
 !""#$%& '($)# *+,-. &' /0/1 223 /4/5/671 8!&# 70/0

©9
*!:'2#;& +<<'9%;$%'& (': ,)#':#$%9;" -'=2!$#: .9%#&9#

The Logic in Computer Science Column

by

Yuri Gurevich

Microsoft Research

One Microsoft Way, Redmond WA 98052, USA

gurevich@microsoft.com

Please do submit your articles for publication in this column. The editor is

especially interested to hear about the philosophy and foundations of your

subject. You don’t have to be high-brow; exercise your sense of humor and

try to make your article accessible to the general computer science audience.

The Tower-of-Babel Problem,

and Security Assessment Sharing

Andreas Blass∗ Yuri Gurevich Efim Hudis†

Abstract

The tower-of-Babel problem is rather general: How to enable a collab-

oration among experts speaking different languages? A computer security

version of the tower-of-Babel problem is rather important. A recent Mi-

crosoft solution for that security problem, called Security Assessment Shar-

ing, is based on this idea: A tiny common language goes a long way. We

construct simple mathematical models showing that the idea is sound.

∗Math. Dept, University of Michigan, Ann Arbor, MI 48109, USA, ablass@umich.edu.

Partially supported by NSF grant DMS-0653696
†Microsoft, One Microsoft Way, Redmond, WA 98052, USA, efimh@microsoft.com

 !"#$% &' ()(!" "# $% $&'()*%

 !"

And the Lord said: “If, as one people with one language, this is how they

began to act, then nothing that they may propose to do is out of their reach.

Let’s then go down and confound their speech, so that they shall not

understand one another.”

— Genesis 11

1 Introduction

The Biblical story of the Tower of Babel is well known. What does it tell us?

A religious teacher may use it to teach humility. For an atheist historian it may

be just a folktale from old and more primitive times. A philosopher may draw

our attention to the fact that even a common language does not guarantee mutual

understanding. But the story raises a rather general logico-engineering problem.

Consider a group of experts with no common language for any two of them. Can

they collaborate to achieve a practical goal? If yes then how? In real world, one

may seek the help of translators. It may be impossible to find a super-expert that

speaks all the languages. It may be too expensive to employ many translators.

The tower-of-Babel problem is quite ubiquitous. Think of medical experts. An

otolaryngologist may not understand a podiatrist. Imagine that on your way to a

skiing area you meet a fellow skier who tells you that he is a medical doctor. And

then you have a skiing accident. You hit a tree, and you are in pain. Suddenly

you see your new acquaintance. “Doctor, help!" you shout. The doctor comes.

“Sorry," he says, “I can’t help. I am a psychiatrist1.”

Another version of the tower-of-Babel problem is related to distributed

databases. The information about one object may be spread over a large num-

ber of local databases. Checking for consistency, infection, etc. may be hard and

may require expensive transactions. View local databases as experts observing

different features of objects in question.

This brings us to the computer security version of the tower-of-Babel problem

that we have been working upon. Consider the computer system of an enterprise.

It has many automated experts that are supposed to make the computer system

secure. Some of these experts, e.g. firewalls, are primarily security experts but

others, e.g. routers, assume security duties on top of their primary duties.

There are network edge security experts related to network security, for exam-

ple, firewalls, routers, gateways, spam experts, virus experts, network intrusion

detection experts, and data leak protection experts also known as network extru-

sion detection experts. There are host experts that monitor individual computers,

for example, anti-malware and anti-spyware experts, host firewalls, host intrusion

1We did not invent the story, but we do not have a reference.

 !" #$%%"&'()* &!" +, -.

 !"

and extrusion protection systems, so-called health management experts, registry

monitors (specific to Windows operating system). There are identity management

experts. For example, you may have an expert monitoring password changes. On

later Windows systems you have Active Directory and an expert monitoring the el-

evation of user privileges. Various database and application experts have security

duties as well.

These experts speak different languages and may be produced by different

vendors. The problem is how to integrate the information available to them.

A natural approach to working from raw data up to usable security assess-

ments is to design a “super-expert” that would collect and analyse data (low level

security events) from various sources (sensors, logs) and would deliver the results

in a useful form. There are quite a number of such products on the market, and

they are known under different names, especially under the names of Security In-

formation Management (SIM), Security Event Management (SEM), and Security

Information and Event management (SIEM). Arcsight Enterprise Security [1] won

the 2010 "Best SIM/SIEM solution" award of SC Magazine [4]. In these products,

the super-expert usually works directly with the raw data. As a result, the experts

described above (firewalls, anti-virus experts, registry monitors, etc.) have very

little analysis to do; it is the analysis of the super-expert that is all important. Since

different vendors use different event data formats and different delivery methods,

there are attempts to standardize those, in particular by MITRE Corporation [3].

The SAS team was skeptical about such super-expert approaches. You need

to collect low level security information, lug it all to one central place, and try

to analyze it there. This is a large overhead in lugging and keeping such a huge

amount of data. Even more importantly, it is hard to program the analysis of that

pile of data.

Efim Hudis, the third author of this article, suggested a different approach to

the tower-of-Babel problem, an approach combining two ideas. The first idea is

to make real use of the original experts, having them evaluate the security impli-

cations of what they observe. To motivate his second idea, notice that different

languages are not necessarily disjoint. There may be terms understood by all. For

example, all physicians understand the terms “male” and “female.” And maybe

the experts can learn a few common terms. The second idea is that a tiny language

suffices for many practical purposes. The approach may not solve some variants

of the tower-of-Babel problem. But it works for the computer security version of

the problem.

