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Expander graphs are of much importance in theoretical computer science, and the
construction of expander graphs involves different areas of mathematics. It has
attracted mathematicians and theoretical computer scientists alike and continues
to be a flourishing area of research [14].

In this essay we discuss the Alon-Roichman theorem which states that for any
finite group G, if S is a randomly picked multiset of O(log |G|) elements then the
symmetric Cayley graph Cay(G, S ) is a spectral expander with high probability. We
explain a proof of this theorem based on Erdős-Rényi sequences, which are inter-
esting in their own right, and also outline a |G|O(1) time derandomized construction
of the set S .

We also discuss faster, (log |G|)O(1) time, derandomizations of the Alon-
Roichman theorem for finite groups given by small generating sets as input and
raise some open questions.
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1 Introduction
A primary research goal in the study of expander graphs is the construction of explicit
expander graph families. Namely, we want to construct a family of graphs {Gn}n∈N,
where Gn is typically an n vertex graph of small degree d (preferably constant) and
the second largest eigenvalue of its normalized adjacency matrix AG is bounded by a
constant λ < 1. The graph Gn is said to be an (n, d, λ) spectral expander. It turns out that
this spectral condition guarantees “high connectivity” for Gn as a result of which Gn has
small diameter and, moreover, random walks on Gn converge “rapidly” to the uniform
distribution. An excellent source for basic material, a wide range of applications as
well as current research is the monograph on expander graphs by Hoory, Linial and
Wigderson [14].

The usual source for explicit constructions of expanders is finite groups. Let G be a
finite group and let S = {g1, g2, . . . , gk} be a generator set for G. We form the symmetric
Cayley graph Cay(G, S ∪ S −1) whose vertex set is G and an unordered pair (x, y) is an
edge in the graph if and only if x−1y ∈ S ∪ S −1. Clearly, Cay(G, S ∪ S −1) is a 2k-
regular multigraph. Suppose the group G has an explicit description (i.e. the elements
of G have small encodings, are efficiently recognizable and the group operations can
be efficiently performed). Furthermore, suppose the generating set S is explicit and of
small size then the Cayley graph Cay(G, S ∪S −1) is explicit and has small degree. The
best known explicit constructions of expander graphs are Cayley graphs of a subgroup
of 2 × 2 matrices over a finite field Fp. These expander graph families, known as
Ramanujan graphs, have constant degree d and λ = Θ(1/

√
d), which is optimal to a

constant factor, and matches the λ for random d-regular multigraphs [17].
A general aspect in constructing such expander families lies, of course, in under-

standing which families of finite groups Gn have small size expanding generating sets
S so that Cay(G, S ∪ S −1) is a λ-spectral expander.

For any finite group G we know that it has a generating set of size log |G|. Indeed,
given G as a multiplication table we can compute a log |G| size generating set in |G|O(1)

time. It is a simple greedy algorithm: having picked i elements g1, g2, . . . , gi from G
into the generating set we list out the elements of the subgroup H generated by the set
{g1, g2, . . . , gi}. If H , G we pick any gi+1 ∈ G\H as the next element in the generating
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set. The new subgroup 〈g1, g2, . . . , gi+1〉 obtained contains H properly and its size is at
least 2|H| by Lagrange’s theorem (which states that the size of a finite group is divisible
by the size of any subgroup of it). Hence, log |G| elements suffice to generate G. It
turns out that log |G| is also optimal for certain finite groups. E.g. if G is the additive
group Fn

2 then a generating set for it is also a spanning set for the vector space Fn
2 and

hence has to have at least n = log |G| elements in it as Fn
2 is n-dimensional over F2.

In general, for a finite group G, a natural question that arises is whether G also has
an expanding generating set of size log |G| or at least O(log |G|). Alon and Roichman in
[3] prove the following beautiful result which answers this question in the affirmative.

Theorem 1 (Alon-Roichman Theorem). [3] Let λ > 0 and G be any finite group.
Then a random multiset S ⊂ G of size c log |G| makes the symmetric Cayley graph
Cay(G, S ∪ S −1) a λ-spectral expander with high probability.

The theorem suggests a simple efficient Las Vegas algorithm for the problem of
computing an O(log |G|) size expanding generating set for G, where G is given as
input by its multiplication table: we sample c log |G| many elements from G uniformly
at random with replacement to obtain the multiset S . We can check in |G|O(1) time if
Cay(G, S ∪ S −1) is a λ-spectral expander by estimating its second largest eigenvalue
and checking that it is bounded in magnitude by λ.

