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This installment of the concurrency column is devoted to a piece by Jorge

Perez, which offers a survey of recent results on the expressiveness and de-

cidability of core higher-order process calculi. In such calculi, processes can

be passed around in communications, in very much the same way as functions

can be applied to other functions in the λ-calculus.

A celebrated result of Sangiorgi’s shows that, in the π-calculus, the higher-

order paradigm can be encoded in the first-order one—that is, process passing

can be expressed in terms of channel passing. However, as the results in this

column clearly indicate, there are still many open questions in the study of

the expressiveness of higher-order communication in concurrency theory. I

hope that this contribution by Jorge Perez will spur further developments in

this research area.

As the readers of this column will certainly know, on March 20, 2010, the

concurrency-theory community lost one of its true giants, Robin Milner. An

obituary for Robin is available on the EATCS web site. This installment of the

Concurrency Column is an example of Robin’s legacy to our research commu-

nity and is dedicated to his memory.
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Abstract

Higher-order process calculi are formalisms for concurrency in which

processes can be passed around in communications. Higher-order (also

known as process-passing) concurrency is often presented as an alternative

paradigm to the first order (or name-passing) concurrency of the π-calculus

for the description of mobile systems. This paper is a survey of recent results

on the expressiveness and decidability of core higher-order process calculi.

1 Introduction

Context and Motivation. The challenging nature of concurrent systems is no

longer a novelty for computer science. In fact, by now there is a consolidated

understanding on how concurrent behavior departs from sequential computation.

As a result of the sustained progress on the formulation of foundational theories

of concurrent processes, notions such as interaction and communication are now

widely accepted to be intimately related to computing at large. Given the wealth

of abstract languages, theories, and application areas that have emerged from this

progress, it is fair to say that concurrency theory is no longer in its infancy.

This development of concurrency theory coincides with the transition towards

global ubiquitous computing we witness nowadays. Supported by a number of

technological advances —most notably, the availability of cheaper and more pow-

erful processors, the increase in flexibility and power of communication networks,

and the widespread consolidation of the Internet— global ubiquitous computing

(GUC in the sequel) is a broad term that refers to computing over massively

networked, dynamically reconfigurable infrastructures that interconnect hetero-

geneous collections of computing devices. As such, systems in GUC represent

the natural evolution of traditional distributed systems, and distinguish from these

in aspects such as mobility, network-awareness, and openness.

Nowadays we find mobility in devices that move in our physical world while

performing diverse kinds of computation (mobile phones, laptops), as well as in
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objects travelling across communication networks (SMSs, XML files, runnable

code, software agents). Advances in bandwidth growth and network connectiv-

ity have broaden the range of feasible communications; as a result, communica-

tion objects not only exhibit now an increasingly complex structure but also an

autonomous nature. Examples of the evolution in the nature of communication

objects include the online distribution of digital content (music, video, e-books)

and forms of service mobility in service-oriented architectures.

In general, mobility cannot abstract from the locations of the moving entities

(computing devices, communication objects). A location can be as concrete as the

wireless network a smartphone connects to, or as abstract as the domains in which

wide area networks are usually partitioned. Interestingly, there is a reciprocal re-

lationship between locations and mobility, as (the behavior of) a mobile entity and

its surrounding environment (determined by its location) might have direct influ-

ence on each other. This can be seen, for instance, in in the websites that change

depending on the country in which they are accessed, and in the actions of net-

work reconfiguration triggered by high peaks of user activity. This phenomenon,

sometimes referred to as network-awareness, embodies a notion of structure that

not only underlies mobile behavior but that often determines it.

Systems in GUC are said to be open for they are built as large collections

of loosely coupled, heterogeneous components. Such components might not be

known a priori; in general, an open system should allow to add, suspend, update,

relocate, and remove entire components transparently. Open systems are seldom

meant to terminate; as such, their overall behavior must abstract from changes on

the local state of its components, and in particular from their malfunction. Hence,

forms of dynamic system reconfiguration are most natural within models of open

systems. Openness is closely related to mobility and network-awareness for it

could occur that the structure of the system is reconfigured as a result of the inter-

actions of mobile components. An example of this is a running component which

disconnects from one location and later on reconnects to some other location.

