THE DisTRIBUTED CoMPUTING COLUMN

BY

PaNAGIOTA FATOUROU

Department of Computer Science, University of Crete
P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece
and
Institute of Computer Science (ICS)
Foundation for Research and Technology (FORTH)
N. Plastira 100. Vassilika Vouton
GR-700 13 Heraklion, Crete, Greece
faturu@csd.uoc.gr

AN INTRODUCTORY TUTORIAL TO
CONCURRENCY-RELATED DISTRIBUTED RECURSION

Sergio Rajsbaum
Instituto de Matemarticas, UNAM,
Mexico
rajsbaum @im.unam.mx

Michel Raynal
Institut Universitaire de France,
IRISA, Université de Rennes,
35042 Rennes Cedex,
France
raynal @irisa.fr

http://www.csd.uoc.gr
http://www.uoc.gr
http://www.ics.forth.gr
http://www.forth.gr
faturu@csd.uoc.gr
mailto:rajsbaum@im.unam.mx
mailto:raynal@irisa.fr

Abstract

Recursion is a fundamental concept of sequential computing that allows
for the design of simple and elegant algorithms. Recursion is also used in
both parallel or distributed computing to operate on data structures, mainly
by exploiting data independence (independent data being processed con-
currently). This paper is a short introduction to recursive algorithms that
compute tasks in asynchronous distributed systems where communication is
through atomic read/write registers, and any number of processes can com-
mit crash failures. In such a context and differently from sequential and
parallel recursion, the conceptual novelty lies in the fact that the aim of the
recursion parameter is to allow each participating process to learn the num-
ber of processes that it sees as participating to the task computation.

Keywords: Asynchrony, Atomic read/write register, Branching time, Con-
currency, Distributed algorithm, Concurrent object, Linear time, Participat-
ing process, Process crash failure, Recursion, Renaming, Shared memory,
Task, Write-snapshot.

1 Introduction

Recursion Recursion is a powerful algorithmic technique that consists in solv-
ing a problem of some size (where the size of the problem is measured by the
number of its input data) by reducing it to problems of smaller size, and proceed-
ing the same way until we arrive at basic problems that can be solved directly.
This algorithmic strategy is often capture by the Latin terms “divide ut imperes”.

Recursive algorithms are often simple and elegant. Moreover, they favor
invariant-based reasoning, and their time complexity can be naturally captured
by recurrence equations. In a few words, recursion is a fundamental concept ad-
dressed in all textbooks devoted to sequential programming (e.g., [10, 14, 19} 25]]
to cite a few). It is also important to say that, among the strong associations link-
ing data structures and control structures, recursion is particularly well suited to
trees and more generally to graph traversal [[10]].

Recursive algorithms are also used since a long time in parallel programming
(e.g., [2]). In this case, parallel recursive algorithms are mainly extensions of
sequential recursive algorithms, which exploit data independence. Simple exam-
ples of such algorithms are the parallel versions of the quicksort and mergesort
sequential algorithms.

Recursion and distributed computing In the domain of distributed comput-
ing, the first (to our knowledge) recursive algorithm that has been proposed is
the algorithm solving the Byzantine general problem [22]]. This algorithm is a
message-passing synchronous algorithm. Its formulation is relatively simple and
elegant, but it took many years to understand its deep nature (e.g., see [7] and text-
books such as [6) 24, 29]]). Recursion has also been used to structure distributed
systems to favor their design and satisfy dependability requirements [28].

Similarly to parallelism, recursion has been used in distributed algorithms to
exploit data independence or provide time-efficient implementations of data struc-
tures. As an example, the distributed implementation of a store-collect object de-
scribed in [4] uses a recursive algorithm to obtain an efficient tree traversal, which
provides an efficient adaptive distributed implementation. As a second example,
a recursive synchronous distributed algorithm has been introduced in [5] to solve
the lattice agreement problem. This algorithm, which recursively divides a prob-
lem of size n into two sub-problems of size /2, is then used to solve the snapshot
problem [1]. Let us notice that an early formal treatment of concurrent recursion
can be found in [12].

Capture the essence of distributed computing The aim of real-time comput-
ing is to ensure that no deadline is missed, while the aim of parallelism is to allow
applications to be efficient (crucial issues in parallel computing are related to job
partitioning and scheduling). Differently, when considering distributed comput-
ing, the main issue lies in mastering the uncertainty created by the multiplicity
and the geographical dispersion of computing entities, their asynchrony and the
possibility of failures.

At some abstract level and from a “fundamentalist” point of view, such a dis-
tributed context is captured by the notion of a task, namely, the definition of a dis-
tributed computing unit which capture the essence of distributed computing [[17].
Tasks are the distributed counterpart of mathematical functions encountered in
sequential computing (where some of them are computable while others are not).

At the task level, recursion is interesting and useful mainly for the following
reasons: it simplifies algorithm design, makes their proofs easier, and facilitates
their analyze (thanks to topology [13}26]).

Content of the paper: recursive algorithms for computable tasks This paper
is on the design of recursive algorithms that compute tasks [[13]. It appears that,
for each process participating to a task, the recursion parameter x is not related
to the size of a data structure but to the number of processes that the invoking
process perceives as participating to the task computation. In a very interesting
way, it follows from this feature that it is possible to design a general pattern,
which can be appropriately instantiated for particular tasks.