That tiny-language approach to the computer security problem was imple-

mented in Microsoft as a Security Assessment Sharing system (SAS). The effort

was part of the work on Forefront line of security products [2]. Andreas Blass and

Yuri Gurevich consulted for the SAS group.

While SAS had been implemented, the group sought to confirm that the tiny

 !"#$% &' ()(!" "# $% $&'()*%

 !"

communication language of SAS is helpful. One way to get such a confirmation

is to construct a mathematical model of SAS and check whether communication

helps in that model. This is especially useful when the available experimental data

is insufficient. The model should capture the crucial ideas but be simple enough

to allow calculations. More ambitiously, the model could be a simple playground

helping to fine-tune the SAS architecture. The two logician consultants worked on

the modeling problem and tried various approaches, in particular machine learn-

ing. At the end, it was not logic or artificial intelligence but old-fashioned proba-

bility theory that worked.

In the next section, we quickly describe SAS. The rest of the article is devoted

to simple mathematical models of SAS.

Acknowledgment

The authors are deeply grateful to all the SAS group members. Special thanks go

to Yossi Malka, Zakie Mashiah, and Shai Rubin.

2 Security Assessment Sharing

Imagine that you (and your group) are responsible for the computer security of

an enterprise. You have under your control various automated computer experts

— network edge firewalls, anti-virus software, network intrusion prevention sys-

tems, email security experts, and so on. Some of them are responsible for the

network edge security, some of them monitor various events inside the enterprise.

How do you reconcile their reports? For example, what does it mean that “virus

was detected and cleaned” on a computer? Is it normal or should you worry?

How to compare “cleaned virus” from an anti-malware expert, “abnormal traffic”

from a firewall and “failed login” from a Windows Security log? What is more

urgent, three “failed login” events on one computer or one “cleaned virus” event

on another computer?

Further, as threats become more sophisticated, even individual experts move

from black-and-white reports (“virus found”) to shades-of-grey reports (“poten-

tial malicious activity detected”). It addition to telling you that the recently down-

loaded and executed code may be malicious, a host intrusion system may also

give you the probability that the code is malicious. The intrusion system does not

know whether the code is malicious or not; it just detected some suspicious as-

pects of the execution. But how are you supposed to deal with such shade-of-grey

responses?

It would by highly desirable to have an automated system that combines and

correlates the reports of the automated security experts in order to produce an

 !" #$%%"&'()* &!" +, -.

 !"

overall assessment of system security, in a form useful to system administrators.

The Security Assessment Sharing system was built to do just that.

The main idea behind SAS is to have a tiny language that all the experts under-

stand. An expert that detects a security problem uses this language to broadcast to

the other experts a security assessment with some very limited information about

what it found. The other experts can take that assessment into account when mak-

ing their own decisions as to whether they see a problem in their, presumably

different, areas of concern. The hope is that even very restricted communication

of this sort may improve the experts’ ability to detect problems, and to avoid issu-

ing “false positive” warnings when no problem actually exists. The central issue

addressed in the present paper is the extent to which extremely limited languages

may prove useful. This issue is a reflection, in an unusual context, of a familiar

concern of mathematical logic, namely the trade-off between two desirable prop-

erties of languages: simplicity and expressive power.

SAS is designed to be used by various enterprises and institutions. In the cur-

rent version of SAS, a security assessment issued by an expert can be represented

(for the purposes of this article) as a record with the following fields.

• Object The expert specifies the object whose security is assessed. Cur-

rently there are two kinds of objects: users (identified by the identity number

of their account with the enterprise or institution), and computers (identified

by unique network-addressable name).

• Problem class The expert specifies the problem with the object. That is

done on a very high level. Currently this field has just two possible values:

“compromised" and “vulnerable."

• Severity The expert assesses the severity of the problem. Currently there

are three levels of severity: “high,” “medium,” and “low”.

• Confidence The expert indicates how confident it is that it sees a problem.

Currently there are three confidence levels: “high,” “medium,” and “low.”

• Time This field gives the issue time and the validity period (e.g. 12 hours)

of the assessment.

• Issuer The expert issuing the assessment is specified.

• Immediate influencers The set of valid assessments that the issuer took

into account producing the present assessment.

Thus the language is very limited. In particular, the confidence field carries

exactly two bits of information. Indeed, in addition to “high,” “medium” and

“low,” the expert has a fourth option: to issue no alert at all.

 !"#$% &' ()(!" "# $% $&'()*%

 !!

In general, one could expect better overall results if more information is com-

municated, but there is a cost, namely that very different sorts of experts, produced

by different vendors, need to understand each other’s communications. In partic-

ular, as far as confidence is concerned, there should be a common understanding

among the experts of what high, medium and low confidence levels mean. Here is

one natural criterion. Among the occasions when an expert issues a warning with

high (resp. medium, resp. low) confidence, there should actually be a problem at

least 90% (resp. 50%, resp. 10%) of the time. We shall later see some difficul-

ties with this criterion, but a priori it seems a reasonable specification of what the

levels of confidence should mean.

Remark 1. The field “Immediate influencers” needs an explanation. Imagine that

expert 1 issues an assessment that provokes expert 2 to issue an assessment that

provokes expert 1 to issue a stronger assessment and so on. It makes sense to

avoid such self-reinforcing loops. To this end, an expert E ignores all assess-

ments a where E itself appears as an immediate influencer; a is not an immediate

influencer of any assessment of E. This simple trick does not remove all self-

reinforcing loops but it does remove the most obvious and most damaging loops.

The real-world SAS provides numerous services. We mention here only some

of them.

• SAS defines the notion of risk so that every incident is assigned a numerical

risk value. SAS orders the current incidents in the risk order.