The emergence of GUC therefore represents a challenge for computer science

in general, and for concurrency theory in particular. As we have seen, such envi-

ronments feature complex forms of concurrent behavior that go way beyond the

(already complex) interaction patterns present in traditional distributed systems.

The challenge therefore consists in the formulation of foundational theories to

cope with the features of modern computing environments.

Higher-Order Concurrency. We believe that in this context higher-order pro-

cess calculi have much to offer. These are calculi in which processes can be

passed around in communications. Higher-order (or process-passing) concur-

rency is often presented as an alternative paradigm to the first-order (or name-
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passing) concurrency of the π-calculus [20] for the description of mobile systems.

Higher-order process calculi emerged first as concurrent extensions of functional

languages (see, e.g., [2, 24]). In fact, these calculi are inspired by, and formally

close to, the λ-calculus, whose basic computational step—β-reduction— involves

term instantiation. Later on, as a way of studying forms of code mobility and mo-

bile agents, a number of process calculi extended with process-passing features

were put forward. The basic operators of these calculi are usually those of CCS

[17]: parallel composition, input and output prefix, and restriction. Replication

and recursion are often omitted as they can be encoded. Early proposals of higher-

order process calculi are CHOCS [32], Plain CHOCS [34], and the Higher-Order

π-calculus [27]; more recent ones include Homer [11] and the Kell calculi [31].

Important studies on the theory of higher-order process calculi have been car-

ried out by Sangiorgi [27, 29]. In fact, in what is probably the most prominent

result for higher-order process calculi, Sangiorgi showed that in the context of

the π-calculus, the higher-order paradigm is representable into the first-order one.

This is achieved by means of a translation in which the communication of a pro-

cess is modeled as the communication of a pointer that can activate as many copies

of such a process as needed. Crucially, such a translation is fully-abstract with

respect to barbed congruence, the form of contextual equivalence used in con-

currency theory. Hence, the behavioral theory from the first-order setting can be

readily transferred to the higher-order one. By demonstrating that the higher-order

paradigm only adds modeling convenience, this result greatly contributed to con-

solidate the π-calculus as a basic formalism for concurrency. It also appears to

have contributed to a decline of interest in formalisms for higher-order concur-

rency. In our view, Sangiorgi’s representability result was so conclusive at that

time that it indirectly put forward the idea that his translation could be adapted

to represent every kind of higher-order interaction. This misconception seems to

persist nowadays, even if it has been shown that for higher-order process calculi

with little more than process communication, translations into some first-order

language are unsatisfactory or do not exist.

We believe that process-passing communication is closely related to aspects of

mobility, network-awareness, and openness as discussed for GUC. The communi-

cation of objects with complex structure can be neatly represented in higher-order

process calculi by the communication of terms of the language. As in the first-

order case, extensions of higher-order process calculi with constructs for network-

awareness are natural; process communication adds the possibility of describ-

ing richer and more realistic interaction patterns between different computation

loci. Furthermore, higher-order communication allows to consider autonomous,

self-contained software artifacts —such as components, services, or agents— as

first-class objects which can be moved, executed, manipulated. This allows for

clean and modular descriptions of open systems and their behavior. As a result,
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higher-order communication arises in abstract languages for GUC in the form of

specialized constructs that go beyond mere process communication. Instances of

such constructs include forms of localities that lead to involved process hierar-

chies featuring complex communication patterns; operators for process reflection

that allow to observe and/or modify process execution at runtime; sophisticated

forms of pattern matching or cryptographic operations used over terms represent-

ing messages or semi-structured data.

The kind of higher-order interactions underlying the behavior of the special-

ized constructs casts doubts on the convenience of stuyding their properties by

means of first-order representations. Based on this insight, we shall argue that

foundational studies for higher-order process calculi must be undertaken directly

on them and exploit their peculiarities. This is particularly critical for those issues

that have remained unexplored in the theory of higher-order concurrency. Here we

shall concentrate on two of such issues, namely expressiveness and decidability,

two closely interwoven concerns in process calculi at large.

