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Dear Reader, welcome to the Formal Language Theory Column!
Starting from this issue, I am the new editor of this column. First of all, I warmly

thank my predecessor, Arto Salomaa, which was responsible of the column for many
years. I would like to continue his work, by collecting contributions from the area that
can be useful for exchanging new ideas, increasing and sharing the global knowledge
in the field, and stimulating new researches. For instance, papers describing new de-
velopments, recent results, revisitations of classical topics as well as open problems
will be welcome.

This column presents a survey paper written by Martin Kutrib and myself, on some
recent trends in descriptional complexity of formal languages.
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Abstract
Formal languages can be described by several means. A basic question is how
succinctly can a descriptional system represent a formal language in comparison
with other descriptional systems? What is the maximal size trade-off when chang-
ing from one system to another, and can it be achieved? Here, we select some
recent trends in the descriptional complexity of formal languages and discuss the
problems, results, and open questions. In particular, we present the main histori-
cal development and address the basics concepts of descriptional complexity from
a general abstract perspective. Then we consider the representation by two-way
finite automata, multi-head finite automata, and limited automata in more detail.
Finally, we discuss a few further topics in note form. The results presented are
not proved but we merely draw attention to the overall picture and some of the
main ideas involved.

1 Introduction
Since the dawn of theoretical computer science the relative succinctness of different
representations of formal languages by automata, grammars, equation systems, and
other descriptional systems have been a subject of intensive research. The approach
to analyze the size of systems as opposed to the computational power seems to origi-
nate from Stearns [64] who studied the relative succinctness of regular languages rep-
resented by deterministic finite automata and deterministic pushdown automata. He
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showed the decidability of regularity for deterministic pushdown automata in a deep
proof. The effective procedure revealed the following upper bound for the simulation.
Given a deterministic pushdown automaton with n > 1 states and t > 1 stack sym-
bols that accepts a regular language. Then the number of states which is sufficient
for an equivalent DFA is bounded by an expression of the order tnnn

. Later this triple
exponential upper bound has been improved by one level of exponentiation in [66]. In
the levels of exponentiation it is tight. In [50] a double exponential lower bound has
been obtained. The precise bound is still an open problem. Probably the best-known
result on descriptional complexity is the construction of a DFA that simulates a given
nondeterministic finite automaton [60]. By this so-called powerset construction, each
state of the DFA is associated with a subset of NFA states. Moreover, the construction
turned out to be optimal, in general. That is, the bound on the number of states nec-
essary for the construction is tight in the sense that for an arbitrary n there is always
some n-state NFA which cannot be simulated by any DFA with strictly less than 2n

states [42, 50, 53]. Let us turn to another cornerstone of descriptional complexity the-
ory in the seminal paper by Meyer and Fischer [50]. In general, a known upper bound
for the trade-off answers the question, how succinctly can a language be represented by
a descriptor of one descriptional system compared with the representation by an equiv-
alent descriptor of the other descriptional system? In [50] the sizes of finite automata
and general context-free grammars for regular languages are compared. The compari-
son revealed a qualitatively new phenomenon. The gain in economy of description can
be arbitrary, that is, there are no recursive functions serving as upper bounds for the
trade-off, which is said to be non-recursive.

Nowadays, descriptional complexity has become a large and widespread area.
Classical main branches not addressed in this summary are automata simulations, state
complexity of operations, whose systematic study was initiated in [72], magic num-
bers, a research field initiated in [26], determinization of nondeterministic finite au-
tomata accepting subregular languages [3], transition complexity of NFA [6, 15, 22,
23, 41], and non-recursive trade-offs. Further results and references on these topics
can be found, for example, in the surveys [13, 19, 20, 32].

1.1 Basic Concepts of Descriptional Complexity

In order to be more precise, we now turn to present and discuss the very basics of
descriptional complexity.

We denote the set of nonnegative integers by N. Let Σ∗ denote the set of all words
over a finite alphabet Σ. The empty word is denoted by λ, and we set Σ+ = Σ∗ − {λ}.
For the reversal of a word w we write wR and for its length we write |w|. We use ⊆ for
inclusions and ⊂ for strict inclusions. In general, the family of all languages accepted
by a device of some type X is denoted by L(X).

