge of how many processes are participating, it conservatively considers that all other processes participate, and consequently issues a main call with \(x = n \).

Atomic read/write registers and local variables The pattern manages an array \(SM[n..1] \), where each \(SM[x] \) is a sub-array of size \(n \) such that \(SM[x][i] \) can be written only by \(p_i \). A process \(p_i \) starts executing the recursion level \(x \) by depositing a value in \(SM[x][i] \). From then on, it is a participating process at level \(x \).

Each process manages locally three variables whose scope is a recursive invocation. \(sm_i[n..1] \) is used to save a copy of the current value of \(SM[x][1..n] \); \(part_i \) keeps the number of processes that \(p_i \) sees as participating at level \(x \); and \(res_i \) is used to save the result returned by the current invocation.

```plaintext
operation recursive_pattern(x, input) is
(01) \( SM[x][i] \leftarrow \text{input}; \)
(02) for each \( j \in \{1, \ldots, n\} \) do \( sm[i] \leftarrow SM[x][j] \) end for;
(03) \( part_i \leftarrow |\{sm[j] \neq \bot\}|; \)
(04) if \( (part_i = x) \) then statements specific to the task, possibly including a recursive call;
(05) \( \text{computation of \( res_i \)} \)
(06) \( \text{else \( res_i \leftarrow \text{recursive_pattern}(x - 1, input) \)} \)
(07) \end if
(08) return(\( res_i \))
end operation.
```

Figure 2: Concurrency-related recursive pattern

The recursion pattern The generic recursive pattern is described in Figure 2. The invoking process \(p_i \) first deposits its input parameter value in \(SM[x][i] \) (line 1), and read the content of the shared memory attached to its recursion level \(x \) (line 2). Let us notice that the entries of the array \(SM[x][1..n] \) are read in any order and asynchronously. Then, \(p_i \) computes the number of processes it sees as participating in the recursion level \(x \) (line 3), and checks if this number is equal to its current recursion level \(x \).
if \(x = \text{part}_i \) (lines 4-5), \(p_i \) discovers that \(x \) processes are involved in the recursion level \(x \). In this case, it executes statements at the end of which it computes a local result \(\text{res}_i \). These local statements are task-dependent and may or not involve a recursive call with recursion level \(x - 1 \).

if \(x \neq \text{part}_i \), \(p_i \) sees less than \(x \) processes participating to the recursion level \(x \). In this case, it invokes the recursion pattern at level \(x - 1 \) with the same input parameter \(\text{input} \), and continues until it attains a recursion level \(x' \leq x - 1 \) at which it sees exactly \(x' \) processes that have attained this recursion level \(x' \).

A process \(p_i \) starts with its recursion parameter \(x \) equal \(n \), and then its recursion parameter decreases until the invoking process returns a result. Hence, a process executes at most \(n \) recursive calls before terminating. The correctness proof of this recursive pattern is the same as the one of Theorem 1 which considers its write-snapshot instantiation.

Linear time vs branching time If line 4 does not include a recursive call, the recursive pattern is a linear time pattern. Each participating process executes line 6 until its stops at line 4 (or crashes before). Hence, each process executes a prefix of the same sequence of recursive calls, each with its initial input parameter \(\text{input} \). The algorithm, whose instantiation from the recursive pattern is described in Section 4, is a linear time implementation of write-snapshot.

If there are recursive calls at line 4, the recursive pattern is a branching time pattern. Such a recursion pattern is characterized by a tree of recursive calls, and a participating process executes a prefix of a single branch of this tree. In this case, each \(SM[x] \) is composed of several sub-arrays, each of them being an array of \(n \) SWMR atomic registers. The algorithm, whose instantiation from the recursive pattern is described in Section 5, is a branching time implementation of renaming.

4 Linear Time Recursion

4.1 A recursive write-snapshot algorithm

An instantiation of the recursive pattern which implements write-snapshot is described in Figure 3. This recursive implementation has been introduced in [13], and the representation adopted here is from [30]. This instantiation is nearly the same as the original recursive pattern. More precisely, the input parameter \(\text{input} \) of a process \(p_i \) is the pair \((\text{id}_i, v_i)\).

The line numbering is the same as in the recursive pattern. As there is no specific statement to instantiate at line 4 of the recursive pattern, its lines 4 and 5 are instantiated by a single line denoted 4+5.

A process \(p_i \) invokes first \text{write_snapshot}(n, (\text{id}_i, v_i)) where \(v_i \) is the value it wants to deposit in the write-snapshot object.