When designing such a pattern, the main technical difficulty come from the
fact that processes may run concurrently, and, at any time, distinct processes can
be executing at the same recursion level or at different recursion levels. To cope
with such an issue, recursion relies on an underlying data structure (basically, an
array of atomic read/write registers) which keeps the current state of each recur-

sion level.
After having introduced the general recursion pattern, the paper instantiates it

to solve two tasks, namely, the write-snapshot task [8]] and the renaming task [3].
Interestingly, the first instantiation of the pattern is based on a notion of linear
time (there is single sequence of recursive calls, and each participating process
executes a prefix of it), while the second instantiation is based on a notion of
branching time (a process executes a prefix of a single branch of the recursion tree
whose branches individually capture all possible execution paths).

In addition to its methodological dimension related to the new use of recur-
sion in a distributed setting, the paper has a pedagogical flavor in the sense that

it focuses on and explains fundamental notions of distributed computing. Said
differently, an aim of this paper is to provide the reader with a better view of the
nature of fault-tolerant distributed recursion when the processes are concurrent,
asynchronous, communicate through read/write registers, and are prone to crash
failures.

Road map The paper is made up of [f] sections. Section [2|presents the computa-
tion model and the notion of a task. Then, Section[3|introduces the basic recursive
pattern in which the recursion parameter of a process represents its current approx-
imation of the number of processes it sees as participating. The next two sections
present instantiations of the pattern that solve the write-snapshot task (SectionE])
and the renaming task (Section [3)), respectively. Finally, Section [f] concludes the
paper. (While this paper adopts a programming methodology perspective, the in-
terested reader will find in [26] a topological perspective of recursion in distributed
computing).

2 Computation Model, Notion of a Task,
and Examples of Tasks

2.1 Computation model

Process model The computing model consists of n processes denoted py, ..., p,.
A process is a deterministic state machine. The integer i is called the index of
pi- The indexes can only be used for addressing purposes. Each process p; has a
name —or identity— id;. Initially a process p; knows only id;, n, and the fact that
no two processes have the same initial name. Moreover, process names belong to
a totally ordered set and this is known by the processes (hence two identities can
be compared).

The processes are asynchronous in the sense that the relative execution speed
of different processes is arbitrary and can varies with time, and there is no bound
on the time it takes for a process to execute a step.

Communication model and local memory The processes communicate by ac-
cessing atomic read/write registers. Atomic means that, from an external observer
point of view, each read or write operation appears as if it has been executed at a
single point of the time line between it start and end events [18, 20]].

Each atomic register is a single-writer/multi-reader (SWMR) register. This
means that, given any register, a single process (statically determined) can write
in this register, while all the processes can read it. Let X[1..n] be an array of
atomic registers whose entries are the process indexes. By convention, X[i] can
be written only by p;. Atomic registers are denoted with uppercase letters. All
shared registers are initialized to a default value denoted L and no process can
write L in a register. Hence, the meaning of L is to state that the corresponding
register has not yet been written.

A process can have local variables. Those are denoted with lowercase letters
and sub-scripted by the index of the corresponding process. As an example, aaa;
denotes the local variable aaa of process p;.

Failure model The atomic read/write registers are assumed to experience no
failure. (For the interested reader, the construction of atomic reliable registers
from basic atomic registers which can fail —crash, omission, or Byzantine failures-
is addressed in [30]]).

A process may crash (halt prematurely). A process executes correctly until
it possibly crashes, and after it has crashed (if ever it does), it executes no step.
Given a run, a process that crashes is faulty, otherwise it is non-faulty.

Any number of processes may crash (wait-free model [15]). Let us observe
that the wait-free model prevents implicitly the use of locks (this is because a
process that owns a lock and crashes before releasing it can block the whole sys-
tem). (Locks can be implemented from atomic read/write registers only in reliable
systems [30].)

2.2 The notion of a task

Informal definition As indicated in the Introduction, a task is the distributed
counterpart of a mathematical function encountered in sequential computing.

In a task each process p; has a private input value in; and, given a run, the n in-
put values constitute the input vector / of the considered run. each process knows
initially only its input value, which is usually called proposed value. Then, from
an operational point of view, the processes have to coordinate and communicate
in such a way that each process p; computes an output value out; and the n output
values define an output vector O, such that O € A(I) where A is the mapping defin-
ing the task. An output value is also called decided value. The way a distributed
task extends the notion of a sequential function is described in Figure|l}, where the
left side represents a classical a sequential function and the right side represents a

distributed task.)))
As in sequential computing (Turing machines) where there are computable

functions and uncomputable functions, there are computable tasks and uncom-
putable tasks. As we will see later write-snapshot and renaming are computable
in asynchronous read/write systems despite asynchrony and any number of pro-
cess failures, while consensus is not [[11} [15} 23]].

Input vector I[1..n] Output vector O[1..n]
Al //*\Taske A(I)

f
l

X —== f = y=f(%)

Function f()

PP

' i ! !
1 i f—t !]
‘/“L/ !
L L U
v { \ 7

Task A() N

Figure 1: Function (left) and task (right)

Formal definition A task is a triple (J, O, A) where
e [is the set of allowed input vectors,

e O is the set of allowed output vectors, and
e Ais a mapping of 7 into O such that (VI €) = (A() € O).

Hence, I[i] and O[i] are the values proposed and decided by p;, respectively, while
A(I) defines the set of output vectors that can be decided from the input vector 1.
(More developments on the definition of tasks and their relation with topology can
be found in [16,17]).