A natural question is whether we can compute such an expanding generating set
in deterministic |G|O(1) time. This is along the lines of constructing explicit expander
families, and it was answered in the affirmative by Wigderson and Xiao [25] who gave
an efficient derandomization of the Alon-Roichman theorem using a representation-
theoretic approach. More precisely, in [25] they use Chernoff bounds for matrix-valued
random variables (due to Ahlswede and Winter [1]) combined with the application of
the method of conditional probabilities [21]. This representation-theoretic approach
to the Alon-Roichman theorem is based on alternative proofs of the theorem due to
[15, 16]. The original proof of Alon and Roichman [3] is combinatorial in flavour.
Igor Pak [20] gives another combinatorial proof for the Alon-Roichman theorem based
on Erdős-Rényi sequences [12]. In this essay we give a somewhat different account
of Pak’s proof which is amenable to a derandomized construction [6]. This actually
yields a |G|O(1) time combinatorial derandomization of Alon-Roichman, which is quite
different from the previously mentioned one [25]. In the second part of this article
we consider finite groups G given by small generating sets as input and address the
question of (log |G|)O(1) time derandomization of the Alon-Roichman theorem for some
interesting classes of groups.

2 Randomized construction
We now discuss a version of Pak’s proof which is amenable to derandomization [6].
The connection between mixing times of random walks on a graph and its spectral
expansion is well studied. For undirected graphs we have the following.
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Theorem 2. [22, Theorem 1] Let A be the normalized adjacency matrix of an undi-
rected graph. For every initial distribution, suppose the distribution obtained after t
steps of the random walk following A is ε-close to the uniform distribution in the L1

norm. Then the spectral gap (1 − |λ1|) of A is Ω( 1
t log

(
1
ε

)
).

Even for directed graphs a connection between mixing times of random walks and
the spectral properties of the underlying Markov chain is known.

Theorem 3. [19, Theorem 5.9] Let λmax denote the second largest magnitude (com-
plex valued) eigenvalue of the normalized adjacency matrix P of a strongly connected
aperiodic Markov Chain. Then the mixing time is lower bounded by τ(ε) ≥ log(1/2ε)

log(1/|λmax |)
,

where ε is the difference between the resulting distribution and the uniform distribution
in the L1 norm.

In [20], Pak uses this connection to prove an analogue of the Alon-Roichman the-
orem for directed Cayley graphs.

Let D1 and D2 be probability distributions on the set {1, 2, . . . , n}. We use the L2

norm ‖D1 − D2‖2 =
[∑

x∈[n] |D1(x) − D2(x)|2
] 1

2 to measure the distance between them.
We say that a distribution D is δ-close to the uniform distribution U, if ‖D−U‖2 ≤ δ.

The collision probability of a distribution D is Coll(D) =
∑

i∈[n] D(i)2. It is easily seen
that Coll(D) ≤ 1/n + δ if and only if ‖D − U‖22 ≤ δ and Coll(D) attains its minimum
value 1/n if and only if D = U.

Let G be an n-element group. For a sequence of group elements J = 〈g1, . . . , gk〉

in G, consider the directed Cayley graph Cay(G, J), which is a multigraph with in-
degrees and out-degrees of all vertices equal to k. Let A denote the adjacency matrix
of Cay(G, J). Consider the “lazy” random walk defined by the probability transition
matrix (A + I)/2 where I is the identity matrix. That is to say, with probability 1/2 the
random walk stays at the same vertex and with probability 1/2 it moves to one of its k
out-neighbors (each destination with probability 1/2k).

Let QJ be the probability distribution after m steps of the lazy random walk. Strictly
speaking, QJ depends on the initial distribution. However, we wish to bound the worst-
case distance ‖QJ − U‖2 of QJ from the uniform. Hence the initial distribution does
not matter. Pak [20] has analyzed QJ and shown that for a random J of O(log n) size
and m = O(log n), QJ is 1/nO(1)-close to the uniform distribution. Pak works with the
L∞ norm. Since our aim is to give a derandomization of this construction, the L2 norm
and the collision probability are the right objects to work with since we can compute
these quantities exactly as we fix elements of J one by one in the derandomization.

Pak’s randomized construction is based on Erdős-Rényi sequences for finite groups
introduced by Erdős and Rényi in [12].

Definition 4. Let G be a finite group and J = 〈g1, . . . , gk〉 be a sequence of elements
in G. For δ > 0, J is an Erdős-Rényi sequence for G with closeness parameter δ,
if the probability distribution DJ on G given by gε1

1 . . . g
εk
k , where the εi ∈ {0, 1} are

independent unbiased random bits, is δ-close to the uniform distribution in the L2-
norm.
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Erdős and Rényi proved the following theorem.

Theorem 5 (Erdős Rényi). ([12]) Let G be a finite group and U be the uniform dis-
tribution on G. Let J = 〈g1, . . . , gk〉 denote a sequence of k elements of G picked
independently and uniformly at random. Then the expected value

EJ‖DJ − U‖22 = 1/2k(1 − 1/n).

