
The Logic in Computer Science Column
by

Yuri Gurevich

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

When is A=B?∗

Anja Gruünheid
ETH Zürich

ganja@inf.ethz.ch

Donald Kossmann
ETH Zürich

donaldk@ethz.ch

Besmira Nushi
ETH Zürich

nushib@inf.ethz.ch

Abstract

Most database operations such as sorting, grouping and computing joins
are based on comparisons between two values. Traditional algorithms as-
sume that machines do not make mistakes. This assumption holds in tra-
ditional computing environments; however, it does not hold in several new
emerging computing environments. In this write-up, we argue the need for
new resilient algorithms that take into account that the result of a compar-
ison might be wrong. The goal is to design algorithms that have low cost
(make few comparisons) yet produce high-quality results in the presence of
errors.

∗This write-up is based on a talk given at the University of Washington and Mi-
crosoft Research, Redmond, in August 2013. The slides of that talk are online at
http://systems.ethz.ch/talks.

http://research.microsoft.com/
gurevich@microsoft.com


1 Introduction

When we think about computers, we typically assume that they are dumb and
make no mistakes. Our software methodology, complexity theory, and algorithmic
design are based on these two assumptions. What happens if we drop one of these
assumptions? What happens if computers start making mistakes occasionally;
even simple mistakes such as getting a comparison between two integers wrong?
Will we need new algorithms or are the existing algorithms good enough?

There are a number of research trends that make it worthwhile to think about
error-prone computers. The first trend is the emergence of crowdsourcing and
the development of hybrid systems that involve machines and humans to compute
tasks that neither machines nor humans are capable of computing alone. [4] gives
an overview of such systems. Since these systems rely on human input, some of
the computations carried out by these systems may be error-prone and algorithms
that are designed for these systems need to take this fact into account.

A second trend is the development of new, low-energy processors that trade
power for accuracy. That is, these processors might occasionally get an opera-
tion wrong in exchange for much lower power consumption. Examples for such
designs are [1].

Third, with the advent of Big Data technologies, we are automating an in-
creasing number of tasks based on previous experience. Recommendation sys-
tems such as those deployed by Amazon as part of their online shop improve with
an increasing amount of data. Putting it differently, these systems might make
poor recommendations if only little data is available.

Based on these observations, we believe that it is worthwhile to revisit exist-
ing algorithms and start thinking about how to design algorithms for computer
systems that occasionally do make errors. It turns out that an algorithm that is
optimal in the traditional (error-free) computational model may perform poorly in
the presence of error. As an example, this paper reports on some simple obser-
vations that we made when studying QuickSort. Furthermore, this paper reports
on some observations on how to group objects in a robust way if the machine oc-
casionally misclassifies two objects. These two examples indicate that we might
have to rethink complexity theory and algorithm design. As of now, the results of
this paper are anecdotal, and we have not been yet able to develop a new theory.
The main purpose of this paper is to raise the issue.

The remainder of this paper is organized as follows: Section 2 studies sort-
ing. Section 3 gives an example of how errors impact algorithms for grouping or
clustering objects. Section 4 contains conclusions and related work.



2 Example 1: QuickSort
To show how the presence of errors may impact algorithm design, let us start
with a discussion of QuickSort. [7] gives a more general discussion of sorting
algorithms in the presence of errors. Here and in the remainder of this paper,
we assume a computational model in which the computer system might make an
error when executing a comparison; however, the logic of the algorithm is exe-
cuted correctly. Furthermore, we assume that comparisons are the most expensive
operation. This computational model matches nicely hybrid systems in which
comparisons are crowdsourced (e.g., [10]).

QuickSort is generally perceived as one of the best algorithms for sorting.
However, what makes QuickSort great for traditional, error-free computing sce-
narios, hurts QuickSort in the presence of mistakes. The following example shows
why. The task is to sort the following sequence of numbers:

7, 24, 2, 13, 51

Let us assume that QuickSort chooses 7 as the pivot element of the first partition-
ing phase and let us furthermore assume that the machine gets all comparisons
right in the first partitioning, except for the comparison 7 < 51. As a consequence,
the result of the first iteration of QuickSort are the following two partitions:

2, 51

24, 13

Even if the machine is perfect and makes no further mistakes, the best possible
outcome to sort the sequence of numbers is:

2, 51, 7, 13, 24

The key observation is that one wrong comparison (misclassifying 7 < 51) re-
sulted in three errors in the final result (misclassifying 13 < 51 and 24 < 51 in
addition to 7 < 51). The reason is that the QuickSort algorithm aggressively ex-
ploits the transitivity of the < relation so that errors propagate. There are many
different notions of error and the most appropriate definition depends on the utility
function of the application. We use the number of misclassified comparisons in
the final result here and in [7] because it is easy to formalize and it is a metric that
is highly relevant for many applications that involve sorting or ranking data.