• SAS has a hierarchy of data abstraction levels, from raw data (session logs,

activity logs, scans, and the like) at the bottom to the list of incidents in

the risk order at the top. Investigators (e.g. SAS administrators or auditors)

may be satisfied with just the list of incidents. If not, they my look at the

assessments issued. If this is not enough and they want to see more detailed

information, they may dig further until they arrive at raw data.

• Note that the best place to respond to a security incident is often different

from the best place to detect it. For example, a firewall may detect a com-

puter worm in the outgoing traffic, but the best place to take care of the

worm is elsewhere. SAS helps investigators to find right places to respond

to security incidents.

In the rest of this paper, we address the fundamental question underlying the

SAS system: Can very limited communication between experts substantially im-

prove their ability to discern real problems from innocent, random fluctuations?

 !" #$%%"&'()* &!" +, -.

 !"

3 Results

We approach the question of the value of limited communication by analyzing

some very simple models of the experts’ activity and of the system under obser-

vation. This analysis leads to several conclusions.

First, even very limited communication between experts can really help.

Second, perhaps surprisingly, the 90%-50%-10% specification of the confi-

dence levels will not work in realistic situations. It needs to be replaced with a

description that takes into account the costs of false positives and of false nega-

tives, and we analyze a model that incorporates this cost-based approach.

Third, an expert’s decision whether to issue an alert should not, in general,

be based on a simple threshold. Even for quite simple probabilistic relationships

between the state of the system and the expert’s observations, there might, for

example, be two thresholds, such that an alert should be issued just when the

observation lies between the two.

4 First Model: Threshold Probability

In this section, we describe the first of our simplified models of SAS. We make

the following assumptions:

• The system is in one of two states, “normal” and “bad,” which we abbreviate

as N and B. The a priori probability of being in the bad state is p.

• The system has two observable properties, X and Y , each of which is a real-

valued random variable.

• When the system is in the normal state, X and Y are independent and both

have the probability density function ϕ(x), whose mean is 0. (In many of

our calculations, ϕ will be taken to be a normal distribution, but the general

theory will apply to arbitrary ϕ.)

• When the system is in the bad state, X and Y are independent and both have

the probability density function ϕ(x − 1), whose mean is 1.

• There are just two experts. One observes X and the other observes Y . By

abuse of language, the experts are named X and Y , respectively.

• Each expert knows p and ϕ.

• Each expert’s goal is to tell whether the probability (given what it observes

or otherwise learns) of the bad state is > 1
2

or not. (So each expert outputs

just one bit.)

 !"#$% &' ()(!" "# $% $&'()*%

 !"

We first consider what each expert will do in isolation. Afterward, we shall

consider what Y will do if, in addition to observing the random variable Y , it has

already heard X’s one-bit output. Comparing the two, we intend to describe the

effect of this one bit of communication.

Remark 2. The assumption that there are only two states is essentially a conven-

tion; we lump together all non-normal states as a single “bad” state. We think of

the a priori probability p of B as being quite small; 10−4 is a plausible value. But

the theory presented in this section doesn’t depend on whether p is small.

Remark 3. The assumption that there are just two experts is an oversimplifica-

tion. That their observed random variables have mean 0 in the normal state and

mean 1 in the bad state is just an affine scaling of these random variables. That

the probability density functions are the same except for a translation is another

oversimplification, as is the assumption that, in both the normal and the bad state,

X and Y are independent. This last assumption, of independence in each state, is

often called a “naïve Bayes” assumption.

To avoid possible confusion, we emphasize that our assumptions about inde-

pendence are about the conditional distributions of X and Y , conditional on either

the normal or the bad state. Conditional on either of the two states, X and Y

are independent. It does not follow that they are independent in the absence of

conditioning. The easiest way to see this is to imagine that the distribution ϕ is

concentrated in a very small interval around the mean. Then when X is near 0 it is

extremely likely that Y is also near 0, and similarly with 1 in place of 0. So there

is a very strong correlation between the unconditioned X and Y .

Remark 4. There is another simplification in our assumption that each expert out-

puts just one bit, rather than the two bits involved in distinguishing the four options

of high, medium, and low confidence alerts plus not issuing an alert. Our use of 1
2

in the last assumption amounts to the 50% threshold mentioned above for medium

confidence alerts. Thus, our one-bit alert corresponds to “high or medium” in the

more detailed picture.

Remark 5. We shall compute what expert X should do when it observes a partic-

ular value x for the random variable X. Our description above says that it should

produce an alert if and only if the conditional probability P(B|X = x) > 1
2
. Strictly

speaking, this doesn’t make sense, since it refers to a conditional probability where

the condition X = x is an event of probability zero (assuming ϕ is a continuous

distribution). We shall use the convention that the expert really doesn’t see the

exact value X = x but rather an infinitesimal interval of length dx around x, whose

probability is ϕ(x) dx in the normal state, ϕ(x − 1) dx in the problem state, and

therefore

((1 − p)ϕ(x) + pϕ(x − 1)) dx

 !" #$%%"&'()* &!" +, -.

 !"

overall. In most of the formulas below, the dx factors would cancel at the end, so

we can safely just omit them.

For more rigor, one could begin with finite intervals of length ∆x instead of

infinitesimal ones and later pass to a limit as ∆x → 0+. For even greater rigor, one

could invoke the Radon-Nikodym theorem to define (almost everywhere) proba-

bilities conditioned on the value of a continuous random variable. All this rigor,

however, would affect only the length, not the results, of what follows.