In particular, it implies that a random sequence J of O(log n) elements is an Erdős-
Rényi sequence for G with closeness parameter 1/nO(1).

Consider any m-length sequence I = 〈i1, . . . , im〉 ∈ [k]m, where i j’s are indices that
refer to elements in the sequence J. Let RJ

I be the following probability distribution on
G. For g ∈ G: RJ

I (g) = Prε̄[g
ε1
i1
·. . .·gεm

im
= g],where ε̄ = (ε1, . . . , εm) and the εi ∈ {0, 1} are

independent and uniformly random. For each g ∈ G we have: QJ(g) = 1
km

∑
I∈[k]m RJ

I (g).
Each RJ

I is the distribution defined by the Erdős-Rényi sequence 〈gi1 , gi2 , . . . , gim〉.
Hence, the above equation implies that the distribution QJ is the average of RJ

I over
I ∈ [k]m.

The indices in I ∈ [k]m need not be distinct. Let L(I) denote the subsequence of
distinct indices in the order of their first occurrence in I, from left to right. We refer
to L(I) as the L-subsequence of I. The L-subsequence L(I) also defines a probability
distribution RJ

L(I) on the group G.
For analyzing the random walk and the distribution GJ, it is more convenient to deal

with RJ
L(I) rather than RJ

I . Fortunately, we can show that the two are tied together pretty
closely. More precisely, suppose the elements of J are picked from G independently
and uniformly at random. Then we can show for each I ∈ [k]m that, in expectation, if
RJ

L(I) is δ-close to uniform distribution (in L2 norm) then so is RJ
I . We state this in terms

of collision probabilities.

Lemma 6. For a fixed I, If EJ[Coll(RJ
L(I))] = EJ[

∑
g∈G RJ

L(I)(g)2] ≤ 1/n + δ then
EJ[Coll(RJ

I )] = EJ[
∑

g∈G RJ
I (g)2] ≤ 1/n + δ.

Pak actually proves a similar lemma for the L∞ norm [20]. When elements of J are
picked uniformly and independently from G, by Theorem 5,

EJ[Coll(RJ
L(I))] = EJ[

∑
g∈G

RJ
L(I)(g)2] =

1
n

+
1
2`

(1 −
1
n

),

where ` is the length of the L-subsequence. Thus the expectation is small provided `
is large enough. It turns out, with an easy counting argument, that most I ∈ [k]m have
sufficiently long L-subsequences (Lemma 7 below).

Lemma 7. [20] For any k, `, the probability that a sequence of length m over [k] does

not have an L-subsequence of length ` is at most (ae)
k
a

am where a = k
`−1 .

To ensure the above probability is bounded by 1
2m , it suffices to choose m =

d
(k/a) log(ae)

log(a/2) e. Here a is a constant so that both m and ` are Θ(k).
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Lemma 8. EJ[Coll(QJ)] ≤ 1
n + 1

2Θ(m) .

Proof. We call I ∈ [k]m good if it has an L-subsequence of length at least `, else we
call it bad.

EJ[Coll(QJ)] = EJ[
∑
g∈G

Q2
J(g)]

= EJ[
∑
g∈G

(EI(RI(g))2]

≤ EJ[
∑
g∈G

EI(R2
I (g))] By Cauchy-Schwartz inequality (1)

= EI[EJ[Coll(RI)]]

≤
1
kmEJ[

∑
I∈[k]m

I is good

∑
g∈G

(RJ
L(g))2 +

∑
I∈[k]m

I is bad

1]

≤ PrI[I is good]
(
1
n

+
1
2`

)
+ PrI[I is bad] (2)

The last step follows from Lemma 6 and Theorem 5. Fix m in Lemma 7 to O(log n)
such that PrI[I is bad] ≤ 1

2m and let ` = Θ(m) to yield EJ[Coll(QJ)] ≤ 1
n + 1

2Θ(m) . In
particular, m is chosen so that PrI[I is bad] ≤ 1

2m . �

Clearly, 1
2Θ(m) <

1
nc for a given c > 0, by choosing m = O(log n). We also choose

` = Θ(m) in the proof of Lemma 8. Then, from the relation that m = d
(k/a) log(ae)

log(a/2) e, we fix
k to be O(log n) suitably. Since random walks on Cay(G, J) mix well, as a consequence
of Theorem 3 we obtain the following.

Theorem 9. [20] Let λ > 0 and G be any finite group. Then, with high probability, a
random multiset J ⊂ G of size c log |G| makes the directed Cayley graph Cay(G, J) a
spectral expander (i.e. its second largest eigenvalue in absolute value is bounded by
ε).

2.1 Derandomizing the construction
We outline a derandomization [6] of the randomized Cayley expanders Cay(G, J) given
by Theorem 9.