In order to be general, we first formalize the intuitive notion of a representation
or description of a family of languages. A descriptional system is a collection of
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encodings of items where each item represents or describes a formal language. In the
following, we call the items descriptors, and identify the encodings of some language
representation with the representation itself. More precisely, a descriptional system S
is a set of finite descriptors such that each D ∈ S describes a formal language L(D), and
the underlying alphabet alph(D) over which D represents a language can be obtained
from D. The family of languages represented (or described) by S is L(S) = { L(D) |
D ∈ S }. For every language L, the set S(L) = {D ∈ S | L(D) = L } is the set of its
descriptors in S. A complexity measure for a descriptional system S is a total recursive
mapping c : S → N. From the viewpoint that a descriptional system is a collection of
encoding strings, the length of the strings is a natural measure for the size. We denote
it by length.

For example, nondeterministic finite automata can be encoded over some fixed
alphabet such that their input alphabets can be extracted from the encodings. The
set of these encodings is a descriptional system S, and L(S) is the family of regular
languages.

Apart from length, examples for complexity measures for nondeterministic finite
automata are the number of states (state) and the number of transition (trans).

In fact, we will use length to obtain a rough classification of different complexity
measures. We distinguish between measures that (with respect to the size of the un-
derlying alphabet) are recursively related with length and measures that are not. In the
following, we only use complexity measures of the former type: If there is a total recur-
sive function g : N × N → N such that, for all D ∈ S, length(D) ≤ g(c(D), |alph(D)|),
then c is said to be an s-measure (a size measure). Since for any coding alphabet there
are only finitely many descriptors having at most length g(c(D), |alph(D)|), over the
same alphabet there are only finitely many descriptors in S having the same size as
D. If, in addition, for any alphabet Σ, the set of descriptors in S describing languages
over Σ is recursively enumerable in order of increasing size, then c is said to be an
sn-measure. Clearly, length, state, and trans are sn-measures for finite automata.

Whenever we consider the relative succinctness of two descriptional systems S1

and S2, we assume that the intersection L(S1)∩ L(S2) is non-empty. Let S1 and S2 be
descriptional systems with complexity measures c1 and c2, respectively.

A total function f : N → N, is said to be a lower bound for the increase in
complexity when changing from a descriptor in S1 to an equivalent descriptor in S2, if
for infinitely many D1 ∈ S1 with L(D1) ∈ L(S2) there exists a minimal D2 ∈ S2(L(D1))
such that c2(D2) ≥ f (c1(D1)).

A total function f : N→ N is an upper bound for the increase in complexity when
changing from a descriptor in S1 to an equivalent descriptor in S2, if for all D1 ∈ S1

with L(D1) ∈ L(S2), there exists a D2 ∈ S2(L(D1)) such that c2(D2) ≤ f (c1(D1)).
It may happen that the upper bound is not effectively computable. If there is no

recursive upper bound, then the trade-off for changing from a description in S1 to
an equivalent description in S2 is said to be non-recursive. Non-recursive trade-offs
are independent of particular sn-measures. That is, whenever the trade-off from one
descriptional system to another is non-recursive, one can choose an arbitrarily large
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recursive function f but the gain in economy of description eventually exceeds f when
changing from the former system to the latter. As an example, we consider nondeter-
ministic pushdown automata that are used to accept regular languages. Clearly, for any
such automaton there exists an equivalent finite automaton. However, the trade-off for
the conversion of the pushdown automaton into the finite automaton is non-recursive.
(See, for example, [13, 16, 19, 32] for more on non-recursive trade-offs.)

2 Recent Trends
Over the years a lot of investigations of descriptional complexity have been done docu-
menting the importance of that field, its valuable concepts, and its vivid development.
In the present section, we discuss only a few of the recent topics reflecting our per-
sonal view of what constitute the currently most interesting and challenging problems
of descriptional complexity theory.

2.1 Two-Way Finite Automata
Since the beginning of automata theory it is known that the possibility of moving the
head on the input tape in both directions does not increase the computational power
of finite automata, even if nondeterministic transitions are allowed [60, 62]. However,
the devices so obtained, which are called two-way finite automata, can be smaller than
equivalent one-way automata.

As a simple example, for each integer n > 0 let us consider the language
Ln = (a + b)∗a(a + b)n−1. We can easily build a two-way deterministic finite automa-
ton (2DFA) which accepts it by scanning the entire input from left to right and, when
the right end is reached, by moving to the left in order to verify whether or not the
symbol in position n from the right is an a. This gives a 2DFA with n + 2 states, in
contrast with the minimal DFA which requires 2n states. Notice that Ln is accepted by
a NFA with n + 1 states.