We compute, using Bayes’s theorem, the condition for expert X to issue an

alert when it observes the value x for its random variable X. For brevity, let us

write simply x to denote the event X = x; similarly, let us write N (resp. B) to

denote the event that the system is in the normal state N (resp. the bad state B).

We use P for probability and (later) E for expectation. Then an alert should be

issued just in case

1

2
< P(B|x) =

P(B) · P(x|B)

P(B) · P(x|B) + P(N) · P(x|N)
=

pϕ(x − 1)

pϕ(x − 1) + (1 − p)ϕ(x)
.

Clearing fractions and simplifying, we find that the criterion for issuing an alert is

ϕ(x − 1)

ϕ(x)
>

1 − p

p
.

A simple but plausible distribution ϕ is the Gaussian normal distribution. If

we think of the deviation of X from its mean 0 or 1 (in the normal or bad state,

respectively) as arising from an accumulation of small, random fluctuations, then

the Gaussian distribution is a standard model for such fluctuations. (This way of

viewing the fluctuations might also support our simplifying assumption that the

probability distributions for X in the system’s two states differ only by a trans-

lation.) We therefore pause to calculate the criterion for issuing an alert in the

special case where ϕ is Gaussian.

Using the usual notation σ2 for the variance, we have

ϕ(x) =
1

√
2πσ

e−x2/2σ2

.

In this case,
ϕ(x − 1)

ϕ(x)
simplifies to exp((2x − 1)/2σ2), and therefore the criterion

for issuing an alert simplifies to

x >
1

2
+ σ2 ln

(

1 − p

p

)

.

Returning to the general case, let us now calculate the criterion for expert Y

to issue an alert if, in addition to observing Y = y, it has heard an alert from

 !"#$% &' ()(!" "# $% $&'()*%

 !"

expert X. We assume that X’s decision to produce this alert was based merely on

its observation of a value x for its random variable X, exactly as in the preceding

discussion. That is, in addition to Y = y, expert Y now knows also that

ϕ(X − 1)

ϕ(X)
>

1 − p

p
.

We abbreviate this last event as C (for “communication”). The criterion for Y to

issue an alert in this situation is computed exactly as above (with Y and y in place

of X and x), except that all probabilities are now conditioned on C (in addition to

any conditioning in the previous calculation).

Thus, instead of p = P(B), we will now have p′ = P(B|C), and in place of

ϕ(x) = P(x|N), we will now have ϕ′(y) = P(y|N ∧ C). We calculate these new

quantities as follows.

For p′, we use Bayes’s theorem again:

p′ = P(B|C) =
P(B) · P(C|B)

P(B) · P(C|B) + P(N) · P(C|N)
=

p · P(C|B)

p · P(C|B) + (1 − p) · P(C|N)
.

It follows that

1 − p′ =
(1 − p) · P(C|N)

p · P(C|B) + (1 − p) · P(C|N)
,

and therefore
1 − p′

p′
=

(1 − p) · P(C|N)

p · P(C|B)
.

Next, we calculate ϕ′(y).

ϕ′(y) = P(Y = y|N ∧C) =
P((Y = y) ∧C|N)

P(C|N)

=
P(Y = y|N) · P(C|N)

P(C|N)
= P(Y = y|N) = ϕ(y).

The third equality here uses the assumption that X and Y are independent given N

(and that the event C depends only on X).

A similar calculation shows that, when everything is conditioned on C, ϕ(x−1)

should also become simply ϕ(y− 1) in the earlier formulas. Thus, the criterion for

Y to issue an alert has become

ϕ(y − 1)

ϕ(y)
>

1 − p

p
·
P(C|N)

P(C|B)
.

In the special case of Gaussian ϕ(x), the criterion for Y to issue an alert after

hearing X do so is

y >
1

2
+ σ2 ln

(

1 − p

p
·
P(C|N)

P(C|B)

)

.

 !" #$%%"&'()* &!" +, -.

 !

Since X is more likely to issue an alert when the system is in the bad state than

when it is in the normal state, i.e., since P(C|N) < P(C|B), our formulas imply

that Y’s threshold for issuing an alert is lower as a result of X’s alert. This is, of

course, what one would expect.

All the preceding calculations have been based on the assumption that an ex-

pert should issue an alert if, given what it knows, the probability of the bad state

B exceeds 1/2. Very similar calculations apply if the probability threshold, the

conditional probability of B that should cause an alert, is set to some other value

τ. We do not repeat the calculation but merely record, for use in the next section,

the result in the case of a single expert. An alert should be issued if

ϕ(x − 1)

ϕ(x)
>

1 − p

p

τ

1 − τ
.

In the case of a normal distribution ϕ with standard deviation σ, this criterion

means

x >
1

2
+ σ2 ln

(

1 − p

p

τ

1 − τ

)

.

5 Computation for First Model

We record in Table 1 some numerical results for various levels of confidence.

That is, we vary the parameter τ introduced above, namely the probability such

that, when an expert thinks the probability of B exceeds τ, it issues an alert. For

simplicity, we have assumed in all cases the same a priori probability of B, namely

10−4 and the same probability distribution ϕ, namely a Gaussian normal distribu-

tion with standard deviation 1/2. The value of p was chosen to be rather realistic.

The value of σ was chosen so that the conditional distributions of X in the normal

and bad states, namely ϕ(x) and ϕ(x − 1) differ significantly (so that an expert

observing X has a reasonable chance to tell what the state is) but do not differ so

completely as to make the expert’s job trivial. We now describe and discuss what

is in the table.