If one or several processes p;, ..., p;, do not participate or crash before deciding
an output value, we have O[i] = ... = O[j] = L, and the vector O has then to be
%1{:51) that there is a vector O’ € A(I) that covers O, i.e., (O[i] # 1) = (O’'[i] =

i]).

A simple example: the binary consensus task In this task, a process proposes
a value from the set {0, 1}, and all the non-faulty processes have to decide the
same value which has to be a proposed value. Let X, and X; be the vector of size
n containing only zeros and only ones, respectively.

The set 7 of input vectors is the set of all the vectors of zeros and ones. The
set O of output vectors is {Xp, X;}. The mapping A is such that (i) A(any vector
except Xo, X1) = O, (ii) A(Xp) = Xo, and (iii) A(X;) = X;.

Solving a task In the context of this paper, a distributed algorithm A is a set of
n local automata (one per process) that communicate through atomic read/write
registers.

The algorithm A solve a task T if, in any run in which each process proposes
a value such that the input vector belongs to 7, each non-faulty process decides a
value, and the vector O of output values belongs to the set A(Z).

Tasks vs Objects A task is a mathematical object. From a programming point
of view, a concurrent object can be associated with a task (a concurrent object is
an object that can be accessed by several processes). Such an object is a one-shot
object that provides the processes with a single operation (“one-shot” means that
a process can invoke the object operation at most once).

To adopt a more intuitive presentation, the two tasks that are presented below
use their object formulation. This formulation expresses the mapping A defining
a task by a set of properties that the operation invocations have to satisfy. These
properties can be more restrictive than A. This comes from the fact that there
is no notion of time/concurrency/communication pattern in A, while the set of
properties defining the object can implicitly refer to such notions.

2.3 The write-snapshot task

The write-snapshot task was introduced in [8]] (where it is called immediate snap-
shot). A write-snapshot object provides processes with a single operation denoted
write_snapshot(). When a process p; invokes this operation, it supplies as input

parameters its identity id; and the value it wants to deposit into the write-snapshot
object. Its invocation returns a set view; composed of pairs (id;, v;).

As previously indicated, the specification A is expressed here a set of proper-
ties that the invocations of write_snapshot() have to satisfy.
Self-inclusion. VY i: (id;, v;) € view;.
e Containment. Y i, j: (view; C view;) V (view; C view;).

Simultaneity.
Vi, j: [((idj, vj) € view;) A ((id;,v) € view;)] = (view; = view)).

Termination, _]
Any invocation of write_snapshot() by a non-faulty process terminates.

A write-snapshot combines in a single operation the write of a value (here a
pair (id;, v;)) and a snapshot [1] of the set of pairs already or concurrently written.
Self-inclusion states that a process sees its write. Containment states the views of
the pairs deposited are ordered by containment. Simultaneity states that if each of
two processes sees the pair deposited by the other one, they have the same view
of the deposited pairs. Finally, the termination property states that the progress
condition associated with operation invocations is wait-freedom, which means
that an invocation by a non-faulty process terminates whatever the behavior of the
other processes (which can be slow, crashed, or not participating). An iterative
implementation of write-snapshot can be found in [8} 30].

2.4 The adaptive renaming task

This task has been introduced in [3] in the context of asynchronous crash-prone
message-passing systems. Thereafter, a lot of renaming algorithms suited to
read/write communication have been proposed. An introduction to shared mem-
ory renaming, and associated lower bounds, is presented in [9].

While there are only n process identities, the space name is usually much
bigger than n (as a simple example this occurs when the name of a machine is
the IP address). The aim of the adaptive renaming task is to allow the processes
to obtain new names from a new name space which has to depend only on the
number p of processes that want to obtain a new name (1 < p < n), and be as
small as possible. It is shown in [17] that 2p — 1 is a lower bound on the size of
the new name space.

When considering the adaptive renaming task from the point of view of its
associated one-shot object, a process p; that wants to acquire a new name invokes
an operation denoted new_name(id;). The set of invocations has to satisfy the
following set of properties.

e Validity. The size of the new name space is 2p — 1.
e Agreement. No two processes obtain the same new name.
e Termination,)
Any invocation of new_name() by a non-faulty process terminates.

As for the write-snapshot task, the termination property states that a non-faulty
process that invokes the operation new_name() obtains a new name whatever
the behavior of the other processes. Agreement states the consistency condition
associated with new names. Validity states the domain of the new names: if a

single process wants to obtain a new name, it obtains the name 1, if only two
processes invoke new_name() they obtain new names in the set {1, 2, 3}, etc. This
show that the termination property (wait-freedom progress condition) has a cost
in the size of the new name space: while only p new names are needed, the new
name space needs (p — 1) additional potential new names to allow the invocations
issued by non-faulty processes to always terminate.

3 A Concurrency-related Recursive Pattern
for Distributed Algorithms

The recursion parameter As already announced, the recursion parameter (de-
noted x) in the algorithms solving the tasks we are interested is the number of pro-
cesses that the invoking process perceives as participating processes. As initially
a process has no knowledge of how many processes are participating, it conser-
vatively considers that all other processes participate, and consequently issues a
main call wit x = n.