In 1978, Sakoda and Sipser [61] raised the question of the exact costs in states for
the simulations of NFAs and 2NFAs by 2DFAs. They conjectured that these costs are
not polynomial. To support such a conjecture, Sakoda and Sipser presented a complete
analogy with the P versus NP question, by introducing a notion of reducibility between
families of regular languages which allows to identify families of languages which are
complete for these simulations. (For a detailed discussion on this approach we address
the reader to the recent paper [27].) In spite of many attempts to solve it, the problem
is still open.

However, in the last decade many progresses have been done by attacking and
solving restricted versions of this question. In particular, in the literature three families
of restrictions have been considered:

• restrictions on the simulating machines,

5



NFA

oblivious sweeping few reversals

2DFA
@

@
@

@@I

[36]

6
[2, 51, 63]

�
�
�
���

[29]

�
�
�
���

[24]
�

�
�
��	

[36]

?

[63]

6

[36]

@
@
@
@@R

[29]

@
@

@
@@I

-[36] � [29]
-�

2DFA

DFA NFA

2NFA

-n

@
@
@
@
@
@
@R

n

?

n

�
eΘ(
√

n·ln n)
�

��6 Θ(n2)

?

n

6

eΘ(
√

n·ln n)

�

� �
?eΘ(

√
n·ln n)

-n
@
@

@
@
@

@
@I

eΘ(
√

n·ln n)

�
?

6

eΘ(
√

n·ln n)

Figure 1: (Left) Costs of the simulation between different variants of automata. An
arrow from a class A of machines to a class B indicates an exponential separation.
A dashed arrow indicates a polynomial simulation. The (trivial) dashed arrow from
oblivious, sweeping, and few reversal automata to 2DFAs are not depicted.
(Right) Costs of the optimal simulations between different kinds of unary automata [4,
49]. An arrow labeled f (n) from a vertex A to a vertex B means that a unary n-state
automaton in the class A can be simulated by an f (n)-state automaton in the class B.

• restrictions on the class of languages,

• restrictions on the simulated machines.

We now briefly discuss some of these restrictions, refering the reader to [56] for a
recent extended survey along these lines.

Exponential separations have been obtained for the simulation of NFAs and 2NFAs
by the following restricted classes of 2DFAs:

• Sweeping automata: these devices can reverse the head direction only while
visiting the endmarkers (two special symbols marking the left and the right ends
of the input).

• Oblivious automata: the “trajectories” of the head on each two inputs of the
same length should coincide, namely, the position of the input head at each step t
of the computation does not depend on the input content, but only on its length.

• Few reversal automata: the number of reversals of the head direction is sublinear
with respect to the input length.

However, all these separations cannot solve the general problem. In fact, it has also
been proved that all these devices can require exponentially many states with respect to
equivalent (unrestricted) 2DFAs. Those separations, with references to the literature,
are summarized in Figure 1 (Left).

Concerning the second family of restrictions, interesting results have been found in
the case of unary languages, namely languages defined over a one letter input alphabet.
The state costs of the optimal simulations between different variants of unary automata

6



have been obtained by Chrobak [4] and by Mereghetti and Pighizzini [49], and they
are summarized in Figure 1 (Right). From the picture we can observe that the cost
of the optimal simulations in the unary case can be smaller than in the general case.
For example, the cost of the simulation of n-state NFAs by DFAs reduces from 2n

to eΘ(
√

n·ln n). Quite surprisingly, eliminating at the same time both nondeterminism and
two-way motion costs as eliminating only one of them. The question NFAs versus
2DFAs has been solved in the unary case in [4] by showing that the tight costs are
polynomial, more precisely Θ(n2). This gives also the best known lower bound for the
general case.

Despite the unary case looks simpler than the general one, the question of 2NFAs
versus 2DFAs not only is still open even in this case, but it seems also to be difficult
and, at the same time, very challenging. First of all, we mention that in [11] it has
been proved that each unary n-state 2NFA can be simulated by a 2DFA with eO(ln2 n)

states. This gives a subexponential but still superpolynomial upper bound. Proving the
optimality of this upper bound, or proving a smaller but still superpolynomial lower
bound for the state cost of the simulation of unary 2NFAs by 2DFAs would separate
deterministic and nondeterministic logarithmic space (L and NL, respectively). In fact,
as showed in [12], if L = NL then the state cost of the simulation of unary 2NFAs by
2DFAs is polynomial. The converse implication is also true if the classes are defined in
a nonuniform way. For recent developments and further results we address the reader
to [30].