As already said, the recursion of this algorithm is a linear time recursion. This appears clearly from the arrays of atomic read/write registers accessed by the recursive calls issued by the processes: each process accesses first \(SM[n] \), then \(SM[n-1] \), etc., until it stops at \(SM[x] \) where \(n \geq x \geq 1 \).
processes invoke write executes the Proof
This proof is from [30]. While a process terminates an invocation when it

4.2 Proof of the algorithm

Theorem 1. [13] The algorithm described in Figure 3 implements a write-snapshot object. For a process \(p \), The step complexity (number of shared memory accesses) for a process \(p \) is \(O(1 + |res_i|) \), where \(res_i \) is the set returned by the invocation of write_snapshot() issued by \(p \).

Proof This proof is from [30]. While a process terminates an invocation when it executes the return() statement at line 8, we say that it terminates at line 4+5 or line 6 according to the line where the returned value \(res_i \) has been computed.

Claim C. If at most \(x \) processes invoke write_snapshot(x, −), (a) at most \((x−1) \) processes invoke write_snapshot(x − 1, −), and (b) at least one process stops at line 4+5 of its invocation of write_snapshot(x, −).

Proof of claim C. Assuming that at most \(x \) processes invoke write_snapshot(x, −), let \(p_k \) be the last process that writes into \(SM[x][1..n] \) (as the registers are atomic, the notion of “last” is well-defined). We necessarily have \(part_k \leq x \). If \(p_k \) finds \(part_k = x \), it stops at line 4+5. Otherwise, we have \(part_k < x \) and \(p_k \) invokes write_snapshot(x − 1, −) at line 6. But in this case, as \(p_k \) is the last process that wrote into the array \(SM[x][1..n] \), it follows from \(part_k < x \) that fewer than \(x \) processes have written into \(SM[x][1..n] \), and consequently, at most \((x−1) \) processes invoke write_snapshot(x − 1, −). End of the proof of claim C.

To prove termination, let us consider a non-faulty process \(p \) that invokes write_snapshot(n, −). It follows from Claim C and the fact that at most \(n \) processes invoke write_snapshot(n, −) that either \(p_i \) stops at that invocation or belongs to the set of at most \((n−1) \) processes that invoke write_snapshot(n − 1, −). It then follows, by induction from the claim C, that if \(p_i \) has not stopped during a previous invocation, it is the only process that invokes write_snapshot(1, −). It then follows from the text of the algorithm that it stops at that invocation.

The proof of the self-inclusion property is trivial. Before stopping at recursion level \(x \) (line 4+5), a process \(p_i \) has written \(v_i \) into \(SM[x][i] \) (line 1). and consequently we have then \((id_i, v_i) \in view_i\), which concludes the proof of the self-inclusion property.

To prove the self-containment and simultaneity properties, let us first consider the case of two processes that return at the same recursion level \(x \). If a process \(p_i \) returns at line 4+5 of recursion level \(x \), let \(res_i[x] \) denote the corresponding value of \(res_i \). Among the processes that stop at recursion level \(x \), let \(p_i \) be the last process which writes into \(SM[x][1..n] \). As \(p_i \) stops, this means that \(SM[x][1..n] \) has exactly
x entries different from \(\bot \) and (due to Claim C) no more of its entries will be set to a non-\(\bot \) value. It follows that, as any other process \(p_j \) that stops at recursion level \(x \) reads \(x \) non-\(\bot \) entries from \(SM[x][1..n] \), we have \(res_i[x] = res_j[x] \) which proves the properties.

Let us now consider the case of two processes \(p_i \) and \(p_j \) that return at line 6 of recursion level \(x \) and \(y \), respectively, with \(x > y \) (i.e., \(p_i \) returns \(res_i[x] \) while \(p_j \) returns \(res_j[y] \)). The self-containment follows then from \(x > y \) and the fact that \(p_i \) has written into all the arrays \(SM[z][1..n] \) with \(n \geq z \geq y \), from which we conclude that \(res_j[y] \subseteq res_i[x] \). Moreover, as \(x > y \), \(p_i \) has not written into \(SM[y][1..n] \) while \(p_j \) has written into \(SM[x][1..n] \), and consequently \((id_j, v_j) \in res_i[x] \) while \((id_i, v_i) \notin res_j[y] \), from which both he containment and immediacy properties follow.