τ .01 .10 .30 .50 .70 .90

threshold 1.654 2.253 2.591 2.803 3.014 3.352

P(alert|N) 4.71 E−4 3.30 E–6 1.10 E–7 1.04 E–8 8.26 E–10 1.02 E–11

P(N|alert) .980 .844 .600 .400 .228 .074

P(alert|B) 9.55 E–2 6.10 E–3 7.33 E–4 1.56 E–4 2.80 E–5 1.28 E–6

P(no alert|B) .904 .994 .999 .99984 .99997 .999999

Table 1: Computations with p = 10−4 and σ = 1/2

 !"#$% &' ()(!" "# $% $&'()*%

 !"

Each column describes what happens for a particular value of τ, given in the

first row. As we go from left to right, τ increases, so the expert is becoming less

and less sensitive. (We omitted a few columns from our original calculations, for

τ = .05, .20 and .80, to fit the table on the page.)

The second row gives the threshold value t such that the expert will issue an

alert if and only if the observed value of X exceeds t. Here we already see a

perhaps unanticipated phenomenon. Even though the conditional distribution of

X in the bad state B is centered at 1, the threshold t is greater than 1, even for the

most sensitive expert (τ = .01). In other words, the expert will not issue an alert

unless it observes a value of X quite some distance out in the tails of the normal

distributions. This is not a good situation, since it means that the bad state will

usually produce no alert; we shall see later just how bad things are.

Once one sees these large thresholds in the table, it is not difficult to explain

why they occur. Suppose, for example, that the expert observes a value x of X that

is slightly bigger than 1. This value is considerably farther out in the tail of the

distribution ϕ(x) for the normal state than in the tail of the distribution ϕ(x − 1)

for the bad state. Thus, the observed x is far more likely to occur in the bad state

than in the normal state. Nevertheless, the a priori probability of the bad state is

so low that even this strong observational evidence in favor of B does not raise its

probability (as computed by Bayes’s theorem) above τ.

The third row of the table gives the conditional probability of an alert being

issued when the state is normal. The numbers here are extremely small, because it

is very unlikely, in the normal state, for X to get so large as to exceed the thresholds

in the preceding row. These small numbers are reassuring; when the system is in

the normal state, the expert is unlikely to raise a false alarm.

The fourth row describes the situation from the reverse point of view: Given

that an alert was issued, what is the probability that it was a false alarm, i.e., that

the state is N? Here we see some unpleasantly large numbers, at least in the left

half of the table where the expert is quite sensitive. But these are to be expected.

In the first column of numbers, for example, the expert is trying to issue an alert

when it thinks the probability of B is at least .01, so we should expect a large

number of false alarms. In fact, one might naïvely expect about 99% of the alarms

to be false. The actual situation is slightly better, only 98%, because the situations

where the expert issues an alarm includes a few where the probability of B is

significantly more than τ.

The fifth row gives the conditional probability that an alert is issued given that

the state is bad, and the final row gives the complementary probability that the

expert fails to warn us when the state is bad. This last row shows a very serious

problem with the present approach. Even in the column where τ = .01, so the

expert is trying to react to even a slight probability of B, it misses more than 90%

of the bad situations. Roughly speaking, even a very mild limitation on the false

 !" #$%%"&'()* &!" +, -.

 !"

positives causes the expert to miss most of the real positives.

6 Second Model: Cost

The problem detected in the preceding section can be traced to an excessive fear

of false positives. We insisted that, when an alert is issued, there should be at least

a certain probability (50% in our original model, 1% in the first scenario of Ta-

ble 1) that there really is a problem. We did not permit a lot of false alarms. That

decision reduced the sensitivity of the experts to the point where they ignored too

many cases where there really was a problem. By strictly limiting the rate of false

positives, we produced too many false negatives. Of course, this phenomenon is

not unexpected — there is always a trade-off between allowing a lot of false pos-

itives (by acting with high sensitivity) and allowing a lot of false negatives (by

acting with low sensitivity). What was unexpected is the magnitude of the prob-

lem. Even in the case of low-confidence alerts, of which up to 90% are allowed

to be false positives (and indeed even with 98% false positives), we still had too

many false negatives, too many cases where a real problem did not lead even to a

(very) low-confidence alert.

In this situation, we cannot expect to simultaneously reduce false positives and

false negatives as much as we might like. We are stuck with a trade-off. To make

an optimal choice in such a situation, we must ask what are the costs for false

positives and for false negatives (or at least what is the ratio of the two costs). We

therefore introduce the following model, similar to the one used above, but taking

into account the ratio of the cost of a false negative to the cost of a false positive.

For the sake of simplicity in the ensuing calculations, we develop this model

only in the case of normal distributions. We shall, after a while, introduce a bit

more generality by allowing the variance of the normal distribution to be different

in the normal and bad states. But first, let us consider the simplest cost-based

model, where the two variances are equal, so the two distributions have the form

ϕ(x) and ϕ(x − 1), as in our first model.

We begin, as before, by considering the action of an expert acting alone. Our

assumptions are therefore as follows.

• There is one expert; it observes a random variable X.

• The system is in one of two states, bad (B) with a priori probability p and

normal (N) with a priori probability 1 − p.

• In state N, the distribution of X is normal with mean 0 and standard devia-

tion σ.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

• In state B, the distribution of X is normal with mean 1 and standard deviation

σ.

• The cost of a false positive is 1, and the cost of a false negative is c.

Remark 6. The value 1 for the cost of a false positive is just a normalization.

Whatever the actual cost of a false positive may be, we use that as our unit of cost,

and we measure the cost of a false negative relative to it. Thus, independently of

any choice of units, c represents the ratio between the cost of a false negative and

the cost of a false positive.