Atomic read/write registers and local variables The pattern manages an array
SM(n..1], where each SM[x] is a sub-array of size n such that SM[x][i] can be
written only by p;. A process p; starts executing the recursion level x by depositing
a value in SM[x][i]. »From then on, it is a participating process at level x.

Each process manages locally three variables whose scope is a recursive invo-
cation. sm;[n..1] is used to save a copy of the current value of SM[x][1..n]; part;
keeps the number of processes that p; sees as participating at level x; and res; is
used to save the result returned by the current invocation.

operation recursive_pattern(x, input) is

O1) SM[x][i] « input;

(02) for each j € {1,...,n} do sm;[j] < SM[x][/] end for;

03) part; — [{sm; [J] + Lils

(04) if (part; = x) then statements specific to the task, possibly including a recursive call;

(05) computation of res;
(06) else res; « recursive_pattern(x — 1, input)
(07) endif

(08) return(res;)
end operation.

Figure 2: Concurrency-related recursive pattern

The invoking process p; first deposits its input parameter value in SM[x][] (line (1)),
and read the content of the shared memory attached to its recursion level x (line2)).
Let us notice that the entries of the array SM[x][1..n] are read in any order and
asynchronously. Then, p; computes the number of processes it sees as participat-
ing in the recursion level x (line[3), and checks if this number is equal to its current
recursion level x.

The recursion pattern The generic recursive pattern is described in Figure

e if x = part; (lines , pi discovers that x processes are involved in the
recursion level x. In this case, it executes statements at the end of which it
computes a local result res;. These local statements are task-dependent and
may or not involve a recursive call with recursion level x — 1.

o if x # part;, p; sees less than x processes participating to the recursion
level x. In this case, it invokes the recursion pattern at level x — 1 with
the same input parameter input, and continues until it attains a recursion
level x* < x — 1 at which it sees exactly x” processes that have attained this
recursion level x'.

A process p; starts with its recursion parameter x equal n, and then its recursion
parameter decreases until the invoking process returns a result. Hence, a process
executes at most n recursive calls before terminating. The correctness proof of
this recursive pattern is the same as the one of Theorem |I| which considers its
write-snapshot instantiation.

Linear time vs branching time If line 4 does not include a recursive call, the
recursive pattern is a linear time pattern. Each participating process executes line|6]
until its stops at line [(or crashes before). Hence, each process executes a pre-
fix of the same sequence of recursive calls, each with its initial input parameter
input. The algorithm, whose instantiation from the recursive pattern is described
in Section 4] 1s a linear time implementation of write-snapshot.

If there are recursive calls at line {] the recursive pattern is a branching time
pattern. Such a recursion pattern is characterized by a tree of recursive calls, and a
participating process executes a prefix of a single branch of this tree. In this case,
each SM[x] is composed of several sub-arrays, each of them being an array of n
SWMR atomic registers. The algorithm, whose instantiation from the recursive
pattern is described in Section[5] is a branching time implementation of renaming.

4 Linear Time Recursion

4.1 A recursive write-snapshot algorithm

An instantiation of the recursive pattern which implements write-snapshot is de-
scribed in Figure [3| This recursive implementation has been introduced in [13],
and the representation adopted here is from [30]. This instantiation is nearly the
same as the original recursive pattern. More precisely, the input parameter input
of a process p; is the pair (id;, v;).

The line numbering is the same as in the recursive pattern. As there is no
specific statement to instantiate at lineg_l] of the recursive pattern, its lines] and 3]
are instantiated by a single line denote

A process p; invokes first write_snapshot(n, (id;, v;)) where v; is the value it
wants to deposit in the write-snapshot object.

As already said, the recursion of this algorithm is a linear time recursion. This
appears clearly from the arrays of atomic read/write registers accessed by the
recursive calls issued by the processes: each process accesses first SM[n], then
SM[n — 1], etc., until it stops at SM[x] where n > x > 1.

operation write_snapshot(x, (id;, v;)) is
1) SMIXI[i] « (id;, v);
for each j € {1, ..., n} do sm;[j] <« SM[x][/] end for;
part; — l{sm[j] % L)
if (part; = x) then res; <« {sm;[j] # L}
else res; « write_snapshot(x — 1, (id;, v;))
end if
return(res;)
end operation.

< BN Ee) EN PN IS =
=0

Figure 3: A recursive write-snapshot algorithm [13]

4.2 Proof of the algorithm

Theorem 1. [13]] The algorithm described in Figure[3|implements a write-snapshot
object. For a process p;, The step complexity (number of shared memory accesses)
for a process p; is O(n(n — |res;| + 1)), where res; is the set returned by the invo-
cation of write_snapshot() issued by p;.

Proof This proof is from [30]. While a process terminates an invocation when it
executes the return() statement at line @Pwe say that it terminates at line [AH{5] or
line 6] according to the line where the returned value res; has been computed.

Claim C. If at most x processes invoke write_snapshot(x, —), (a) at most (x—1)

processes invoke write_snapshot(x — 1, —), and (b) at least one process stops at
line 43 of its invocation of write_snapshot(x, —).
Proof of claim C. Assuming that at most x processes invoke write_snapshot(x, —),
let p; be the last process that writes into SM[x][1..n] (as the registers are atomic,
the notion of “last” is well-defined). We necessarily have part; < x. If p; finds
part;, = x, it stops at line @5 Otherwise, we have part, < x and p; invokes
write_snapshot(x — 1, —) at line @ But in this case, as py is the last process that
wrote into the array SM|[x][1..n], 1t follows from part; < x that fewer than x pro-
cesses have written into SM[x][1..n], and consequently, at most (x — 1) processes
invoke write_snapshot(x — 1, —). End of the proof of claim C.