Given a group G with n elements, we need to compute in deterministic |G|O(1) time,
a multiset J of k group elements of G such that:

Coll(QJ) =
∑
g∈G

QJ(g)2 ≤ 1/n + 1/nc, (3)
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where c > 0 is a given constant and both k and m are O(log n). By Theorem 9 a
random set J satisfies this with high probability. For each J observe, by the Cauchy-
Schwartz inequality, that

Coll(QJ) =
∑
g∈G

QJ(g)2 ≤
∑
g∈G

1
km

∑
I∈[k]m

RJ
I (g)2 =

1
km

∑
I∈[k]m

Coll(RJ
I ). (4)

Thus, it suffices to compute a multiset J of group elements such that the average
collision probability 1

km

∑
I∈[k]m Coll(RJ

I ) ≤ 1/n + 1/nc.
We start with J = {X1, . . . , Xk} where each Xi is an independent random variable

uniformly distributed in G. By Theorem 9 (in particular from Equation 3), for a given
c > 1 there are k and m, both O(log n) such that:

EJ[Coll(QJ)] = EJ[EI∈[k]mColl(RJ
I )] ≤

1
n

+
1
nc . (5)

The algorithm is based on the method of conditional probabilities. It fixes el-
ements in J one by one. Suppose at the jth stage, for j < k, J = J j =

{x1, x2, . . . , x j, X j+1, . . . , Xk}, where xr (1 ≤ r ≤ j) are fixed elements of G and the
remaining Xs, s = j + 1, . . . , k are still random variables such that E[EI∈[k]mColl(RJ

I )] ≤
1/n + 1/nc , where the outer expectation is over these Xs.

It suffices to give a polynomial-time procedure that fixes X j+1 to an x j+1 ∈ G such
that E[EI∈[k]mColl(RJ

I )] ≤ 1/n + 1/nc. Given J = J j = {x1, . . . , x j, X j+1, . . . , Xk} with j
fixed elements and k− j random elements, we partition [k]m into subsets S r,` where I ∈
S r,` if and only if there are exactly r indices in I from {1, . . . , j}, and of the remaining
m − r indices of I there are exactly ` distinct indices.

An (r, `)-normal sequence for J is a sequence 〈n1, n2, . . . , nr, . . . , nr+`〉 ∈ [k]r+` such
that ns, 1 ≤ s ≤ r are in {1, 2, . . . , j} and the ns, s > r are all distinct and in { j+1, . . . , k}.
In other words, the first r indices (possibly with repetition) are from the fixed part of J
and the last ` are all distinct indices from the random part of J.

It turns out that a sequence I ∈ [k]m can be transformed, by group conjugation,
into (r, `)-normal form such that the expected collision probability of the distribution
generated by the (r, `)-normal form gives an upper bound on E[Coll(RJ

I ]. This upper
bound plays the role of a pessimistic estimator in the derandomization.

In order to transform a sequence in S r,` into (r, `)-normal form we will make re-
peated use of the fact that if y ∈ G is picked uniformly at random and x ∈ G be any
element independent of y, then the distribution of xyx−1, namely the x-conjugate of y,
is uniform in G.

Let I = 〈i1, . . . , im〉 ∈ S r,` be a sequence. Let F = 〈i f1 , . . . , i fr〉 be the index
subsequence whose corresponding elements are from the fixed part {x1, x2, . . . , x j} of
J. Let R = 〈is1 , . . . , ism−r〉 be the index subsequence for the random part of J. Let
L = 〈ie1 , . . . , ie`〉 be the L-subsequence in R. More precisely, notice that R is a sequence
in { j + 1, . . . , k}m−r and L is the L-subsequence for R. The (r, `)-normal sequence Î of
I ∈ S r,` is 〈i f1 , . . . , i fr , ie1 , . . . , ie`〉.
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Denote the elements of J by gt, 1 ≤ t ≤ k, where gt = xt for t ≤ j and gt = Xt

for t > j. Consider the distribution RJ
I consisting of the products gε1

i1
. . . gεm

im
where

εi ∈ {0, 1} are independent and uniformly picked at random. Then, using repeated
conjugation of the group elements to move the fixed part to the left, we can write

gε1
i1
. . . gεm

im
= g

ε f1
i f1
. . . gε fr

i fr
h
εe1
e1 . . . h

εe`
e` y(ε̄),

where y(ε̄) is an element in G that depends on J, I and ε̄, where ε̄ consists of all the
ε j for i j ∈ I \ (F∪L). Here, (he1 , he2 , . . . , he`) is the sequence of all independent random
elements in the above product

∏m−r
a=1 hεsa

sa consisting of conjugates of the original L-
subsequence in J.