As far as the number of shared memory accesses is concerned we have the following. Let \(res \) be the set returned by an invocation of write_snapshot\((n, -)\). Each recursive invocation costs \(n + 1 \) shared memory accesses (lines 1 and 2). Moreover, the sequence of invocations, namely write_snapshot\((n, -)\), write_snapshot\((n - 1, -)\), etc., until write_snapshot\(|res|, -) \) (where \(x = |res| \) is the recursion level at which the recursion stops) contains \(n - |res| + 1 \) invocations. It follows that the step complexity for a process \(p_i \) is \(O(n(n - |res| + 1)) \) accesses to atomic registers. □

4.3 Example of an execution

This section described simple executions where \(n = 5 \) and process \(p_5 \) crashes before taking any step (or –equivalently– does not participate). These executions are described in Table 1 and Table 2. In these tables write_snapshot() is abbreviated as \(ws() \).

<table>
<thead>
<tr>
<th></th>
<th>(p_1)</th>
<th>(p_2)</th>
<th>(p_3)</th>
<th>(p_4)</th>
<th>(p_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_1)</td>
<td>(ws(5, (id_3, v_3)))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_2)</td>
<td></td>
<td>(ws(4, (id_3, v_3)))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>crashes</td>
</tr>
<tr>
<td>(\tau_4)</td>
<td></td>
<td></td>
<td></td>
<td>(ws(5, (id_4, v_4)))</td>
<td></td>
</tr>
<tr>
<td>(\tau_5)</td>
<td></td>
<td></td>
<td></td>
<td>(... ws(1, (id_4, v_4)))</td>
<td></td>
</tr>
<tr>
<td>(\tau_6)</td>
<td></td>
<td></td>
<td></td>
<td>({ (id_4, v_4) })</td>
<td></td>
</tr>
<tr>
<td>(\tau_7)</td>
<td>(ws(5, (id_1, v_1)))</td>
<td>(ws(5, (id_2, v_2)))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_8)</td>
<td>(ws(4, (id_1, v_1)))</td>
<td>(ws(4, (id_2, v_2)))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_9)</td>
<td>(res_1)</td>
<td>(res_2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Write-snapshot execution: an example

A first execution
1. At time τ_1, p_3 invokes $\text{write_snapshot}(5,(id_3,v_3))$. This triggers at time τ_2 the recursive invocation $\text{write_snapshot}(4,(id_3,v_3))$. Then, p_3 crashes after it has written id_3 into $SM[4][3]$ at time τ_3.

2. At a later time τ_4, p_4 invokes $\text{write_snapshot}(5,(id_4,v_4))$, which recursively ends up with the invocation $\text{write_snapshot}(1,(id_4,v_4))$ at time τ_5, and consequently p_4 returns the singleton set $\{id_4,v_4\}$ at time τ_6.

3. At time τ_7, processes p_1 and p_4 start executing synchronously: p_1 invokes $\text{write_snapshot}(5,(id_1,v_1))$, while p_2 invokes $\text{write_snapshot}(5,(id_2,v_2))$, which entails at time τ_8—always synchronously—the recursive invocations $\text{write_snapshot}(4,(id_1,v_1))$ and $\text{write_snapshot}(4,(id_2,v_2))$. As $SM[4]$ contains four non-\perp entries, both p_1 and p_2 returns res_1 and res_2 which are such that $res_1 = res_2 = \{(id_1,v_1),(id_2,v_2),(id_3,v_3),(id_3,v_4)\}$.

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>p_2</th>
<th>p_3</th>
<th>p_4</th>
<th>p_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{10}</td>
<td>$\text{ws}(3,(id_3,v_3))$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{11}</td>
<td>$\text{ws}(2,(id_3,v_3))$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{12}</td>
<td></td>
<td></td>
<td></td>
<td>res_3</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Write-snapshot execution: continuing the example

Continuing the example Let us assume that instead of crashing at time τ_3, p_3 paused for an arbitrary long period starting after it has read $SM[4][1..5]$ (hence it has seen only two non-\perp values in $SM[4]$).

1. At time τ_{10}, p_3 wakes up and, as $part_3 \neq 4$, it issues the recursive invocation $\text{write_snapshot}(3,(id_3,v_3))$, which entails at time τ_{11} the invocation $\text{write_snapshot}(2,(id_3,v_3))$.

2. As at time τ_{12}, the shared array $SM[2]$ contains two non-\perp values, process p_4 returns $res_3 = \{(id_3,v_3),(id_3,v_4)\}$.