Some extensions of the analysis for the unary case have been obtained by consid-
ering outer nondeterministic automata. These devices are 2NFAs that are restricted to
take nondeterministic decisions only when the input head is scanning the endmarkers.
Hence, transitions on “real” input symbols are deterministic. Notice that there are no
restrictions on the head movements as for instance in sweeping automata. These mod-
els share several properties with unary 2NFAs [9, 30]. Among them, a subexponential
state upper bound for the simulation by 2DFAs have been obtained and relationships
with the question L vs. NL have been stated.

2.2 Multi-Head Finite Automata

Before we turn to present the known results, current studies, and open questions of
descriptional complexity issues of multi-head finite automata, we informally recall
briefly what they are.

Let k ≥ 1 be a natural number. A nondeterministic two-way k-head finite automa-
ton (2NFA(k)) is a nondeterministic finite automaton having a single read-only input
tape whose inscription is the input word in between two endmarkers. The k heads of
the automaton can move freely on the tape but not beyond the endmarkers. A 2NFA(k)
starts with all of its heads on the left endmarker. It halts when the transition function is
not defined for the current situation. The input is accepted if and only if the automaton
halts in an accepting state.
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If in any case the transition function is either undefined or a singleton, then the
k-head finite automaton is said to be deterministic (2DFA(k)). In case the heads never
move to the left, the k-head finite automaton is said to be one-way. Nondetermin-
istic and deterministic one-way k-head finite automata are denoted by 1NFA(k) and
1DFA(k).

Obviously, for one-head machines, regardless of whether they work one- or two-
way, or of whether they are deterministic or nondeterministic, we obtain a character-
ization of the regular languages. On the other hand, a simple example is the non-
context-free language {wcw | w ∈ {a, b}+ } that can be accepted by a deterministic
one-way two-head finite automaton.

The power of multi-head finite automata is well studied in the literature (see, for
example, [21] for a survey). The interest is also driven by the strong relation to the
computational complexity classes L and NL. In fact, in [17] the characterizations L =⋃

k≥1 L(2DFA(k)) and NL =
⋃

k≥1 L(2NFA(k)) are shown.
Taking a closer look reveals the natural questions for the descriptional and com-

putational power of the precise number of heads. The questions for the computational
power have eventually been answered in [52], where it is shown that, for each k ≥ 1,
there is a unary language accepted by some deterministic (nondeterministic) two-way
finite automaton with k + 1 heads which is not accepted by any k-head deterministic
(nondeterministic) two-way finite automaton, and in [71], where it is shown that the
language

Ln = {w1$w2$ · · · $w2n | wi ∈ {a, b}∗ and wi = w2n+1−i, for 1 ≤ i ≤ n }

can be accepted by a 1DFA(k) if and only if n ≤
(

k
2

)
. Thus, Ln can be used to separate

the computational power of automata with k + 1 heads from those with k heads also in
the one-way setting.

But how about the descriptional power? The question of determining the trade-offs
between the levels of the head hierarchies arises immediately. It was Kapoutsis [28]
who solved the problem for two-way machines. In particular, there are non-recursive
trade-offs between all levels of the head hierarchies for deterministic and nondeter-
ministic devices (cf. also [31]). Moreover, the enormous descriptional power of heads
evolutes already for unary languages.

Similarly, for one-way multi-head finite automata it is known [32] that the trade-
offs between 1DFA(k + 1) and 1DFA(k), between 1NFA(k + 1) and 1NFA(k), and
between 1DFA(k + 1) and 1NFA(k) are all non-recursive. Moreover, non-recursive
trade-offs are shown between nondeterministic 2-head and deterministic k-head au-
tomata.