Let JI denote the multiset of group elements obtained from J by replacing the
subset {gie1

, gie2
, . . . , gie`

} in J with {he1 , he2 , . . . , he`}. Note that, in this substitution,
we are replacing a uniformly distributed random variable gie j

over G with another
uniformly distributed random variable he j over G, where the later is obtained from
the former by a conjugacy transformation. Clearly, JI also has j fixed elements
x1, x2, . . . , x j and k − j uniformly distributed independent random elements. Recall
that Î = 〈i f1 , i f2 , . . . , i fr , ie1 , ie2 , . . . , ie`〉 is the (r, `)-normal sequence for I. The probabil-
ity distributions RJ

I and RJI

Î
are compared in the following lemma.

Lemma 10. For each j ≤ k and J = {x1, . . . , x j, X j+1, . . . , Xk} (where x1, . . . , x j ∈ G
are fixed elements and X j+1, . . . , Xk are independent uniformly distributed in G), and
for each I ∈ [k]m, E[Coll(RJ

I )] ≤ E[Coll(RJI

Î
)], where E[Coll(RJ

I )] is computed over
random elements in J and E[Coll(RJI

Î
)] over random elements in JI .

It follows that EJ[Coll(QJ)] ≤ EJIEI∈[k]m[Coll(RJI

Î
)]. Furthermore, it turns out that

given J = {x1, . . . , x j, X j+1, . . . , Xk} we can compute EJIEI∈[k]m[Coll(RJI

Î
)] in determin-

istic polynomial (in n) time by reducing it to the problem of counting directed s-t paths
in a weighted directed acyclic graph. This completes the proof outline of the following.

Theorem 11. [6] Let G be a group with n elements, given as its multiplication table.
For any constant c > 1, there is a deterministic poly(n) time algorithm that computes
a generating set J of size O(log n) for the given group G, such that for any initial
distribution on G the lazy random walk of O(log n) steps on the directed Cayley graph
Cay(G, J) yields a distribution that is 1

nc -close (in L2 norm) to the uniform distribution.

Together with Theorem 3 this yields the following corollary.

Corollary 12. [6] Given a finite group G and any ε > 0, there is a deterministic
polynomial-time algorithm to construct an O(log n) size generating set J such that
Cay(G, J) is a spectral expander (i.e. its second largest eigenvalue in absolute value
is bounded by ε).
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Undirected Cayley graphs

This approach can be adapted for undirected Cayley graphs as well [6]. The key point
is a suitable generalization of Erdős-Rényi sequences. We consider the distribution
on G defined by gε1

1 . . . g
εk
k where εi ∈R {−1, 0, 1}. Using these generalized Erdős-

Rényi sequences we can analyze lazy random walks on the undirected Cayley graph
Cay(G, J∪ J−1) for a random multiset J of O(log |G|) size. More precisely, we consider
the lazy random walk described by the symmetric transition matrix AJ = 1

3 I + 1
3k (PJ +

PJ−1) where PJ and PJ−1 are the adjacency matrices of the directed Cayley graphs
Cay(G, J) and Cay(G, J−1) respectively. We obtain the following results.

Theorem 13. [6] Let G be a finite group of order n and c > 1 be any constant. There is
a deterministic poly(n) time algorithm that computes a generating set J of size O(log n)
for G, such that an O(log n) step lazy random walk on G, governed by the transition
matrix AJ described above, is 1

nc -close to the uniform distribution, for any given initial
distribution on G.

Theorem 13 and the connection between mixing time and spectral expansion for
undirected graphs given by Theorem 2 yields an alternative proof of the following [6].

Corollary 14. [25] Given a finite group G by its multiplication table, there is a deter-
ministic polynomial (in |G|) time algorithm to construct a generating set J such that
Cay(G, J ∪ J−1) is a spectral expander.

3 Faster derandomizations
We now explore the question of computing expanding generating sets for finite groups
G in time polynomial in log |G|. Since every finite group G has a generating set of size
log |G|, we can assume that G = 〈S 〉 is given as input by a small generating set S and
the goal is to compute an expanding generating set for G in time polynomial in log |G|
and |S |.

For example, let G be any subgroup of the group S n. Then G has a generating
set S ⊂ S n of size at most n log n. Furthermore, the group operation is permutation
composition, and for two given permutations π, π′ ∈ S n we can compute ππ′ in time
polynomial in n.

Another example: consider subgroups G = 〈S 〉 of the group of invertible n × n
matrices over a finite field Fq under matrix product. Matrix product can be performed
in time polynomial in n and log q and every such group has a generating set of size
n2 log q (as there are at most qn2

many invertible n × n matrices).
An algorithmic framework for finite groups input by their generating sets is the

notion of black-box groups due to Babai and Szemerédi [10]. The elements of a finite
black-box group G are assumed to be uniformly encoded as binary strings of some
length m (where m would typically be polynomial in log |G|). Each group operation
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is performed by a black-box in time polynomial in m. The group G is given by a
generating set S .