The reader can check that, if before pausing at time τ_3, p_3 has read only $SM[4][4]$ and $SM[4][5]$, it will read the other entries $SM[4][1]$, $SM[4][2]$, and $SM[4][3]$, when it wakes up, and its invocation $\text{write_snapshot}(4,(id_3,v_3))$ will stop the recursion and return $res_3 = res_1 = res_2$.

5 Branching Time Recursion

5.1 A recursive renaming algorithm

An instance of the recursive pattern implementing adaptive renaming is described in Figure 4. This recursive implementation, inspired from the sketch of an algorithm succinctly described in [13], has been introduced in [27], where it is proved correct. As for the previous recursive algorithm, the representation adopted here is from [30]. The core of this recursive algorithm is the instantiation of line 4 of the recursive pattern, where appears branching time recursion.
Underlying idea: the case of two processes The base case is when \(n = 2 \). A process \(p_i \) first writes its identity \(id_i \) in the shared memory, and then reads the content of the memory.

- If, according to what it has read from the shared memory, a process sees only itself, it adopt the new name 1.
- Otherwise it knows its identity and the one of the other process \((id_j)\). It then compares its identity \(id_i \) and \(id_j \), and does the following: if \(id_i > id_j \), it adopts the new name 3, if \(id_i < id_j \), it adopts the new name 2.

The new name space is consequently \([1..2p-1]\) where \(p \) (number of participating processes) is 1 or 2.

The underlying shared memory The shared memory \(SM[n..1] \) accessed by processes is now a three-dimensional array \(SM[n..1,..2n-1,\{up,down\}] \) such that \(SM[x,first,dir] \) is a an array of \(n \) atomic read/write registers. \(SM[x,first,dir][i] \) can be written only by \(p_i \), but can be read by all processes.

From a notational point of view \(up = 1 = \overline{down} \), and \(down = -1 = \overline{up} \).

When more than two processes participate The algorithm is described in Figure 4. A process invokes first new_name \((n, 1, up, id_i)\). It then recursively invokes new_name \((x, 1, up, id_i)\), until the recursion level \(x \) is equal to the number of processes that \(p_i \) sees as competing for a new name.

As we are about to see, given a pair \((first,dir)\), the algorithm ensures that at most \(x \) processes invoke new_name \((x, 1, up, id_i)\). These processes compete for new names in a space name of size \(2x-1 \) which is the interval \([first,first+(2x-2)]\) if \(dir = up \), and \([first-(2x-2),first]\) if \(dir = down \). Hence, the value \(up \) is used to indicate that the concerned processes are renaming “from left to right” (as far as the new names are concerned), while \(down \) is used to indicate that the concerned processes are renaming “from right to left” (this is developed below when explaining the splitter behavior of the underlying read/write registers.) Hence, a process \(p_i \) considers initially the renaming space \([1..2n-1]\), and then (as far \(p_i \) is concerned) this space will shrink at each recursive invocation (going up or going down) until \(p_i \) obtains a new name.

The recursive algorithm The lines 4, 5 and 6 are the same as in the recursive pattern where \(SM[x] \) is replaced by \(SM[x,first,dir] \). The lines which are specific to adaptive renaming are the statements in the then part of the recursive pattern (lines 4-5). These statements are instantiated by the new lines 4, 5, 1-4, 5, 5, which constitute an appropriate instantiation suited adaptive renaming.

For each triple \((x, f, d)\), all invocations new_name \((-, x, f, d)\) coordinate their respective behavior with the help of the size \(n \) array of atomic read/write registers \(SM[x, f, d][1..n] \). At line 4, \(\max(sm) \) denotes the greatest process identity present in \(sm \). As a process \(p_i \) deposits its identity in \(SM[x,first,dir][i] \) before reading \(SM[x,first,dir][1..n] \), it follows that \(sm \), contains at least one process identity when read by \(p_i \).

Let us observe that, if only \(p \) processes invoke new_name \((n, 1, up, -)\), \(p < n \), then all of them will invoke the algorithm recursively, first with new_name \((n - 1, 1, up)\), then new_name \((n - 2, 1, up)\), etc., until new_name \((p, 1, up, -)\). Only
operation new_name(x, first, dir, id_i) is
 SM[x, first, dir][i] ← id_i;
 for each j ∈ {1, ..., n} do sm_i[j] ← SM[x, first, dir][j] end for;
 part_i ← (sm_i[j] ≠ ⊥);
 if (part_i = x) then last_i ← first_i = dir(2x − 2);
 if (id_i = max(sm_i)) then res_i ← last_i;
 else res_i ← new_name(x − 1, last_i + dir, dir, id_i))
 end if
 return(res_i)
end operation.