It turns out that it is difficult to fix QuickSort. The most natural way to improve
the quality of the result is to avoid misclassifications by repeating the computa-
tion. That is, recomputing 7 < 51 several times and then do a majority vote or
accept based on a theshold. That will increase the number of comparisons by a



TransactionId Customer Purchase
1 Jane $ 1000
2 Bob $ 500
3 Jane $ 100
4 Jane $ 50

Table 1: Example Transactions

constant factor (i.e., the number of times each comparison is made) so that Quick-
Sort continues to be in theO(n∗log(n)) complexity class. The problem is that even
with a high number of attempts, the probability of a misclassification is not zero.
So, we can never expect perfection with QuickSort. Also, the impact of a wrong
comparison grows with the size of the sequence in our particular error model that
counts the misclassifications in the final result: In the worst case, it is n/2 with
n the length of the sequence. The question then is how to best invest additional
comparisons and whether new algorithms are more appropriate than traditional
algorithms to achieve high quality for lower cost. [7], for instance, shows that
iteratively running BubbleSort might be a better a way to invest additional com-
putation for better quality. That is, do an intial sorting with QuickSort and then
run BubbleSort once or several times on the result to improve the quality of the
result, thereby exploiting that BubbleSort has O(n) complexity if the data is sorted
already and the affects of wrong comparisons are always local in BubbleSort.

3 Example 2: Grouping

3.1 Vote Graphs
As a second example of how the cost/quality trade-off of error-prone computer
systems impacts algorithm design, consider the list of transactions of Table 1.

The task is to compute the total purchase of each customer; i.e., $ 1150 for Jane
and $ 500 for Bob. With SQL, this task can be specified using a simple GROUP
BY clause. Depending on the number of customers, the number of transactions,
and the skew in the distribution of transactions to customers, modern database sys-
tems choose one of three alternative ways to compute this grouping of transactions
by customer: sorting, hashing, or nested-loops. For the purpose of this example,
we will use the nested-loop variant and discuss alternative ways to compare the
customer fields of two transactions in order to decide whether they belong to the
same customer. Note that hashing and sorting are often more efficient variants, but
they suffer from the same kind of error propagation as the QuickSort algorithm in
the previous section.



(a) No Conflict (b) With Conflict

Figure 1: Example Vote Graphs for Table 1

Similarly to Section 2, we assume that the comparison of two customer names
is the only error-prone and costly operation. Thus, the goal is to minimize the
number of such comparisons and minimize the impact of mistakes made when
computing these comparisons. Figure 1 illustrates one possible approach to do
that. It depicts two example Vote Graphs. Such Vote Graphs capture the results of
all comparisons carried out between the customer names of the four transactions.
The nodes of a Vote Graph are transactions. Edges of a Vote Graph represent
the results of comparing the customer names of two transactions. The weight of
an edge indicates how often the comparison returned that results; the sign of the
weights of an edge indicates the result of the comparison (true or false).

The Vote Graph of Figure 1a, for instance, indicates that we compared three
times the customer names of Transactions 1 and 2 (i.e., “Jane = Bob”) and all
three times the answer was “false” (which happens to be the correct answer in this
example). Furthermore, it shows that all seven comparisons between the customer
names of Transactions 1 and 3 were positive (which happens to be correct, too, in
this example).

3.2 Decision Functions
If minimizing comparisons between two customer names is our main objective
(e.g., because they need to be crowdsourced or need to be executed repeatedly on
an error-prone machine), then it makes sense to exploit the transitivity of the =

relation. So, if the grouping algorithm asks whether Transactions 1 and 4 belong
to the same customer in Figure 1a, the answer is true and can be inferred from
Figure 1a without actually looking at the customer names of these transactions.

Transitivity and anti-transitivity can be applied in a straightforward way in the
example of Figure 1a. The situation becomes trickier in Figure 1b because in that
Vote Graph there is a conflicting edge: The negative edge between Transactions 1
and 4 conflicts with the positive edges, “1-3” and “1-4”.