Our model regards all false positives as having the same cost (and similarly

for false negatives). A more realistic model might take into account that a single

false positive costs very little but a large number r of false positives might cost

considerably more than r times the cost of a single one, especially if r gets so

large that the system administrator starts to simply ignore alerts, thereby making

the security system useless.

Remark 7. In the description of p and 1 − p, the phrase “a priori” should be

understood as meaning only “before X is observed.” In particular, if other experts

had been present, p could depend on information obtained by our X expert from

listening to others before observing X.

We want to find a threshold value t such that, by issuing an alert if and only if

X > t, the expert minimizes the expected cost of errors.

For any value of t, the resulting probability of a false positive is

(1 − p) ·
(

1 − Φ
(

t

σ

))

.

Here Φ is the cumulative probability distribution function for the standard normal

distribution

Φ(s) =
1
√

2π

∫ s

−∞
e−u2/2du.

So in the formula for the probability of a false positive, the factor (1 − p) is the

probability of state N, and the second factor is the conditional probability, given

N, that X > t, i.e., that an alert is issued.

Similarly, the probability of a false negative is

p · Φ
(

t − 1

σ

)

.

Therefore, the expected cost is

E(C) = (1 − p) ·
(

1 − Φ
(

t

σ

))

+ cp · Φ
(

t − 1

σ

)

.

 !" #$%%"&'()* &!" +, -.

 !"

We want to find the value of t that minimizes this expected cost, so we differentiate

E(C) with respect to t, holding c, p, and σ constant, and we set the derivative equal

to 0.

0 = −(1 − p)Φ′
(

t

σ

)

1

σ
+ cpΦ′

(

t − 1

σ

)

1

σ
.

Note that the derivative Φ′ of the cumulative probability distribution function is

the probability density function

Φ′(s) =
1
√

2π
e−s2/2.

Substituting this into the previous equation, cancelling some common factors, and

bringing all the exponential factors to the left and everything else to the right, we

get

exp

(

−
t2

2σ2
+

(t − 1)2

2σ2

)

=
cp

1 − p
.

Taking logarithms of both sides and simplifying, we get

t =
1

2
− σ2 ln

(

cp

1 − p

)

. (1)

It is worth noting that the relative cost c and the a priori probability p of the

bad state occur only in the combination cp/(1 − p). This is the ratio between the

expected cost of never issuing an alert and the expected cost of always issuing an

alert.

Both for comparison with the previous model and for future calculations of

what happens when a second expert is present, we need the conditional probability

of the bad state B given that an alert is issued. In other words, when an alert is

issued, what is the probability that it is correct? To compute this, we again use

Bayes’s theorem.

Let A be the event that an alert is issued. Then

P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|N)P(N)
. (2)

Here P(B) and P(N) are the a priori probabilities p and 1 − p, respectively. The

conditional probability P(A|B) is the probability that, when the system is in state

B, the value of X is larger than the threshold t computed above, so

P(A|B) = 1 − Φ
(

t − 1

σ

)

where t is to be obtained from equation (1) above. Similarly,

P(A|N) = 1 − Φ
(

t

σ

)

.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

Substituting into equation (2), we get

P(B|A) =
p ·

(

1 − Φ
(

t−1
σ

))

p ·
(

1 − Φ
(

t−1
σ

))

+ (1 − p) ·
(

1 − Φ
(

t
σ

)) . (3)

This equation together with the formula (1) for t gives the probability that, when

an alert is issued, there really is a problem (as a function of p, σ, c).

We now consider the following scenario. There are two agents, one observing

a random variable X as above and one observing Y . We assume that Y , like X, is

normally distributed, with mean 0 in the normal state and mean 1 in the bad state,

and we assume that these two distributions have the same standard deviation σ′,

which may, however, differ from the standard deviation σ of X (in either state).

We also allow the cost ratio c′ to be different for Y than it was for X. (Concerning

the a priori probability p′ of B that expert Y should use, see below.) The X expert

sets its threshold t as in (1) above, and, after observing X, either issues an alert or

doesn’t. The other expert knows, before observing Y , whether the first expert has

issued an alert, and it is allowed to use this information in setting its own threshold

and, after observing Y , deciding whether to issue an alert.

As in our first model, we make the naïve Bayes assumption that X and Y are

conditionally independent given B and are also conditionally independent given

N. (Unconditionally, they are of course correlated.) Under this assumption, the

analysis becomes easy; in fact, we have already done all the work.

Equation (1) determines the X expert’s threshold t. Substituting this value for

t in equation (3), we get the probability that there is a problem when the X expert

issues an alert. If the X expert in fact issues an alert and, according to our scenario,

the Y expert knows about it before observing Y , then this probability, from (3), is

what the Y expert should use as its a priori probability p′ of B. Then the Y expert

sets its threshold t′ according to equation (1) with p′, c′, σ′ in place of p, c, σ.

Similarly, if the X expert does not issue an alert, then the Y expert would know

this and set its a priori probability p′ equal to the probability of B given that the X

expert issues no alert. Just as above, that probability is given by Bayes’s theorem:

P(B|¬A) =
P(¬A|B)P(B)

P(¬A|B)P(B) + P(¬A|N)P(N)
=

p · Φ
(

t−1
σ

)

p · Φ
(

t−1
σ

)

+ (1 − p) · Φ
(

t
σ

) .

As before, the t here is to be taken from equation (1), and this conditional proba-

bility serves as the p′ (in conjunction with c′, σ′) in the calculation of the threshold

t′ to be used by the Y expert when the X expert declines to issue an alert.

 !" #$%%"&'()* &!" +, -.

 !!