To prove termination, let us consider a non-faulty process p; that invokes
write_snapshot(n, —). It follows from Claim C and the fact that at most n pro-
cesses invoke write_snapshot(n, —) that either p; stops at that invocation or be-
longs to the set of at most (n — 1) processes that invoke write_snapshot(n — 1, -).
It then follows, by induction from the claim C, that if p; has not stopped during
a previous invocation, it is the only process that invokes write_snapshot(1, —). It
then follows from the text of the algorithm that it stops at that invocation.

The proof of the self-inclusion property is trivial. Before stopping at recur-
sion level x (line E]@ a process p; has written v; into SM[x][i] (line [I)), and
consequently we have then (id;, v;) € view;, which concludes the proof of the self-
inclusion property.

To prove the self-containment and simultaneity properties, let us first consider
the case of two processes that return at the same recursion level x. If a process p;
returns at line 5] of recursion level x, let res;[x] denote the corresponding value
of res;. Among the processes that stop at recursion level x, let p; be the last process
which writes into SM[x][1..n]. As p; stops, this means that SM[x][1..n] has exactly

x entries different from L and (due to Claim C) no more of its entries will be set
to a non-_L value. It follows that, as any other process p; that stops at recursion
level x reads x non-_L entries from SM[x][1..n], we have res;[x] = res;[x] which
proves the properties.

Let us now consider the case of two processes p; and p; that return at line |6|of
recursion level x and y, respectively, with x > y (i.e., p; returns res;[x] while p;
returns res;[y]). The self-containment follows then from x > y and the fact that p;
has written into all the arrays SM[z][1..n] with n > z > y, from which we conclude
that res;[y] C res;[x]. Moreover, as x > y, p; has not written into SM[y][1..n]
while p; has written into SM[x][1..n], and consequently (id;,v;) € res;[x] while
(id;, v;) ¢ res;[yl, from which both he containment and immediacy properties fol-
low.

As far as the number of shared memory accesses is concerned we have the fol-
lowing. Let res be the set returned by an invocation of write_snapshot(n, —). Each
recursive invocation costs n+1 shared memory accesses (lines[Ijand[2). Moreover,
the sequence of invocations, namely write_snapshot(n, —), write_snapshot(n —
1, -), etc., until write_snapshot(|res|, —) (where x = |res| is the recursion level at
which the recursion stops) contains n — |res| + 1 invocations. It follows that the
step complexity for a process p; is O(n(n — |res;| + 1)) accesses to atomic registers.

O7heorem M

4.3 Example of an execution

This section described simple executions where n = 5 and process ps crashes be-
fore taking any step (or —equivalently— does not participate). These executions are
described in Table [I]and Table 2] In these tables write_snapshot() is abbreviated
as ws().

H D1 ‘ P2 ‘ D3 ‘ P4 ‘ DPs ‘
T WS(S, (idg, V3))
) WS(4, (id3, V3))
T3 crashes
74 ws(5, (idy, v4))
Ts5 ... ws(1, (id4, V4))
Te {(id4, va)}
77 || ws(5, (ldl , V1)) ws(5, (ids, Vz))
73 || ws(4, (idy, v1)) | Ws(4, (id>, v2))
Ty resi res,

Table 1: Write-snapshot execution: an example

A first execution

1. Attime 7y, p3 invokes write_snapshot(5, (ids, v3)). This triggers at time 7,
the recursive invocation write_snapshot(4, (ids, v3)). Then, p; crashes after
it has written ids into SM[4][3] at time T53.

2. Atalater time 74, p4 invokes write_snapshot(5, (id4, v4)), which recursively
ends up with the invocation write_snapshot(1, (ids, v4)) at time 75, and con-
sequently p, returns the singleton set {idy, v4)} at time 7.

3. At time 77, processes p; and p4 start executing synchronously: p; invokes
write_snapshot(5, (id;, v,)), while p, invokes write_snapshot(5, (id>, v»)),
which entails at time 7g —always synchronously— the recursive invocations
write_snapshot(4, (id;, v,)) and write_snapshot(4, (id,, v,)). As SM[4] con-
tains four non-_L entries, both p; and p, returns res; and res, which are such
that res, = res, = {(idy, 1), (id>, v»), (id3, v3), (id3, v4)}.

P | P2 P3 P4 | D5
710 ws(3, (ids, v3))
Ty ws(2, (ids, v3))
T12 ress

Table 2: Write-snapshot execution: continuing the example

Continuing the example Let us assume that instead of crashing at time 73, p;
paused for an arbitrary long period starting after it has read SM[4][1..5] (hence it
has seen only two non-_L values in SM[4]).

1. At time 7119, p3 wakes up and, as part; # 4, it it issues the recursive invo-
cation write_snapshot(3, (ids, v3)), which entails at time 7;; the invocation
write_snapshot(2, (ids, v3)).

2. As at time 7y,, the shared array SM[2] contains two non-_L values, process
Pa returns ress = {(ld3, V3), (id3, V4)}.

The reader can check that, if before pausing at time 73, p; has read only
SM[4][4] and SM[4][5], it will read the other entries SM[4][1], SM[4][2], and
SM[4][3], when it wakes up, and its invocation write_snapshot(4, (ids, v3)) will
stop the recursion and return res; = res; = res,.