In the presence of error-prone computations, conflicts in the Vote Graph are
inevitable. Therefore, it is important to tolerate these errors and make decisions
even in conflict situations. In the example of Figure 1b, it is evident that the



system should conclude that the same customer carried out Transactions 1 and 4
because the weight of the edges “1-3” and “3-4” is much higher than the weight of
the negative edge “1-4”. In general, we propose the use of a decision function that
given a Vote Graph, determines whether two nodes are the same, not the same, or
if additional comparisons are needed in order to make the decision.

There are many decisions functions conceivable and [8] contains a more de-
tailed discussion of which properties a decision function should have. For in-
stance, a decision function that always says that two nodes are the same is obvi-
ously not good because it will result in poor quality. Likewise, a decision function
that always says “I do not know” is not good because it will result in high cost as it
would induce additional comparisons. For the discussion in this paper, let us con-
sider a decision function that is inspired by work on combining scoring functions
[5] and that we call the MinMax function.

The MinMax function considers all positive and negative paths between two
nodes. A positive path is a path that involves only edges with weight greater than
0. A negative path is a path that has exactly one negative edge. Paths with more
than one negative edge are ignored because neither equality nor inequality can be
inferred from them. For each path, the MinMax function computes a score: For
a positive path, the score is the minimum of the weights of the edges of the path.
For a negative path, the score is defined as the minimum of the absolute weights
of the edges (i.e., the weight of the only negative edge is multiplied by -1 for this
purpose). The intuition behind this scoring function is that a path is as strong as
its weakest link. Another way to interpret the minimum is that it implements a
conjunction (i.e., ∧) along the path, thereby interpreting each edge as a predicate.

Continuing the example of Figure 1b, the score of the positive path ’1-3-4’ is
5 while the score for the negative path ’1-4’ is 1.

After computing the scores for all positive and negative paths, the MinMax
decision function aggregates these scores into a single positive score, pScore, and
a single negative score, nScore. pScore is the maximum of the scores of all pos-
itive paths. If there is no positive path, then pScore = 0. Analogously, nScore is
the maximum of the scores of all negative paths. If there is no negative path, then
nScore = 0. These values represent the maximum impact that a positive respec-
tively negative path can have within an entity.

Finally, the MinMax function uses a threshold q in order to form a final deci-
sion based on the positive and negative scores; e.g., q = 3. That is, if the positive
score is 3 or more higher than the negative score then the MinMax function de-
cides that the two nodes are the same. More formally, the decision part of MinMax
is defined as follows.



Figure 2: Interesting MinMax Example

f (r1, r2) =


Yes, pS core(r1, r2) − nS core(r1, r2) ≥ q
No, nS core(r1, r2) − pS core(r1, r2) ≥ q
Do-not-know, otherwise

3.3 Observations
[8] contains a full discussion of this grouping / clustering use case under uncer-
tainty with a series of experiments. The important observation and conclusion of
[8] is that maintaining a Vote Graph and doing inference with the MinMax func-
tion is much better than doing pairwise comparisons in terms of both quality and
cost in order to compute any database operation that is based on equality (e.g.,
joins, grouping, or clustering). In terms of cost, it is better because of its infer-
ence capability; in terms of quality, it is better because it detects inconsistencies
and tries to keep the whole graph consistent. The designers of traditional database
systems would never consider keeping such a Vote Graph because it is in tradi-
tional computing environments it is always cheaper (and as reliable) to recompute
a comparison than to infer its result from a Vote Graph.

[8] discusses some of the properties of the MinMax decision function. It turns
out that it is not transitive and an example can be seen in Figure 2 with a threshold
of 3. In that example, the MinMax rules that “X = Y” (pScore=3, nScore=0) and
“Y = Z” (pScore=5, nScore=2)), but it rules that “X = Z” is unknown (pScore=3,
nScore=2). There are many conceivable decision functions; many which indeed
are transitive. For instance, it would be possible to define a decision function by
applying the MinCuts algorithm on every instance of the Vote Graph (i.e., after
computing every comparison). This decision would indeed be transitive, but its
implementation would have high computational cost. [8] proposes the MinMax
function because it can be implemented in a highly efficient way.

For the purpose of designing good and robust algorithms for error-prone com-
puter systems, however, we would like to make another important, somewhat sur-
prising observation. Going back to Figure 2 and using the MinMax function, the
best way to conclude that “X = Z” is not by comparing “X = Z” directly. Doing
so would require, in the best case, five calls to the comparison function. Instead,



investing into the “Y = Z” edge is more promising: In the best case, two compar-
isons that confirm that indeed “Y = Z” are sufficient to finally conclude with the
MinMax function that “X = Z”.