7 Computation for Second Model

Table 2 shows computations for our second, cost-based model. As before, we

assume that the a priori probability of B is 10−4 and that the distribution ϕ is

Gaussian with standard deviation 1/2. The three columns of the table differ in the

assumed ratio c between the cost of a false negative and the cost of a false positive.

We now explain the entries in the table.

cost ratio 100 10 2

ALONE

threshold .788 .932 1.032

P(no alert | B) .199 .392 .551

P(alert | N) 8.12 E–4 9.69 E–5 1.82 E–5

E(cost) 2.79 E–3 4.89 E–4 1.28 E–4

HELPED

high threshold .889 .990 1.070

low threshold .357 .385 .400

P(no | no, B) .328 .484 .610

P(no | yes, B) .005 .007 .008

P(no alert | B) .069 .194 .340

P(yes | no,N) 1.88 E–4 3.74 E–5 1.82 E–5

P(yes | yes,N) 7.67 E–2 6.16 E–2 5.47 E–2

P(alert | N) 2.51 E–4 4.33 E–5 1.04 E–5

E(cost) 9.41 E–4 2.38 E–4 7.84 E–5

expected cost

of no alerts 1 E–2 1 E–3 2 E–4

Table 2: Computations with p = 10−4 and σ = 1/2, varying costs

The four lines under the heading “ALONE” describe what happens when a

single expert is active. The threshold row gives the value t such that an alert is

issued whenever the observed value of the expert’s random ariable exceeds t. The

next two rows give the conditional probabilities that the expert incurs a cost, either

for issuing no alert when the state is B (a cost of c) or for issuing an alert when the

state is N (a cost of 1). The last row in this section of the table gives the overall

expected cost incurred by this expert.

The rows under the heading “HELPED” refer to the situation where another

expert has already observed X and decided (alone) whether to issue an alert. Our

expert knows, before observing its random variable Y , what X decided, and this

information is taken into account in determining the appropriate threshold for Y ,

the threshold called t′ in the preceding section.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

The first two rows under “HELPED” give the new higher threshold to be used

when X issued no alert and the new lower threshold to be used when X did issue

an alert.

The row marked “P(no | no, B)” gives the conditional probability that Y will

issue no alert, given that X issues no alert and the actual state is B. Similarly, the

next row, “P(no | yes, B)” gives the conditional probability that Y will issue no

alert, given that X does issue an alert and the state is B. These two are combined

in the next row to give the probability that Y errs by issuing no alert when the

state is B. The next three rows do the analogous computations leading up to

the probability that Y errs by issuing an alert when the state is N. Finally, all

this information is assembled to compute the expected cost incurred by Y in this

situation.

We note that the expected costs in the “helped” situations are significantly

lower than in the corresponding “alone” situations. The one bit of information

that Y received from X was genuinely useful.

The last row of the table lists, for comparison, the expected costs that would

be incurred if the experts never issued alerts. This row is included mainly to

prevent false optimism caused by the rather small numbers in both of the previous

“E(cost)” rows. The expected costs in these situations are always low, simply

because the probability of B is low.

8 Third Model: Cost with Different Variances

In this final section, we generalize the model from Section 6 by allowing the

variance of X to be different in the normal and bad states. We write ν2 and β2

for these two variances, still assuming Gaussian distributions centered on 0 in the

normal state and on 1 in the bad state. We shall carry out the computations only

for the case of a single expert. The case of a second expert, who knows whether

the first has issued an alert, could be handled by the same methods as in Section 6,

but the formulas would become considerably more complicated.

Our objective is to determine, for each value x of the random variable X, what

the expert should do if it observes X to have this value. The expert has two choices,

namely to issue an alert or not. Either way, it incurs a cost if the decision is wrong,

and it should make its decision so as to minimize the expected cost.

Previously, we described the decision process in terms of a threshold t; the

expert should issue an alert if and only if the observed value x of X exceeds t. But

this assumption is implausible when the standard deviations β and ν differ. For an

extreme example, suppose β is very small (say 0.01) and ν is large, say 10. Then if

the observed value of X is 3, it is much more likely that the system is in the normal

state (and the deviation of X from its mean 0, only 0.3 standard deviations, arose

 !" #$%%"&'()* &!" +, -.

 !"

randomly) than that the system is in the bad state (and that the deviation of X from

its mean 1, 200 standard deviations, arose randomly). Thus, although (depending

on details of p and c), it may be reasonable to issue an alert when X = 1, it is

not reasonable to do so when X = 3. In other words, the threshold idea is too

simple-minded.

Suppose the expert observes a value x of X. We calculate the expectation of

the cost when it issues an alert and when it doesn’t issue an alert. If the expert

issues an alert, then it incurs a cost of 1 if the state is in fact normal (so the alert

was a false positive). The probability of this is, by Bayes’s theorem,

P(N |X = x) =
(1 − p) 1√

2πν
exp(−x2/2ν2)

(1 − p) 1√
2πν

exp(−x2/2ν2) + p 1√
2πβ

exp(−(x − 1)2/2β2)
. (4)

If, on the other hand, the expert declines to issue an alert, then it incurs a cost of

c if the state is in fact bad (so the absence of an alert was a false negative). The

probability of this is

P(B|X = x) =
p 1√

2πβ
exp(−(x − 1)2/2β2)

(1 − p) 1√
2πν

exp(−x2/2ν2) + p 1√
2πβ

exp(−(x − 1)2/2β2)
. (5)

Note that the denominators in (4) and (5) are the same (and they are the sum of

the two numerators, as the two conditional probabilities are complementary).

So the expert should issue an alert if and only if the probability in (4) is less

than (or equal to) c times that in (5). (In the “equal to” case, the cost is the same

whatever the expert does; in the future, we shall omit mention of this case.)