S Branching Time Recursion

5.1 A recursive renaming algorithm

An instance of the recursive pattern implementing adaptive renaming is described
in Figure 4l This recursive implementation, inspired from the sketch of an algo-
rithm skeleton succinctly described in [13], has been introduced in [27], where
it is proved correct. As for the previous recursive algorithm, the representation
adopted here is from [30]. The core of this recursive algorithm is the instantiation
of line 4] of the recursive pattern, where appears branching time recursion.

Underlying idea: the case of two processes The base case is whenn = 2. A
process p; first writes its identity id; in the shared memory, and then reads the
content of the memory.

e If, according to what it has read from the shared memory, a process sees
only itself, it adopt the new name 1.

e Otherwise it knows its identity and the one of the other process (id;). It
then compares its identity id; and id;, and does the following: if id; > id;, it
adopts the new name 3, if id; < id}, it adopts the new name 2.

The new name space is consequently [1..2p — 1] where p (number of participating
processes) is 1 or 2.

The underlying shared memory The shared memory SM[n..1] accessed by
processes is now a three-dimensional array SM(n..1,1..2n — 1, {up, down}] such
that SM|x, first, dir] is a an array of n atomic read/write registers. SM|x, first, dir][i]
can be written only by p; but can be read by all processes.

From a notational point of view up = 1 = down, and down = —1 = up.

When more than two processes participate The algorithm is described in Fig-
ure @ A process invokes first new_name(n, 1, up, id;). It then recursively invokes
new_name(x, 1, up, id;), until the recursion level x is equal to the number of pro-
cesses that p; sees as competing for a new name.

As we are about to see, given a pair (first, dir), the algorithm ensures that at
most x processes invoke new_name(x, first, dir, —). These processes compete for
new names in a space name of size 2x—1 which is the interval [first..first+(2x—2)]
if dir = up, and [first — (2x — 2)..first] if dir = down. Hence, the value up is used
to indicate that the concerned processes are renaming “from left to right” (as far
as the new names are concerned), while down is used to indicate that the con-
cerned processes are renaming “from right to left” (this is developed below when
explaining the splitter behavior of the underlying read/write registers.) Hence, a
process p; considers initially the renaming space [1..2n — 1], and then (as far p; is
concerned) this space will shrink at each recursive invocation (going up or going
down) until p; obtains a new name.

The recursive algorithm The lines [IH3] and [6}]8] are the same as in the recursive
pattern where SM[x] is replaced by SM|x, first, dir]. The lines which are specific
to adaptive renaming are the statements in the then part of the recursive pattern
(lines . These statements are instantiated by the new lines (@H{5).1- 5,
which constitute an appropriate instantiation suited adaptive renaming.

For each triple (x, f, d), all invocations new_name(—, x, f, d) coordinate their
respective behavior with the help of the size n array of atomic read/write reg-
isters SM[x, f,d][1..n]. At line (@+)).”, max(sm;) denotes the greatest process
identity present in sm;. As a process p; deposits its identity in SM|x, first, dir][i]
before reading SM|x, first, dir][1..n], it follows that sm; contains at least one pro-
cess identity when read by p;.

Let us observe that, if only p processes invoke new_name(n, 1,up,—), p < n,
then all of them will invoke the algorithm recursively, first with new_name(n —
1,1, up), then new_name(n — 2, 1,up), etc., until new_name(p, 1, up,—). Only

operation new_name(x, first, dir, id;) is

SM(x, first, dir][i] « id;;

for each j € {1, ..., n} do sm;[j] « SM|x, first, dir][j] end for;
part; — I{Sm [/] # Li;

if (id; = max(sm;)
then res; « last
else res; «— new_name(x — 1, last + d_ir, E, id)))
end if
else res; < new_name(x — 1, first, dir, id;))
end if
return(res;)
end operation.

Figure 4: A recursive adaptive renaming algorithm [13]]

at this point, the behavior of a participating process p; depend on the concurrency
pattern (namely, it may or may not invoke the algorithm recursively, and with
either up or down).

Splitter behavior associated with SM|x, first,dir] (The notion of a splitter has
been informally introduced in [21].) Considering the (at most) x processes that
invoke new_name(x, first, dir, —), the splitter behavior associated with the array
of atomic registers SM|[x, first, dir] is defined by the following properties. Let
X =x-1
e At most x" = x — 1 processes invoke new_name(x — 1, first, dir, —) (line @
Hence, these processes will obtain new names in an interval of size (2x"— 1)
as follows:

— If dir = up, the new names will be in the “going up” interval [first..first+
(2x" = 2)],

— If dir = down, the new names will be in the “going down” interval
[first — 2x" = 2)..first].

e At most x* = x — 1 processes invoke new name(x — 1, last + dir, %)
(hne @5D.4), where last = first + dir(2x — 2) (line (4][3). 1) Hence, these
x" = x — 1 processes will obtain their new names in a renaming space of

size (2x’ — 1) starting at last + 1 and going from left to right if dir = up, or

starting at /ast — 1 and going from right to left if dir = down. Let us observe
that the value last + 1 is considered as the starting name because the slot
last is reserved for the new name of the process (if any) that stops during its
invocation of new_name(x, first, dir) (see next item).

e At most one process ‘“stops”, i.e., defines its new name as last = first +
dir(2x — 2) (lines @E}) 2 and @%3). Let us observe that the only process
pi that can stop is the one such that id; has the greatest value in the array
SM|x, first, dir][1..n] which contains then exactly x identities.