4 Conclusion and Related Work
The two examples showed some phenomena that may occur if computer systems
make mistakes. The examples show that an optimal algorithm for the traditonal
(error-free) computing model might result in poor quality when run on error-prone
computer systems. It is an open question of what the optimal algorithms to sort
a sequence of numbers and to group/cluster objects in the presence of errors are.
The main message that we would like to illustrate with these examples is that error
should be part of the equation. That is, we need to do two things:

• We need to design algorithms that scale (with the problem size) and tolerate
errors. (Traditional algorithms were designed only to scale.)

• We need to optimize for both cost and quality. (Traditional algorithms were
designed to minimize cost only.)

In other words, algorithm designers face two kinds of optimizations:

• Given a problem (e.g., sorting), a problem instance (e.g., 1000 integers), an
error model (e.g., 1% of the comparisons are wrong uniformly) and a budget
(e.g., 1 million comparisons), maximize the quality of the result.

• Given a problem, a problem instance, an error model, and quality require-
ments, minimize the cost.

At the moment, we do not even have good abstractions to characterize computa-
tional error and result quality.

The examples used in this paper were derived from typical database operators
(i.e., sorting, joins, and grouping). Recently, there have a number of papers in the
database community that studied how to enhance database with crowdsourcing, a
special form of uncertain computation; e.g., [9, 11, 6, 3] to name just a few. It turns
out that the topic of error-prone computing has been studied in other communi-
ties as well and not only in the context of crowdsourcing. For instance, Busse and
Buhmann studied the information gain of a comparison in alternative sorting algo-
rithms [2]. Schulze developed a method to carry out elections, called the Schulze
method, which is similar to the MinMax decision function [12]. Furthermore, de-
signers of distributed systems have been developing fault-tolerant algorithms for
decades. The fact that several communities are looking into fault-tolerant com-
putation makes it even more important to develop a theory that incorporates error
and result quality in algorithm design and complexity.



References
[1] L. Avinash, K. K. Muntimadugu, C. C. Enz, R. M. Karp, K. V. Palem, and C. Piguet.

Algorithmic methodologies for ultra-efficient inexact architectures for sustaining
technology scaling. In J. Feo, P. Faraboschi, and O. Villa, editors, Conf. Computing
Frontiers, pages 3–12. ACM, 2012.

[2] L. M. Busse, M. H. Chehreghani, and J. M. Buhmann. The information content in
sorting algorithms. In ISIT, pages 2746–2750. IEEE, 2012.

[3] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for top-k and
group-by queries. In W.-C. Tan, G. Guerrini, B. Catania, and A. Gounaris, editors,
ICDT, pages 225–236. ACM, 2013.

[4] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing systems on the world-
wide web. Commun. ACM, 54(4):86–96, 2011.

[5] R. Fagin and E. L. Wimmers. A formula for incorporating weights into scoring rules.
Theor. Comput. Sci., 239(2):309–338, 2000.

[6] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answer-
ing queries with crowdsourcing. In Sellis et al. [13], pages 61–72.

[7] A. Gruenheid and D. Kossmann. Cost and quality trade-offs in crowdsourcing. In
R. Cheng, A. D. Sarma, S. Maniu, and P. Senellart, editors, DBCrowd, volume 1025
of CEUR Workshop Proceedings, pages 43–46. CEUR-WS.org, 2013.

[8] A. Gruenheid, D. Kossmann, S. Ramesh, and F. Widmer. Crowdsourcing entity
resolution: When is a=b? Technical Report No. 785, Department of Computer
Science, ETH Zurich, Sep 2012.

[9] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Demonstration of
qurk: a query processor for humanoperators. In Sellis et al. [13], pages 1315–1318.

[10] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. Human-powered
sorts and joins. PVLDB, 5(1):13–24, 2011.

[11] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina, N. Polyzotis, and
J. Widom. Deco: A system for declarative crowdsourcing. PVLDB, 5(12):1990–
1993, 2012.

[12] M. Schulze. A new monotonic, clone-independent, reversal symmetric, and
condorcet-consistent single-winner election method. Social Choice and Welfare,
36(2):267–303, 2011.

[13] T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, editors. Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011. ACM, 2011.


	Introduction
	Example 1: QuickSort
	Example 2: Grouping
	Vote Graphs
	Decision Functions
	Observations

	Conclusion and Related Work