After canceling the common denominator of (4) and (5) and canceling the√
2π factors, we find that the expert should issue an alert when

(1 − p)
1

ν
exp(−x2/2ν2) < cp

1

β
exp(−(x − 1)2/2β2).

Bringing all the exponentials to the left and everything else to the right, we get

exp

(

−
x2

2ν2
+

(x − 1)2

2β2

)

<
cpν

(1 − p)β
.

(Note that again we have c and p only in the combination cp/(1 − p).) Taking

logarithms and transposing, we get the quadratic (except when ν = β) inequality

x2

(

1

2β2
−

1

2ν2

)

− x
1

β2
+

1

2β2
− ln

(

cpν

(1 − p)β

)

< 0. (6)

We consider several cases, depending on the properties of the coefficients in this

inequality.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

Case 1: ν = β

Then inequality (6) is linear and simplifies to

x >
1

2
− β2 ln

(

cp

1 − p

)

.

So the expert should issue an alert if and only if the observed value of X ex-

ceeds the threshold indicated here. This confirms what we computed in Section 6.

When the two variances are equal, the correct choices for the expert are given by

a threshold, as was assumed earlier.

Before turning to the remaining cases, where the inequality (6) is quadratic,

it will be useful to clear fractions and to introduce a notation for the discriminant

(or, in some authors’ terminology, half of the discriminant). We multiply (6) by

2β2ν2 to get

(ν2 − β2)x2 − 2ν2x + ν2 − 2ν2β2 ln

(

cpν

(1 − p)β

)

< 0 (7)

as the criterion for when to issue an alert. To abbreviate formulas, we introduce

the notation l for the logarithm that occurs here and D for the discriminant.

l : = ln

(

cpν

(1 − p)β

)

,

D : = ν4 − (ν2 − β2)ν2(1 − 2β2l)

= ν2[ν2 − ν2 + β2 + (ν2 − β2)2β2l] = ν2β2[1 + 2(ν2 − β2)l].

With these notations, we turn to the remaining cases.

Case 2: β < ν and D < 0.

Because the discriminant is negative, the quadratic expression on the left side

of (7) never vanishes, so its sign is the same for all x. For large x it’s positive, as

β < ν, and so it’s positive for all x. Thus, the inequality (7) never holds. In Case 2,

therefore, the expert should never issue an alert.

Intuitively, this means that, no matter how much an observed value x looks

like what one would expect in the bad state, even if x is the very center 1 of the

distribution of X given B, it is nevertheless more reasonable to assume that this x

arose as a random fluctuation in the normal state.

In the boundary case, where β < ν and D = 0, the result is the same except

that there is one value of x for which the left side of (7) equals 0. For this x, the

expert can decide arbitrarily whether to issue an alert or not; the expected cost is

the same either way. For simplicity, we include this boundary case in Case 2, with

the instructions to never issue an alert.

Case 3: β < ν and D > 0.

 !" #$%%"&'()* &!" +, -.

 !

Now the quadratic function on the left side of (7) has two real zeros, namely

t± =
ν2 ±

√
D

ν2 − β2
.

The inequality (7) holds if and only if x is between these two (since the quadratic

function is still positive for large positive or negative values of x). So the expert

should issue an alert if and only if t− < x < t+.

Had we allowed β , ν in Section 6, where we assumed that the appropriate

action for our expert is to issue an alert if and only if X exceeds some threshold,

the calculation would have produced the threshold t−. We omitted that calculation

because, as we explained above and as we now see in detail, the assumption of a

single threshold is unjustified. Nevertheless, t− is somewhat relevant as a thresh-

old; it indicates the value of X immediately above which an alert should be issued.

But not all X values above t− should produce alerts; there is a second threshold,

t+, above which alerts should not be issued.

Case 4: β > ν and D < 0

Now the left side of (7) is negative for large x and therefore, since it never

vanishes, for all x. That is, inequality (7) always holds, and therefore an alert

should always be issued.

Case 5: β > ν and D > 0

There are two roots t± exactly as in Case 3, but the quadratic expression on

the left of (7) is negative for large positive and negative x and is positive when x

is between the two roots. Therefore, an alert should be issued if and only if either

x < t− or x > t+.

In view of the importance of the sign of D in the case distinctions above, it

may be useful to reformulate the inequality D < 0 as follows. First, directly from

the definition of D, we obtain, since ν2 and β2 are positive, that D < 0 if and only

if 1 + 2(ν2 − β2)l < 0. If ν > β then this becomes, in view of the definition of l,

1

ν2 − β2
< −2 ln

(

cpν

(1 − p)β

)

= ln

(

(1 − p)β

cpν

)2

,

or, equivalently,

exp

(

1

ν2 − β2

)

<

(

(1 − p)β

cpν

)2

.

If, on the other hand, ν < β, then when we divide by ν2 − β2, the inequalities get

reversed, and so D < 0 is equivalent to

exp

(

1

ν2 − β2

)

>

(

(1 − p)β

cpν

)2

.

 !"#$% &' ()(!" "# $% $&'()*%

 !"

References

[1] Arcsight, http://www.arcsight.com/, viewed Mar 14, 2010

[2] Microsoft Forefront homepage, http://www.microsoft.com/forefront/en/

us/default.aspx, viewed May 9, 2010.

[3] MITRE, http://www.mitre.com/, viewed on May 14, 2010.

[4] SC Magazine, “Best SIM/SIEM solution,” March 2, 2010,

http://www.scmagazineus.com/best-simsiem-solution/article/

164132/, viewed May 14, 2010.