This Survey. We overview recent expressiveness and decidability results for

HO, a core calculus for higher-order concurrency. In fact, HO features

only the strictly necessary operators to obtain higher-order concurrency. In par-

ticular, HO lacks name-passing as in the π-calculus. This makes HO a

convenient framework to carry out a direct study of expressiveness and decidabil-

ity concerns in the higher-order setting. We first introduce HO and review

its basic theory (Section 2). Then, in Section 3, we consider a fragment of the

calculus which features limited forwarding in communications. We discuss the

main properties of such a fragment, and describe an extension of it with passiva-

tion, a specialized construct that is useful to represent dynamic reconfiguration as

in GUC scenarios. Finally, in Section 5, we move on to consider polyadic and

synchronous communication in the higher-order setting. We study both issues in

suitable extensions of HO. Section 5 concludes with some final remarks.

Origin of the Results. This survey collects selected results frommy PhD Thesis

[26]. Such results are based on joint works with Cinzia Di Giusto, Ivan Lanese,

Davide Sangiorgi, Alan Schmitt, and Gianluigi Zavattaro, which have been previ-

ously published as [14, 7, 15].

2 A Core Calculus for Higher-Order Concurrency

We begin by presenting HO, its syntax and semantics. Then, we discuss its

expressive power and give intuitions on its behavioral theory.
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2.1 The Calculus

HO is the core of calculi for higher-order concurrency such as CHOCS [32],

Plain CHOCS [34], and the Higher-Order π-calculus (HOπ) [27, 28, 29]. We

use a, b, c to range over names (also called channels), and x, y, z to range over

variables; the sets of names and variables are disjoint.

P, Q ::= a〈P〉 output

| a(x). P input prefix

| x process variable

| P ‖ Q parallel composition

| 0 nil

An input prefixed process a(x). P can receive on name a a process that will be

substituted in the place of x in the body P; an output message a〈P〉 can send P on

a; parallel composition allows processes to interact. HO can be seen as a kind

of concurrent λ-calculus, where a(x). P is a function, with formal parameter x and

body P, located at a; and a〈P〉 is the argument for a function located at a. Notice

that continuations following output messages have been left out, so HO is an

asynchronous calculus. Moreover, HO has no restriction operator. Thus all

channels are global, and dynamic creation of new channels is impossible.

An input a(x). P binds the free occurrences of x in P; this is the only binder

in HO. We write fv(P) for the set of free variables in P, and bv(P) for the

bound variables. We identify processes up to a renaming of bound variables. A

process is closed if it does not have free variables. In a statement, a name is

fresh if it is not among the names of the objects (processes, actions, etc.) of the

statement. As usual, the scope of an input a(x). P extends as far to the right as

possible. For instance, a(x). P ‖ Q stands for a(x). (P ‖ Q). We abbreviate the

input a(x). P, with x < fv(P), as a. P; the output a〈0〉 as a; and the composition

P1 ‖ . . . ‖ Pk as
∏k

i=1 Pi. Similarly, we write
∏n

1 P as an abbreviation for the

parallel composition of n copies of P. Further, P{Q̃/x̃} denotes the simultaneous

substitution of variables x̃ with processes Q̃ in P (we assume members of x̃ are

distinct). The size of a process P, written #(P), is inductively defined as:

#(0) = 0 #(P ‖ Q) = #(P) + #(Q) #(x) = 1

#(a〈P〉) = 1 + #(P) #(a(x). P) = 1 + #(P).

A Labeled Transition System (LTS) for HO, defined on open processes,

is given in Figure 1. There are three forms of transitions: internal transitions P
τ
−→

P′; input transitions P
a(x)
−−−→ P′, meaning that P can receive at a a process that will

replace x in the continuation P′; and output transitions P
a〈P′〉
−−−−→ P′′ meaning that
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I a(x). P
a(x)
−−−→ P O a〈P〉

a〈P〉
−−−→ 0

A1
P1

α
−→ P′

1 bv(α) ∩ fv(P2) = ∅

P1 ‖ P2

α
−→ P′

1 ‖ P2

T1
P1

a〈P〉
−−−→ P′

1 P2

a(x)
−−−→ P′

2

P1 ‖ P2

τ
−→ P′

1 ‖ P′
2{

P/x}

Figure 1: An LTS for HO. Symmetric rules A2 and T2 are omitted.