In a general result about finite black-box groups Babai has shown [9] that it is pos-
sible to sample nearly uniformly in polynomial time from G = 〈S 〉, where S is an arbi-
trary generating set. Interestingly, Babai’s sampling algorithm is based on Erdős-Rényi
sequences. The randomized algorithm computes with high probability an Erdős-Rényi
sequence {g1, g2, . . . , gk} for G with closeness parameter 2−O(m), where k is polynomial
in m. Once we have an Erdős-Rényi sequence the sampling algorithm simply outputs∏k

i=1 gεi
i where each εi ∈ {0, 1} is independently and uniformly picked at random. We

can summarize this result as follows.

Theorem 15 (Babai). [9] Let G = 〈S 〉 be a finite black-box group whose elements
uniformly encoded as binary strings length m. Then there is a randomized poly(m, |S |)
time algorithm that outputs with high probability an Erdős-Rényi sequence with close-
ness parameter 2−O(m). As a consequence, there is a randomized poly(m, |S |) time
algorithm for sampling almost uniformly at random from G.

Therefore, by the Alon-Roichman theorem we have a randomized polynomial-time
algorithm for the problem (although it is not Las Vegas since we do not know how to
certify an expanding generator set in polynomial time). More precisely, we have the
following consequence of Alon-Roichman for general black-box groups.

Proposition 16. Given λ > 0 and a finite black-box group G = 〈S 〉 whose elements
uniformly encoded as binary strings length m. There is a randomized poly(m, |S |, 1/λ)
time Monte-Carlo algorithm that outputs with high probability an expanding generat-
ing set T of size (O(log |G|/λ2) for G such that Cay(G,T∪T−1) is a λ-spectral expander.

The algorithmic question we now address is to obtain a deterministic polynomial
(in log |G| and |S |) time algorithm for computing small expanding generating sets for
G. A precise formulation of the problem is as follows:

Problem 17. Given a finite group G = 〈S 〉 by a small generating set S and a λ > 0
the problem is to compute, in deterministic time polynomial in |S |, log |G|, and 1/λ, a
generating set T for G such that |T | = O(log |G|/λ2) and Cay(G,T∪T−1) is a λ-spectral
expander.

In Problem 17, the real challenge seems to be computing an expanding generat-
ing set T of the size O(log |G|/λ2) promised by the Alon-Roichman theorem. We will
discuss deterministic polynomial time algorithms that compute somewhat larger gen-
erating sets.

3.1 Small bias spaces
We will first consider the additive group Fn

2 which is the simplest of groups. Its el-
ements are the 2n binary vectors and the group operation is coordinate-wise addition
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modulo 2. The group is abelian and each nonzero element has order 2. By the Alon-
Roichman theorem, for any ε > 0 the group Fn

2 has an expanding generating set T of
size O(n/ε2) that makes the Cayley graph ε-spectral.

Although we do not know any polynomial-time deterministic construction of size
O(n/ε2), it turns out that we can compute T of size O(n2/ε2) or of size O(n/εO(1)). This
is because expanding generating sets for Fn

2 are precisely ε-bias spaces in Fn
2 whose

constructions are well studied in the context of almost k-wise independent sample
spaces [5, 2].

We explain this connection between small bias spaces in Fn
2 and expanding gen-

erating sets for Fn
2. We will require some elementary group representation theory. A

character χ of the group Fn
2 is a group homomorphism from Fn

2 to the multiplicative
group of complex numbers C∗. As all elements of Fn

2 are or order either 1 or 2, and χ
is a group homomorphism, it follows that χ(a) ∈ {−1, 1} for each a ∈ Fn

2. The trivial
character χ0 maps all elements to 1. Each vector b ∈ Fn

2 defines a character

χb(a) = (−1)a.b,

where a.b =
∑

i aibi mod 2.
The set of all functions f : Fn

2 → C forms a 2n-dimensional vector space over C
and it turns out that the set of characters {χb | b ∈ Fn

2} spans the vector space. This is
a consequence of the fact that these 2n characters χb, b ∈ Fn

2 are mutually orthogonal
under the inner product 〈 f , g〉 = 1

2n

∑
a∈Fn

2
f (a)g(a).

Now, consider a generating set S ⊂ Fn
2 for the group Fn

2 and the resulting symmetric
Cayley graph Cay(Fn

2, S ). Note that any subset S is already symmetric as S = S −1. Let
AS denote its normalized adjacency matrix. The following nice fact about its eigen-
vectors suitably generalizes to the setting of all abelian groups.