So, is the descriptional complexity of multi-head finite automata a fully developed
area without major open problems? The answer is a little hidden. While the non-
recursive trade-offs for two-way machines are already for unary languages, in the one-
way case every accepted unary language boils down to a regular one. In [25, 65] it is
shown that every unary language accepted by a one-way multi-head finite automaton
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is semilinear and, thus, regular. So, a lot of new questions are arising from the fog.
Just to say it with one sentence, all simulations between descriptional systems for
unary regular languages and multi-head finite automata, all problems in connection
with the descriptional complexity of language operations, as well as the size costs for
simulating k + 1-head by k-head automata are worth studying. First steps have been
done in [38], where the following results are from. Here the complexity is measured
by the number of states, that is, we use the measure state.

First, we turn to the number of states for the simulation of an n-state k-head finite
automaton by a classical (one-head) deterministic or nondeterministic finite automa-
ton. So, we consider the maximal head reduction. As is often the case in connection
with unary languages, the function

F(n) = max{ (c1, c2 . . . , cl) | c1, c2, . . . , cl ≥ 1 and c1 + c2 + · · · + cl = n },

plays a crucial role, where denotes the least common multiple. It is well known that
the ci always can be chosen to be relatively prime. The function has been investigated
by Landau [39, 40] who proved the asymptotic growth rate limn→∞

ln(F(n))
√

n·ln n
= 1. The

bounds F(n) ∈ Ω
(
e
√

n·ln n
)

and F(n) ∈ O
(
e
√

n·ln n(1+o(1))
)

have been derived in [7].
For the simulation by a DFA, an upper bound of O(n ·F(t ·n)k−1) and a lower bound

of n · F(n)k−1 states is shown, where t is a constant depending only on k. Since both
bounds are of order eΘ(

√
n·ln n), the trade-off for the simulation is tight in the order of

magnitude. It is worth mentioning that for both bounds the number k of heads is a
constant. It has been given as part of the bounds to be more precise.

For any constants k ≥ 2 and prime n ≥ 2, the lower bound is shown by construction
of a unary n-state 1DFA(k) so that every equivalent deterministic or nondeterministic
finite automaton has a cycle of at least { nck−1

i | 1 ≤ i ≤ l } = n(c1c2 · · · cl)k−1 =

n · F(n)k−1 states.
Based on investigations of the length of words in unary languages accepted by

n-state 1DFA(k), in [37] the upper bound is derived.
These results reveal that the costs for the simulation of 1DFA(k) by DFA are the

same (in the order of magnitude) as for the simulation of NFA by DFA. From this
point of view the two resources heads and nondeterminism are equally powerful. So
the question for the costs of the mutual simulation of 1DFA(k) and NFA raises im-
mediately. Trading k heads for nondeterminism is known to yield polynomially larger
state sets, where the degree of the polynomial depends on k. For constants k, n ≥ 2 any
unary n-state 1DFA(k) can be simulated by some NFA with O(n2k) states.

For the lower bound, the singleton languages Lk,n = { a(k−1)nk
}, for k, n ≥ 2, are

used as witnesses, which are accepted by some n-state 1DFA(k). Clearly, any NFA
accepting Lk,n needs at least (k−1)nk +1 ∈ Ω(nk) states to check that there is no shorter
word accepted.

So far, we considered the costs for the head reduction. Next we turn to the converse
question whether we can trade nondeterminism for heads, that is, we are interested
in the state complexity for the NFA by 1DFA(k) simulation. Naturally, our upper
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bound depends highly on the number k of heads available. If k is at least the (on first
sight) cryptic number t = b−3+

√
8n+1

2 c, then the upper bound is quadratic, otherwise
superpolynomial. Let k ≥ 1, n ≥ 2 be constants, t = b−3+

√
8n+1

2 c, and M be a unary
n-state NFA. Then

n′ ≤


n2 − 2 + F(n), if k = 1;

n2 − 2 +
(
n − t2+t

2

)d t
ke
, if 1 < k < t/2;

2n2, if k ≥ t/2.

states are sufficient for any equivalent 1DFA(k).
The lower bound reads as follows. Let k ≥ 1 be a constant. For any integer m ≥ 1

there is an integer n > m and a unary n-state NFA, such that c2 ·

k

√
e

√
2n√

c1 ln(
√

2n) states are
necessary for any equivalent 1DFA(k), where c1, c2 > 0 are two constants.

So, there is a gap between upper and lower bound. It is currently a challenging open
problem how to close this gap. Also open are the descriptional costs for simulations of
unary nondeterministic one-way multi-head finite automata. Furthermore, how about
the trade-offs between devices with k + 1 and k heads? Are these trade-offs gradually
evolve to the maximal head reduction? Are there jumps from a certain level, say, from
two heads to one head?