P emits P′ at a, and in doing so evolves to P′′. We use α to denote a generic label

of a transition. Notions of free and bound variables extend to labels as expected,

in particular x is bound in a(x).

Definition 2.1. The structural congruence relation is the smallest congruence gen-

erated by the following laws:

P ‖ 0 ≡ P, P1 ‖ P2 ≡ P2 ‖ P1, P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3.

Reductions P −→ P′ are defined as P ≡
τ
−→≡ P′.

2.2 The Expressive Power of HO

We present a deterministic encoding of Minsky machines [21], a well-known

Turing complete model, into HO. This way, HO is shown to be Tur-

ing complete. Moreover, since the encoding preserves termination, it also shows

that termination in HO is undecidable. The encoding exploits basic forms of

input-guarded replication and guarded choice that are representable in HO;

for space reasons, we do not discuss such representations, see [26] for details.

A Minsky machine is composed of two registers and of a set of labelled in-

structions (1 : I1), . . . , (n : In) that act over them. Instructions can be of two kinds:

(i) increment the value of a register j and move on to the following instruction,

and (ii) decrement the value of register j if it holds a value greater than zero, or

jump to instruction k otherwise. We first show how to count and test for zero in

HO; then, we present the encoding of a Minsky machine into HO.

Counting in HO. The cornerstone of our encoding is the definition of

counters that may be tested for zero. Numbers are represented as nested higher-

order processes: the encoding of a number k+ 1 in register j, denoted (| k+ 1 |) j, is

the parallel composition of two processes: rS
j
〈(| k |) j〉 (the successor of (| k |) j) and

a flag n̂ j. The encoding of zero comprises such a flag, as well as the message r0
j
.

As an example, (| 2 |) j is rS
j
〈rS

j
〈r0

j
‖ n̂ j〉 ‖ n̂ j〉 ‖ n̂ j.
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I (i : Ii)

[[(i : INC(r j))]]M = !pi. (înc j ‖ ack. pi+1)

[[(i : DECJ(r j, k))]]M = !pi. (d̂ec j ‖ ack. (z j. pk + n j. pi+1)

R r j

[[r j = 0]]M = (inc j. r
S
j
〈(| 0 |) j〉 + dec j. (r

0
j
‖ ẑ j)) ‖ REG j

[[r j = m]]M = (inc j. r
S
j
〈(| m |) j〉 + dec j. (| m − 1 |) j) ‖ REG j

where:

REG j = !r0
j
. (ack ‖ inc j. r

S
j
〈(| 0 |) j〉 + dec j. (r

0
j
‖ ẑ j)) ‖

!rS
j
(Y). (ack ‖ inc j. r

S
j
〈rS

j
〈Y〉 ‖ n̂ j〉 + dec j.Y)

(| k |) j =


r0

j
‖ n̂ j if k = 0

rS
j
〈(| k − 1 |) j〉 ‖ n̂ j if k > 0.

Figure 2: Encoding of Minsky machines into HO

Registers. Registers are counters that may be incremented and decremented.

They consist of two parts: their current state and two mutually recursive processes

used to generate a new state after an increment or decrement of the register. The

state depends on whether the current value of the register is zero or not, but in

both cases it consists of a choice between an increment and a decrement. In case

of an increment, a message on rS
j
is sent containing the current register value, for

instance m. This message is then received by the recursive definition of rS
j
that

creates a new state with value m + 1, ready for further increment or decrement.

In case of a decrement, the behavior depends on the current value. If the current

value is zero, then it stays at zero, recreating the state corresponding to zero for

further operations using the message on r0
j
, and it spawns a flag ẑ j indicating that a

decrement on a zero-valued register has occurred. If the current value m is strictly

greater than zero, then the process (| m − 1 |) j is spawned. If m was equal to 1, this

puts the state of the register to zero (using a message on r0
j
). Otherwise, it keeps

the message in a non-zero state, with value m − 1, using a message on rS
j
. In both

cases a flag n̂ j is spawned to indicate that the register was not equal to zero before

the decrement. When an increment or decrement has been processed, that is when

the new current state has been created, an acknowledgment is sent to proceed with

the execution of the next instruction.