Figure 4: A recursive adaptive renaming algorithm [13]

at this point, the behavior of a participating process p_i depend on the concurrency pattern (namely, it may or may not invoke the algorithm recursively, and with either up or down).

Splitter behavior associated with SM[x, first, dir] (The notion of a splitter has been informally introduced in [21].) Considering the (at most) x processes that invoke new_name(x, first, dir, −), the splitter behavior associated with the array of atomic registers SM[x, first, dir] is defined by the following properties. Let x′ = x − 1.

- At most x′ = x − 1 processes invoke new_name(x − 1, first, dir, −) (line 6). Hence, these processes will obtain new names in an interval of size (2x′ − 1) as follows:
 - If dir = up, the new names will be in the “going up” interval [first_i, first_i + (2x′ − 2)],
 - If dir = down, the new names will be in the “going down” interval [first_i − (2x′ − 2), first_i].

- At most x′ = x − 1 processes invoke new_name(x − 1, last + dir, dir, dir) (line (4[4]5)[4], where last = first + dir(2x − 2) (line (4[4]5)[4], 1). Hence, these x′ = x − 1 processes will obtain their new names in a renaming space of size (2x′ − 1) starting at last + 1 and going from left to right if dir = up, or starting at last − 1 and going from right to left if dir = down. Let us observe that the value last ± 1 is considered as the starting name because the slot last is reserved for the new name of the process (if any) that stops during its invocation of new_name(x, first, dir) (see next item).

- At most one process “stops”, i.e., defines its new name as last = first + dir(2x − 2) (lines (4[4]5)[4] and (4[4]5)[3]). Let us observe that the only process p_k that can stop is the one such that id_k has the greatest value in the array SM[x, first, dir][1..n] which contains then exactly x identities.
5.2 Example of an execution

A proof of the previous algorithm can be found in [30]. This section presents an example of an execution of this algorithm. It considers four processes \(p_1, p_2, p_3, \) and \(p_4. \)

First: process \(p_3 \) executes alone Process \(p_3 \) invokes \texttt{new_name}(4, 1, \texttt{up}, \texttt{id}_1) while (for the moment) no other process invokes the renaming operation. It follows from the algorithm that \(p_3 \) invokes recursively \texttt{new_name}(3, 1, \texttt{up}, \texttt{id}_1), then \texttt{new_name}(2, 1, \texttt{up}, \texttt{id}_1), and finally \texttt{new_name}(1, 1, \texttt{up}, \texttt{id}_1). During the last invocation, it obtains the new name 1. This is illustrated in Figure 5. As, during its execution, \(p_3 \) sees only \(p = 1 \) process (namely, itself), it decides consistently in the new name space \([1..5] = 1\).

Then: processes \(p_1 \) and \(p_4 \) invoke \texttt{new_name} After \(p_3 \) has obtained a new name, both \(p_1 \) and \(p_4 \) invoke \texttt{new_name}(4, 1, \texttt{up}, \texttt{id}_4) (See Figure 5). As they see only three processes that have written their identities into \(SM[4, 1, \texttt{up}] \), both concurrently invoke \texttt{new_name}(3, 1, \texttt{up}, \texttt{id}_4) and consequently both compute \(last = 1 + (2 \times 3 - 2) = 5 \). Hence their new name space is \([1..5]\).

Now, let us assume that \(p_1 \) stops executing while \(p_4 \) executes alone. Moreover, let \(\texttt{id}_1, \texttt{id}_4 < \texttt{id}_3. \) As it has not the greatest identity among the processes that have accessed \(SM[3, 1, \texttt{up}] \) (namely, the processes \(p_1, p_3 \) and \(p_4 \)), \(p_4 \) invokes first \texttt{new_name}(2, 4, \texttt{down}, \texttt{id}_4) and then recursively \texttt{new_name}(1, 4, \texttt{down}, \texttt{id}_4), and finally obtains the new name 4.
After process \(p_4 \) has obtained its new name, \(p_4 \) continues its execution, invokes new_name(2, 4, down, \(id_4 \)) and computes \(\text{last} = 4 - (2 \times 2 - 2) = 2 \). The behavior of \(p_1 \) depends then on the values of \(id_1 \) and \(id_4 \). If \(id_4 < id_1 \), \(p_1 \) decides the name \(\text{last} = 4 - (2 \times 2 - 2) = 2 \). If \(id_4 > id_1 \), \(p_1 \) invokes new_name(1, 3, 1, \(id_1 \)) and finally decides the name 3.