2.3 Limited Automata
Each class of the Chomsky hierarchy is defined in terms of grammars using some
special kind of productions, where the form of the productions which are allowed for
grammars of type 1 ≤ k ≤ 3 is a restriction of the form used for grammars of type k−1.
From the point of view of language acceptors, each class of the hierarchy is character-
ized by a family of devices. However, while linear bounded automata used to charac-
terize type 1 languages and finite state automata used to characterize type 3 languages
can be seen as restrictions of (one-tape) Turing machines, which characterize type 0
languages, for type 2 languages, namely context-free, the characterization in terms of
pushdown automata is usually presented. These devices are very useful to investi-
gate and manipulate context-free languages. They also emphasize the main difference
between regular and context-free languages, namely the possibility of representing re-
cursive structures which, in terms of accepting devices, corresponds to increase the
power of finite automata by adding a pushdown store. However, in a hierarchical view,
pushdown automata do not appear as a special case of linear bounded automata.

Almost half a century ago, Hibbard discovered a different characterization of
context-free languages, which uses a restricted version of Turing machines, called scan
limited automata or, shortly, limited automata [18]. For each integer d ≥ 0, a d-
limited automaton (d-LA) is a two-way nondeterministic Turing machine which can
rewrite the content of each tape cell only in the first d visits. He proved that, for each
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Figure 2: Some steps of the automaton A accepting the Dyck language Dk on input
()(([]))().

d ≥ 2, the class of languages accepted by d-limited automata coincides with the class
of context-free languages. Without affecting the computational power, these devices
can be allowed to use only the part of the tape containing the input string. Hence, they
are restrictions of linear bounded automata while, clearly, they are extensions of finite
state automata. This gives a hierarchy of classes of Turing machines corresponding to
the classes of the Chomsky hierarchy. Recently, in [57] this hierarchical view has been
strengthen by proving that deterministic 2-limited automata characterize deterministic
context-free language, solving in this way a problem which was left open by Hibbard.

Let us present, as a simple example, how the Dyck language Dk over the alpha-
bet {(1, )1, (2, )2, . . . , (k, )k} of k ≥ 1 types of brackets, namely the set of strings rep-
resenting well balanced sequences of brackets, can be accepted by a deterministic
2-LA A. The automaton A starts scanning the tape until it finds a closing bracket )i.
Then, A substitutes )i with a symbol X and changes the head direction, moving to the
left until it reaches an opening bracket ( j. If i , j then A rejects. Otherwise, it writes
X on the cell and changes again the head direction moving to the right, to search an-
other closing bracket. This procedure is repeated as long as A does not reach one of
the endmarkers (see Figure 2.) However, if the left endmarker is reached, then at least
one of the closing brackets in the input w does not have a matching opening bracket.
Hence, A rejects. On the other hand, if the right endmarker is reached, then A has to
make sure that no unmatched opening brackets are left. In order to do this, it scans the
entire tape from the right to the left and, if it finds an opening bracket which has not
be rewritten, then it rejects. Otherwise, A accepts the input.

In [57] the equivalence between 2-LAs and PDAs has been revisited considering
descriptional complexity aspects. In particular, the following results have been ob-
tained:

• Each 2-LA can be transformed into an equivalent PDA with an exponential in-
creasing in the size. This gap cannot be reduced. Furthermore, the transforma-
tion preserves determinism.

• Conversely, each PDA can be transformed into an equivalent 2-LA of polynomial
size. Even in this case, it is possible to preserve determinism.

Concerning determinism in d-limited automata for d > 2, it is not hard to see that
the language L = { anbnc | n ≥ 0 } ∪ { anb2nd | n ≥ 0 } is accepted by a deterministic
3-LA, which first completely traverses the input from left to right and then, depending
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on the last input letter, starts to rewrite one or two bs for each a. However, L is not
a deterministic context-free language. Hence, each 2-LA accepting it must be nonde-
terministic. As a matter of fact, Hibbard proved the existence of an infinite hierarchy
of deterministic languages: for each integer d > 2 there is a language accepted by a
deterministic d-LA which cannot be accepted by any deterministic (d − 1)-LA. This
result is also true for d = 2 but, in this case, it is a consequence of the fact that 1-limited
automata accept only regular languages [67]. Descriptional complexity aspects of such
equivalence have been recently investigated in [58].