Instructions. Each instruction (i : Ii) is a replicated process guarded by pi,

which represents the program counter when p = i. Once pi is consumed, the

instruction is active and an interaction with a register occurs. In case of an in-

crement instruction, the corresponding choice is sent to the relevant register and,
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upon reception of the acknowledgment, the next instruction is spawned. In case

of a decrement, the corresponding choice is sent to the register, then an acknowl-

edgment is received followed by a choice depending on whether the register was

zero, resulting in a jump to the specified instruction, or the spawning of the next

instruction otherwise.

The Encoding. The encoding of Minsky machines into HO, denoted as

[[·]]M, is presented in Table 2. The encoding of a configuration of a Minsky ma-

chine (i.e., the label of the current instruction and the current value of the two

registers) requires a finite number of fresh names (linear on n, the number of

instructions). Before stating the correctness of the encoding, some notation is

necessary. In HO, we write −→∗ for the reflexive and transitive closure of

−→, and P ⇑ if P has an infinite sequence of reductions. Similarly, in Minsky

machines −→∗
M is the reflexive and transitive closure of −→M, and N ⇑M means

that N has an infinite sequence of reductions. We then have the following lemma,

whose proof is detailed in [26]:

Lemma 2.1. Let N be a Minsky machine. We have:

1. N −→∗
M N′ iff [[N]]M −→∗ [[N′]]M;

2. if [[N]]M −→∗ P1 and [[N]]M −→∗ P2, then there exists N′ such that P1 −→
∗

[[N′]]M and P2 −→
∗ [[N′]]M;

3. N ⇑M iff [[N]]M ⇑.

Lemma 2.1 guarantees that HO is Turing complete, and since the encod-

ing preserves termination, it entails the following corollary.

Corollary 2.1. Termination in HO is undecidable.

2.3 Behavioral Theory of HO

While notions of behavioral equivalences are well understood for first-order cal-

culi, in the higher-order setting the situation is less clear. Notions of behavioral

equivalences for higher-order process calculi include higher-order bisimilarity

[33], context and normal bisimilarities [28] (the latter being an economic char-

acterization of the former), and enviromental bisimilarity [30]. (See [26, Chapter

2] for extended discussions on bisimilarities in the higher-order setting.)

In HO, the main forms of strong bisimilarity for higher-order process

calculi coincide. Moreover, such a relation is decidable. A key ingredient for

these results is the notion of Input/Output (IO) bisimulation, a bisimulation in

which the variable of input prefixes is never instantiated and τ-transitions are not
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observed. To the best of our knowledge, HO is the first calculus where a

bisimulation without a clause for τ-transitions is discriminating enough so as to

provide a useful characterization of process behavior (actually, bisimulation is

very discriminating in HO). In fact, it can be verified that this is not the case

in first-order calculi such as CCS and the π-calculus, and in other higher-order

process calculi such as HOπ.

In what follows, we present the basic definitions and results for IO bisimula-

tion, as they are essential in the behavioral theory of HO. We refer to [14, 26]

for full details on the collapsing and decidability results.

Definition 2.2 (IO bisimulation). A symmetric relation R on HO processes is

an Input/Output (IO) bisimulation if P R Q implies

1. whenever P
a〈P′′〉
−−−−→ P′ there are Q′,Q′′ such that Q

a〈Q′′〉
−−−−→ Q′ with P′ R Q′

and P′′ R Q′′;

2. whenever P
a(x)
−−−→ P′ there is Q′ such that Q

a(x)
−−−→ Q′ and P′ R Q′,

3. whenever P ≡ x ‖ P′ there is Q′ such that Q ≡ x ‖ Q′ and P′ R Q′.

Input/Output bisimilarity, written ∼o
IO

, is the largest relation on open HO pro-

cesses that is an IO bisimulation.

Remarkably, ∼o
IO

has a straightforward proof of congruence. This is significant

because congruence is usually a hard problem in bisimilarities for higher-order

calculi.

Lemma 2.2. Let P1, P2 be open HO processes. P1 ∼
o
IO

P2 implies:

1. a(x). P1 ∼
o
IO

a(x). P2;

2. P1 ‖ R ∼o
IO

P2 ‖ R, for every R;

3. a〈P1〉 ∼
o
IO

a〈P2〉.