Finally, if later \(p_2 \) invokes new_name(4, 1, up, \(id_2 \)), it sees that the splitter \(SM[4, 1, \text{up}] \) was accessed by four processes. Hence \(p_2 \) computes \(\text{last} = 1 + (2 \times 4 - 2) = 1 \), and consequently invokes recursively new_name(3, 6, down, \(id_1 \)), new_name(2, 6, down, \(id_1 \)), new_name(1, 6, down, \(id_1 \)), at the end of which it computes \(\text{last} = 6 + (2 \times 1 - 2) = 6 \) and decides the name 6.

The multiplicity of branching times appears clearly on this example. As an example, the branch of time experienced by \(p_3 \) (which is represented by the sequence of accesses to \(SM[4, 1, \text{up}] \), \(SM[3, 1, \text{up}] \), \(SM[2, 1, \text{up}] \), and \(SM[1, 1, \text{up}] \)), is different from the branch of time experienced by \(p_1 \) (which is represented by the sequence of accesses to \(SM[4, 1, \text{up}] \), \(SM[3, 1, \text{up}] \), \(SM[2, 4, \text{down}] \), and \(SM[1, 4, \text{up}] \)).

Let \(id_1, id_4 < id_3 \)
\(p_1 \) and \(p_4 \) invoke new_name(3, 1, up, \(- \)), they see \(p = 3 \) processes and both compute \(\text{last} = 1 + (2 \times 3 - 2) = 5 \Rightarrow \) their new name space = [1..5]

First \(p_4 \) executes alone and invokes new_name(2, 4, down, \(id_4 \))

Then, \(p_4 \) invokes new_name(1, 4, down, \(id_4 \))
\(\text{last} = 4 - (2 \times 1 - 2) = 4 \) and \(p_4 \) decides 4

Later \(p_1 \) invokes new_name(2, 4, down, \(id_1 \))
If \(id_4 < id_1 \); \(p_1 \) decides \(\text{last} = 4 - (2 \times 2 - 2) = 2 \)
If \(id_4 = id_1 \); \(p_1 \) invokes new_name(1, 3, 1, \(id_1 \)) and decides 3

Later \(p_2 \) invokes new_name(4, 1, up, \(id_2 \)) and sees \(p = 4 \) processes
\(p_2 \) computes \(\text{last} = 1 + (2 \times 4 - 2) = 7 \) and invokes
new_name(3, 6, \(\text{-}1 \), \(id_2 \)), new_name(2, 6, \(\text{-}1 \), \(id_2 \)), new_name(1, 6, \(\text{-}1 \), \(id_2 \))
\(p_2 \) then computes \(\text{last} = 6 + (2 \times 1 - 2) = 6 \) and decides 6

Figure 6: Recursive renaming: \(p_1 \) and \(p_4 \) invoke new_name(4, 1, up, \(- \))

Let us observe that the new name space attributed to the \(p = 3 \) processes \(p_1, p_3, \) and \(p_4 \) (the only ones that, up to now, have invoked new_name(4, 1, up)()) is \([1..2p-1] = [1..5]\).

Finally process \(p_2 \) invokes new_name() Let us now assume that \(p_2 \) invokes new_name(4, 1, up, \(id_2 \)). Moreover, let \(id_2 < id - 1, id_2, id_3 \). Process \(p_2 \) sees that \(p = 4 \) processes have accessed the splitter \(SM[4, 1, \text{up}] \), and consequently computes \(\text{last} = 1 + (2 \times 4 - 2) = 7 \). The size of its new name space is \([1..2p-1] = [1..7]\). As it does not have the greatest initial name among the four processes, \(p_2 \)
invokes new_name(3, 6, down, id_2), and recursively new_name(2, 6, down) and new_name(1, 6, down, id − 2), and finally obtains 6 as its new name.

6 Conclusion

The aim of this paper is to be an introductory tutorial on concurrency-related recursion in asynchronous read/write systems where any number of processes may crash. The paper has shown that a new type of recursion is introduced by the net effect of asynchrony and failures, namely the recursion parameter is used to allow a process to learn the number of processes with which it has to coordinate to compute its local result. This recursion has been illustrated with two task examples, write-snapshot and adaptive renaming. Interestingly, the first example is related to a linear time notion, while the second one is related to a branching time notion.

Acknowledgments

A special acknowledgment to E. Gafni, whose seminal work on recursive distributed renaming contributed to this presentation.

References