Another characterization of context-free languages of a similar flavor has been ob-
tained by Wechsung [68, 69]: for a fixed constant d, the machine is allowed to rewrite
each input cell only in the last d visits.1 Even in this case, for each d ≥ 2 context-free
languages are characterized, while for d = 1 the model is trivially equivalent to finite
automata. The set of palindromes can easily be accepted in this model in a determin-
istic way with d = 2, just implementing the trivial algorithm which compares pair by
pair the symbols in the corresponding positions starting from the left and right ends
of the input and moving toward the middle. Any d-limited automaton accepting this
language must perform nondeterministic choices, for each d ≥ 2 [18]. On the other
hand, the language { anbn+mam | n,m ≥ 0 } cannot be accepted in a deterministic way
by the model proposed by Wechsung, for any d ≥ 2 [54].

Finally, it is worth mentioning shortly what happens if we replace the constant d by
a function d(n) of the input length. In this case, both the models proposed by Hibbard
and by Wechsung are equivalent to one-way auxiliary pushdown automata working in
space d(n), namely standard pushdown automata extended with a d(n) space bounded
work tape [70].

Probably the reader has noticed that even if this paper is devoted to recent trends in
descriptional complexity of formal languages, in the above discussion on limited au-
tomata descriptional complexity aspects are very restricted. Actually, the investigation
of descriptional complexity of limited automata has been an opportunity for revisit-
ing and inspecting several aspects of these devices which are not so well known. We
think that these devices deserve further investigation. Concerning their descriptional
complexity, two points under investigations are the cost of the simulation of d-limited
automata by pushdown automata for d > 2 and the cost of the simulations of d-limited
automata in the unary case. It is worth remembering that, since unary context-free lan-
guages are regular, in the unary case the cost of the simulation of d-limited automata by
finite automata should be also considered. Furthermore, both in the general and in the
unary cases, descriptional complexity of d-limited automata with that of (d−1)-limited
automata could be also compared, for each d > 2.

1Wechsung introduced the term return complexity to indicate the maximum number of visits to a
cell beginning with the first rewriting of its initial content. Hence, he considered machines with fixed
return complexity d. In contrast, the maximum number of visits to a cell ending with the last rewriting
of its content, namely the measure related to limited automata investigated by Hibbard, was called dual
return complexity.
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Both the notions proposed by Hibbard and Wechsung characterize, in different and
in some sense dual ways, context-free language. Is it possible to obtain a more general
notion of “limited automata” which captures these two notions, without increasing the
computational power?

3 More Topics
We selected only a few topics in Section 2 which are close to our recent research in-
terests. Of course, there are many other important “hot” topics that have recently been
studied. We briefly mention some of them with references to the literature. However,
our list is clearly far from being complete.

Unary Languages. The investigation of descriptional complexity in the case of unary
languages shows many different bounds with respect to the general case. Tools and
properties from number theory have extensively been used. In the previous section we
mentioned the unary case several times, see in particular Figure 1 (Right).

Restricted Pushdown Automata. Not so many results concerning descriptional com-
plexity of PDAs have been obtained. In the introduction we mentioned the non-
recursive trade-off between context-free grammars, or equivalently PDAs, for regular
languages and finite automata, and the double exponential gap between deterministic
PDAs accepting regular languages and finite automata. Both conversions have been
investigated in the unary case obtaining optimal recursive bounds [59, 55].

Two other connections between PDAs and regular languages have been recently
considered with respect to descriptional complexity: PDAs with pushdown stores of
constant height [1, 8]; languages consisting of all pushdown contents in accepting
computations of PDAs [46, 10] (these languages are known to be regular [14]).

Two-Way Pushdown Automata. While for finite state automata the possibility of
moving the input head in both directions does not increase the computational power,
it is well-known that this is not true in the case of PDAs. For example, the non-
context-free language { anbncn | n ≥ 0 } can easily be accepted by a two-way pushdown
automaton. Up to now, the computational power of these models has not been clearly
identified. For example, it is unknown if they are equivalent to linear bounded au-
tomata and if the nondeterministic variant is more powerful than the deterministic one.
Recent descriptional complexity results concerning these models and taking into ac-
count, besides the size of the devices, the number of the head reversals and the number
of turns of the pushdown store, have been presented in [48].