5.2 Example of an execution

A proof of the previous algorithm can be found in [30]. This section presents an
example of an execution of this algorithm. It considers four processes pi, p2, p3,
and py.

First: process p; executes alone Process p; invokes new_name(4, 1, up, id,)
while (for the moment) no other process invokes the renaming operation. It fol-
lows from the algorithm that p; invokes recursively new_name(3, 1, up, id;), then
new_name(2, 1, up, id,), and finally new_name(l1, 1, up, id,). During the last in-
vocation, it obtains the new name 1. This is illustrated in Figure[5] As, during its
execution, p3 sees only p = 1 process (namely, itself), it decides consistently in
the new name space [1..2p — 1] = 1.

SM[4,1,up]

P

p3 invokes new_name(4, 1, up, ids)

p3 invokes new_name(3, 1, up, ids)

p3 invokes new_name(2, 1, up, ids)

p3 invokes new_name(1, 1, up, ids)
p3 obtains the new name 1

As ps has seen p = 1 process (itself)
it decides the new name 2p — 1 = 1 After p; has obtained the new name 1
p1 and p4 invoke concurrently new_name(4, 1, up, —)
which entail their concurrent invocations of new_name(3, 1, up, —)

Figure 5: Recursive renaming: first, p; executes alone

Then: processes p; and p, invoke new_name() After p; has obtained a new
name, both p; and p, invoke new_name(4, 1, up, —) (See Figure [6). As they see
only three processes that have written their identities into SM[4, 1, up], both con-
currently invoke new_name(3, 1, up, —) and consequently both compute last =
1+ (2«3 -2)=15. Hence their new name space is [1..5].

Now, let us assume that p; stops executing while p, executes alone. Moreover,
let id,,idy < id;. As it has not the greatest identity among the processes that
have accessed SM[3, 1, up] (namely, the processes p;, p3 and p,), p4 invokes first
new_name(2, 4, down, idy) and then recursively new_name(1, 4, down, id,), and
finally obtains the new name 4.

After process p4 has obtained its new name, p; continues its execution, invokes
new_name(2, 4, down, id,) and computes last = 4 —(2x 2 —2) = 2. The behavior
of p; depends then on the values of id, and id,. If id, < id;, p, decides the name
last =4 - (2x2-2) = 2. If idy, > idy, p, invokes new_name(1, 3, 1, id;) and
finally decides the name 3.

Finally, if later p, invokes new_name(4, 1,up,id,), it sees that the splitter
SM[4,1,up] was accessed by four processes. Hence p, computes last = 1 +
(2x4-2) =1, and consequently invokes recursively new_name(3, 6, down, id,),
new_name(2, 6, down, id;), new_name(1, 6,down, id;), at the end of which it
computes last == 6 + (2 X 1 — 2) = — and decides the name 6.

The multiplicity of branching times appears clearly on this example. As an
example, the branch of time experienced by p; (which is represented by the se-
quence of accesses to SM[4, 1, up], SM[3,1,up], SM[2, 1,up], and SM[1, 1, up)),
is different from the branch of time experienced by ps (which is represented
by the sequence of accesses to SM[4, 1,up], SM[3, 1,up], SM[2,4,down], and
SM[1,4,up)).

Let id,, idy < id3
p1 and p4 invoke new_name(3, 1, up, —), they see p = 3 processes and both
compute last = 1 + (2 * 3 — 2) = 5 = their new name space = [1..5]

First p4 executes alone and
invokes new_name(2, 4, down, idy)

Then, p4 invokes new_name(l, 4, down, idy)
last =4 — (2% 1 —2) =4 and p4 decides 4

Later p; invokes new_name(2,4, down, id,)
If idy < idy; p; decides last =4 - (2%2-2) =2
If id| < idy: p; invokees new_name(1, 3, 1,id;) and decides 3

Later p, invokes new_name(4, 1, up, id) and sees p = 4 processes

p2 computes last = 1 + (2 x4 — 2) = 7 and invokes

new_name(3, 6, -1, id,), new_name(2, 6, -1, id,), new_name(l, 6, —1, id,)
P> then computes last = 6 — (2 « 1 — 2) = 6 and decides 6

Figure 6: Recursive renaming: p; and p, invoke new_name(4, 1, up, —)

Let us observe that the new name space attributed to the p = 3 processes p;,
P3, and py (the only ones that, up to now, have invoked new_name(4, 1, up)()) is
[1.2p — 1] =[1..5].

Finally process p, invokes new_name() Let us now assume that p, invokes
new_name(4, 1,up, id,). Moreover, let id, < id — 1,id,,id;. Process p, sees
that p = 4 processes have accessed the splitter SM[4, 1, up], and consequently
computes last = 1 +(2x4—-2) = 7. The size of its new name space is [1..2p—1] =
[1..7]. As it does not have the greatest initial name among the four processes, p»

invokes new_name(3, 6, down, id,), and recursively new_name(2, 6, down) and
new_name(1, 6, down, id — 2), and finally obtains 6 as its new name.