Claim 18. The vectors {χb | b ∈ Fn
2} are the eigenvectors of the symmetric matrix AS .

Indeed, an easy calculation shows that the vector ASχb = (1/|S |
∑

s∈S χb(s))χb.
Thus the eigenvalues of AS are 1

|S |

∑
s∈S χb(s) for b ∈ Fn

2. The trivial character χ0 is the
eigenvector for eigenvalue 1. We can summarize the discussion in the following.

Proposition 19 (folklore). The Cayley graph Cay(Fn
2, S ) is an ε-spectral expander if

and only if for all nontrivial characters χb

1
|S |
|
∑
s∈S

χb(s)| ≤ ε.

The latter condition is precisely the definition of an ε-bias space. The known de-
terministic efficient constructions of Alon et al [4] of size O(n2/ε2) and [5] of size
O(n/εO(1)) fall short of constructing O(n/ε2) size ε-bias spaces promised by the Alon-
Roichman theorem.

11



3.2 General case: Divide and Conquer Constructions
We now consider deterministic construction of expanding generating sets for more
general groups. Let G = 〈g1, g2, . . . , gk〉 be a finite group given by generators gi.
We will now outline a divide and conquer strategy [7] for the problem of computing
expanding generating sets that works quite well for a large class of finite groups. The
idea is to decompose G into smaller groups, compute expanding generating sets for the
smaller groups and put these generating sets together suitably for G.

Exploiting normal subgroups

Let G be a finite group and N be a normal subgroup of G. I.e. N is a subgroup such
that g−1Ng = N for all g ∈ G. Suppose A ⊂ N is an expanding generating set for N so
that Cay(N, A ∪ A−1) is a λ-spectral expander. Similarly, consider the quotient group
G/N (which is well defined by virtue of N’s normality). Suppose B ⊂ G such that
B̂ = {Nx | x ∈ B} is an expanding generating set for the quotient group G/N and the
corresponding Cayley graph Cay(G/N, B̂∪ B̂−1) is also λ-spectral. Then we can prove
the following.

Lemma 20. [7] Suppose both Cay(N, A ∪ A−1) and Cay(G/N, B̂ ∪ B̂−1) are λ-spectral
and let C = A ∪ B. Then Cay(G,C ∪C−1) is a (1 + λ)/2-spectral expander.

See [7] for proof details. The overall idea is similar in spirit to the analysis of the
zig-zag product construction [24]. There are some additional issues in this construction
that makes C ∪C−1 an expanding generating set for G which are taken care of because
N is a normal subgroup of G. This theorem provides us a divide-and-conquer tool in
the following sense. Suppose G is a finite group with a normal series

G = G0 BG1 B · · · BGr = {1},

where each Gi is a normal subgroup of G. I.e. G BGi for each i. Suppose we are given
expanding generating sets for each quotient group Gi/Gi+1. Using the above theorem
we can put them together efficiently to construct an expanding generator set for G.

Lemma 21. [7] Let G ≤ S n with normal series {Gi}
r
i=0 be as above. Further, for each

i let Bi be a generator set for Gi/Gi+1 such that Cay(Gi/Gi+1, Bi) is a 1/4-spectral
expander. Let s = maxi{|Bi|}. Then in deterministic time polynomial in n and s we can
compute a generator set B for G such that Cay(G, B) is a 1/4-spectral expander and
|B| = clog r s for some constant c > 0.

The proof of this lemma is essentially based on repeated application of Lemma 20.

The case of solvable permutation groups

In order to actually apply Lemma 21 we need to compute a normal series for G = 〈S 〉
efficiently. Moreover, we will also need to compute expanding generating sets for the
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quotient groups Gi/Gi+1. A large class of groups for which this approach works well
is solvable permutation groups. First we recall some definitions.

Let G be a finite group. The commutator subgroup of G is the subgroup G′ gen-
erated by elements xyx−1y−1 where x, y ∈ G. The commutator subgroup G′ is the
minimal normal subgroup of G such that the quotient G/G′ is abelian. The derived
series for G is the following chain of subgroups of G:

G = G0 .G1 . · · · .Gk

where, for each i, Gi+1 is the commutator subgroup of Gi.
The group G is said to be solvable if the derived series terminates in Gk = {1} for

some k, where k is the length of the derived series for G. We note that the derived
series for G is a normal series.

A group G is non-solvable if the derived series does not terminate at {1}. For
instance, the group G = A5, consisting of all even permutations on five elements, is
non-solvable because G1 = G.

A permutation group is a subgroup G = 〈S 〉 of the group S n of all permutations on
[n]. Given a permutation group G = 〈S 〉 by a generating set we can compute its derived
series in deterministic polynomial time [18]. Dixon [11] has shown that derived series
of solvable subgroups of S n have length bounded by 5 log3 n. The above observations
combined with Theorem 21 yields the following consequence.