Cellular Automata and Iterative Arrays. These devices are often studied as mas-
sively parallel language acceptors [33]. The investigation of their descriptional com-
plexity originates in [43, 45]. It turned out that in many cases the resources given to
cellular automata in connection with massively parallelism yield non-recursive trade-
offs. In the recent papers [35, 47] it is shown that even very little additional resources
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have a big impact on the necessary size of the devices. For example, adding sublin-
early more time obtaining time complexities strictly in between real time and linear
time, adding dimensions, allow the communication cell to perform a few nondeter-
ministic steps, or increase the number of bits that may be communicated to neighbor-
ing cells slightly, allows arbitrary savings in the size of the descriptions of the arrays
which cannot be bounded by any computable function. So the challenging tasks are to
identify resources that can be added to or modifications of cellular automata that yield
recursive trade-offs. Examples are the decompositions and generalized presentation
of languages gained in language expressions with operations under which the family
in question is closed, the so-called operational state complexity (see [34] for results
on one-way cellular automata). Another approach which bounds the number of cells
available can be found in [44].

References
[1] Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: The size-cost of Boolean opera-

tions on constant height deterministic pushdown automata. Theoret. Comput. Sci. 449,
23–36 (2012)

[2] Berman, P.: A note on sweeping automata. In: International Colloquium on Automata,
Languages and Programming (ICALP 1980). LNCS, vol. 85, pp. 91–97. Springer (1980)

[3] Bordihn, H., Holzer, M., Kutrib, M.: Determinization of finite automata accepting sub-
regular languages. Theoret. Comput. Sci. 410, 3209–3222 (2009)

[4] Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(2), 149–
158 (1986), errata: [5]

[5] Chrobak, M.: Errata to “Finite automata and unary languages”. Theoret. Comput. Sci.
302, 497–498 (2003)

[6] Domaratzki, M., Salomaa, K.: Lower bounds for the transition complexity of NFAs. In:
Mathematical Foundations of Computer Science (MFCS 2006). LNCS, vol. 4162, pp.
315–326. Springer (2006)

[7] Ellul, K.: Descriptional Complexity Measures of Regular Languages. Master’s thesis,
University of Waterloo, Canada (2004)

[8] Geffert, V., Bednárová, Z., Mereghetti, C., Palano, B.: Boolean language operations on
nondeterministic automata with a pushdown of constant height. In: Computer Science
Symposium in Russia (CSR 2013). LNCS, vol. 7913, pp. 100–111. Springer (2013)

[9] Geffert, V., Guillon, B., Pighizzini, G.: Two-way automata making choices only at the
endmarkers. In: Language and Automata Theory and Applications (LATA 2012), LNCS,
vol. 7183, pp. 264–276. Springer (2012)

[10] Geffert, V., Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: A direct construction
of finite state automata for pushdown store languages. In: Descriptional Complexity of
Formal Systems (DCFS 2013). LNCS, vol. 8031, pp. 90–101. Springer (2013)

14



[11] Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary
automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)

[12] Geffert, V., Pighizzini, G.: Two-way unary automata versus logarithmic space. Inform.
Comput. 209, 1016–1025 (2011)

[13] Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: De-
scriptional complexity of machines with limited resources. J. UCS 8, 193–234 (2002)

[14] Greibach, S.A.: A note on pushdown store automata and regular systems. Proc. Amer.
Math. Soc. 18, 263–268 (1967)

[15] Gruber, H., Holzer, M.: On the average state and transition complexity of finite languages.
Theoret. Comput. Sci. 387, 155–166 (2007)

[16] Gruber, H., Holzer, M., Kutrib, M.: On measuring non-recursive trade-offs. J. Autom.,
Lang. Comb. 15, 107–120 (2010)

[17] Hartmanis, J.: On non-determinancy in simple computing devices. Acta Inform. 1, 336–
344 (1972)

[18] Hibbard, T.N.: A generalization of context-free determinism. Inform. Control 11, 196–
238 (1967)

[19] Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In: Scientific
Applications of Language Methods, pp. 1–58. Imperial College Press (2010)

[20] Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata –
A survey. Inform. Comput. 209, 456–470 (2011)

[21] Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata: Origins
and directions. Theoret. Comput. Sci. 412, 83–96 (2011)
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