6 Conclusion

The aim of this paper is to be an introductory tutorial on concurrency-related re-
cursion in asynchronous read/write systems where any number of processes may
crash. The paper has shown that a new type of recursion is introduced by the net
effect of asynchrony and failures, namely the recursion parameter is used to allow
a process to learn the number of processes with which it has to coordinate to com-
pute its local result. This recursion has been illustrated with two task examples,
write-snapshot and adaptive renaming. Interestingly, the first example is related
to a linear time notion, while the second one is related to a branching time notion.

Acknowledgments

A special acknowledgment to E. Gafni, whose seminal work on recursive dis-
tributed renaming contributed to this presentation.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and Shavit N., Atomic snapshots
of shared memory. Journal of the ACM, 40(4):873-890, 1993.

[2] Akl S.G., The design and analysis of parallel algorithms. Prentice-Hall Int’1 Series,
401 pages, 19809.

[3] Attiya H., Bar-Noy A., Dolev D., Peleg D. and Reischuk R., Renaming in an asyn-
chronous environment. Journal of the ACM, 37(3):524-548, 1990.

[4] Attiya H., Fouren A., and Gafni E., An adaptive collect algorithm with applications.
Distributed Computing, 15(2): 87-96, 2002.

[5] Attiya H., Herlihy M. and Rachman O., Atomic snapshots using lattice agreement.
Distributed Computing, 8(3):121-132, 1995.

[6] Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and
advanced topics, (2d Edition), Wiley-Interscience, 414 pages, 2004 (ISBN 0-471-
45324-2).

[7] Bar-Noy A., Dolev D., Dwork C. and Strong R., Shifting gears: changing algo-
rithms on the fly to expedite Byzantine agreement. Information and Computation,
97(2):205-233, 1992.

[8] Borowsky E. and Gafni E., Immediate atomic snapshots and fast renaming. Proc.
12th ACM Symposium on Principles of Distributed Computing (PODC’93), pp. 41-
51, 1993.

[9]

[10]

[11]

Castafieda, Rajsbaum S., and Raynal M., The renaming problem in shared memory
systems: An introduction. Computer Science Review, 5(3):229-251, 2011.

Dahl O.J., Dijkstra E.W., and Hoare C.A.R., Structured programming. Academic
Press, 220 pages, 1972 (ISBN 0-12-200550-3).

Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374-382, 1985.

Francez N., Hailpern B., and Taubendfeld G., Script: a communication abstraction
mechanism and its verification. Science of Computer Programming, 6:35-88, 1986.

Gafni E. and Rajsbaum S., Recursion in distributed computing. Proc. 12th Int’l |
Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS ’10),
Springer LNCS 6366, pp. 362-376, 2010.

Harel D. and Feldman Y., Algorithmics: the spirit of computing (third edition).
Springer, 572 pages, 2012 (ISBN 978-3-642-27265-3).

Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1):124-149, 1991.

Herlihy M.P., Rajsbaum S., and Raynal M., Power and limits of distributed
computing shared memory models. To appear Theoretical Computer Science,
(http://dx.doi.org/10.1016/j.tcs.2013.03.002), 2013.

Herlihy M.P. and Shavit N., The topological structure of asynchronous computabil-
ity. Journal ACM, 46(6):858-923, 1999.

Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-
492, 1990.

Horowitz E. and Shani S., Fundamentals of computer algorithms. Pitman, 626
pages, 1978 (ISBN 0-273-01324-0).
Lamport. L., On Interprocess Communication, Part 1: Basic formalism, Part II:

Algorithms. Distributed Computing, 1(2):77-101,1986.

Lamport L., Fast mutual exclusion. ACM Transactions on Computer Systems, 5(1):1-
11, 1987.

Lamport L., Shostak E., and Pease M.C., The Byzantine general problem. ACM
Transactions on Programming Languages and Systems, 4(3):382-401, 1982.

Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, 4:163-183, JAI Press,
1987.

Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA),
872 pages, 1996.

Mehlhorn K. and Sanders P., Algorithms and data structures. Springer, 300 pages,
2008 (ISBN 978-3-540-77977-3).

Onofre J.-C., Rajsbaum S., and Raynal M., A topological perspective of recursion
in distributed computing. Tech report, UNAM (Mexico), 12 pages, 2013.

Rajsbaum S. and Raynal M., A theory-oriented introduction to wait-free synchro-
nization based on the adaptive renaming problem. Proc. 25th Int’l Conference on
Advanced Information Networking and Applications (AINA’11), IEEE Press, pp.
356-363, 2011.

Randell B., Recursively structured distributed computing systems. Proc. 3rd Sym-
posium on Reliability in Distributed Software and Database Systems, IEEE Press,
pp- 3-11, 1983.

Raynal M., Fault-tolerant agreement in synchronous distributed systems. Morgan &
Claypool, 167 pages, 2010 (ISBN 978-1-608-45525-6).

Raynal M., Concurrent programming: algorithms, principles and foundations.
Springer, 515 pages, 2013 (ISBN 978-3-642-32026-2).

	Introduction
	Computation Model, Notion of a Task, and Examples of Tasks
	Computation model
	The notion of a task
	The write-snapshot task
	The adaptive renaming task

	A Concurrency-related Recursive Pattern for Distributed Algorithms
	Linear Time Recursion
	A recursive write-snapshot algorithm
	Proof of the algorithm
	Example of an execution

	Branching Time Recursion
	A recursive renaming algorithm
	Example of an execution

	Conclusion