Lemma 22. Suppose G ≤ S n is a solvable group with derived series

G = G0 .G1 . · · · .Gk = {1},

and we have Bi ⊂ Gi/Gi+1 such that Cay(Gi/Gi+1, Bi∪B−1
i ) is a 1/4-spectral expander.

Let s = maxi{|Bi|}. Then in deterministic poly(n, s) time we can compute a subset
B of G such that Cay(G, B ∪ B−1) is a 1/4-spectral expander and |B| = 2O(log k)s =

(log n)O(1)s.

In order to compute an expanding generating set for a solvable subgroup G of
S n we first need to compute an expanding generating set Bi for Gi/Gi+1 such that
Cay(Gi/Gi+1, Bi) is 1/4-spectral and then apply the above lemma.

Abelian quotient groups

We now explain the computation of expanding generating sets for the abelian quotient
groups Gi/Gi+1, where Gi+1 C Gi ≤ S n. Let p1 < p2 < . . . < pk be the list of all
primes bounded by n. Let e = dlog ne. As Gi/Gi+1 is abelian, there is an onto group
homomorphism φ from the product group Zn

pe
1
×Zn

pe
2
×· · ·×Zn

pe
k

to Gi/Gi+1. Moreover, this
homomorphism is easily computable. It suffices to compute an expanding generating
set for Zn

pe
1
× Zn

pe
2
× · · · × Zn

pe
k

because its φ-image will be an expanding generating set
for Gi/Gi+1.
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It turns out that we can compute an expanding generating set for Zn
pe

1
×Zn

pe
2
×· · ·×Zn

pe
k

of size Õ(n2) in polynomial time [7]. This construction is again a careful application
of Lemma 20 combined with a result of Ajtai et al [2] of expanding generating sets for
cyclic groups ZN .

Theorem 23. [7] Let G = 〈S 〉 be a solvable subgroup of S n. In deterministic poly-
nomial time we can compute an expanding generating set of size Õ(n2) such that the
Cayley graph Cay(G, S ∪ S −1) is a 1/4-spectral expander.

For general permutation groups we have the following theorem based on deran-
domized squaring [23] about computing expanding generator sets. Details are given in
[7].

Theorem 24. Given G ≤ S n by a generator set S ′ and λ > 0, we can deterministically
compute (in time poly(n, |S ′|)) an expanding generator set T for G such that Cay(G,T )
is a λ-spectral expander and |T | = O(n16q+10

(
1
λ

)32q
), where q is a constant.

Small Bias Spaces for Zn
d

In conclusion, we note that the expanding generating set construction for abelian
groups Zn

pe
1
× Zn

pe
2
× · · · × Zn

pe
k

mentioned above also gives a new construction of ε-bias
spaces for Zn

d, which we now describe.
In [8] Azar, Motwani, and Naor first considered the construction of ε-bias spaces

for abelian groups, specifically for the group Zn
d. For arbitrary d and any ε > 0 they

construct ε-bias spaces of size O((d+n2/ε2)C), where C is the constant in Linnik’s The-
orem. The construction involves finding a suitable prime (or prime power) promised by
Linnik’s theorem which can take time up to O((d+n2)C). The current best known bound
for C is ≤ 11/2 (and assuming ERH it is 2). Their construction yields a polynomial-
size ε-bias space for d = nO(1).

It is interesting to compare this result of [8] with the construction described above.
Let d have prime factorization pe1

1 pe2
2 · · · p

ek
k . Each pi is O(log d) bit sized and each ei

is bounded by O(log d). Given d in unary, we can efficiently find the prime factoriza-
tion of d. Using the result of Wigderson and Xiao [25], we compute an O(log d) size
expanding generator set for Zp1 p2...pk in deterministic time polynomial in d. Then we
construct an expanding generator set of size O((log n)O(1) log d) for Zm

p1
× . . . × Zm

pk

for m = O(log n) based on Lemma 22. It then follows that we can construct an
O(n(log n)O(1) log d) size expanding generator set for Zn

p1
× . . . × Zn

pk
in determinis-

tic polynomial time. Finally, it follows that we can construct an O(n(log n log d)O(1))
size expanding generator set for Zn

d (which is isomorphic to Zn
pe1

1
× . . .Zn

p
ek
k

) since each

ei is bounded by log d. Given ε > 0, the dependence of ε in the size of the generating
set that makes the Cayley graph λ-spectral is (1/ε)32q.
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Theorem 25. Let d, n be any positive integers (in unary) and ε > 0. Then, in determin-
istic poly(n, d, 1

ε
) time, we can construct an O(npoly(log n, log d))(1/ε)32q size ε-bias

space for Zn
d.
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