Proof (Sketch). By showing that ∼o
IO

is preserved by each operator of the calculus.

All cases are easy. For parallel composition, it is essential that ∼o
IO

does not require

to match τ actions in the bisimulation game. �

Lemma 2.3. If P ∼o
IO

Q then for all x and R, also P{R/x} ∼o
IO

Q{R/x}.

Proof (Sketch). We take the relation on HO processes with all pairs of the

form (P′{R/x} ‖ L, Q′{R/x} ‖ L) where P′,Q′ are guarded (i.e., free variables occur

only in sub-expressions of the form π. S , where π is a prefix) and P′ ∼o
IO

Q′,
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and show that this is an open IO bisimulation up to ≡ (this simple form of “up-

to technique” is common for bisimilarities). The proof makes use of lemmas

showing the effect of process substitutions on the behaviors of open processes,

and of a few simple algebraic manipulations. �

In contrast with the other bisimilarities, in ∼o
IO

the size of processes always

decreases during the bisimulation game. This is because ∼o
IO

is an open relation

and does not have a clause for τ transitions, hence process copying never occurs.

Lemma 2.4. Relation ∼o
IO

is decidable.

A symmetric relation R on HO processes is called a τ-bisimulation if

P R Q and P
τ
−→ P′ imply that there is Q′ such that Q

τ
−→ Q′ and P′ R Q′. The

following lemma shows that ∼o
IO

is also a τ-bisimulation. In [14, 26] we have

used this result to prove that ∼o
IO

coincides with other bisimilarities in the higher-

order setting, and to transfer to them its properties, in particular congruence and

decidability.

Lemma 2.5. Relation ∼o
IO

is a τ-bisimulation.

Proof (Sketch). Suppose P ∼o
IO

Q and P
τ
−→ P′. We have to find a matching

transition from Q. We can decompose P’s transition into an output P
a〈R〉
−−−→ P1

followed by an input P1

a(x)
−−−→ P2, with P′ = P2{R/x}. By definition of ∼o

IO
, Q is

capable of matching these transitions, and the final derivative is a process Q2 with

Q2 ∼
o
IO

P2. Further, as HO has no output prefixes the two transitions from Q

can be combined into a τ-transition, which matches the initial τ-transition from P.

We conclude using Lemmas 2.2 and 2.3. �

Other Results. In addition to being decidable, in [14, 26] strong bisimilarity in

HO has been shown to coincide with barbed congruence, the form of contex-

tual equivalence used in concurrency. In fact, we have considered asynchronous

barbed congruence, where barbs are only produced by output messages. More-

over, it has been shown that bisimilarity in HO enjoys of a sound and com-

plete axiomatization; such results rely on an adaptation to the higher-order setting

of results on unique decomposition of processes [19, 22] and on an axiomatization

of bisimilarity for a finite fragment of CCS [12]. The axiomatization has been ex-

ploited for obtaining complexity bounds for bisimilarity checking. In fact, using

the axiomatization it has been determined that bisimilarity checking is polynomial

on the size of the processes. Furthermore, decidability of bisimilarity is shown to

break when HO is extended with four top-level restrictions, i.e., restrictions

that can only occur at the outermost part of a process. This undecidability result

is obtained using a reduction from the Post correspondence problem (PCP). See

[14, 26] for details on these results.
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3 The Expressive Power of Forwarding

As we have seen, in spite of its minimality, HO is a very expressive formal-

ism. It is then natural to aim at identifying the intrinsic source of expressive power

in HO. A crucial observation in higher-order communication is that commu-

nicated processes have only two capabilities: execution and forwarding. Based on

this insight, we have studied a fragment of HO in which higher-order commu-

nication obeys a limited form of forwarding. The fragment, denoted H−f, arises

from a syntactic restriction on the shape of output objects.

We study the expressiveness of H−f using decidability of termination and con-

vergence of processes as a yardstick. We define termination as the non existence

of divergent computations, and convergence as existence of a terminating com-

putation.1 Both these properties are undecidable in HO. Our main result for

H−f shows that while convergence remains undecidable, termination becomes

decidable. This suggests a loss in expressive power when moving from HO

to H−f. Then, as a way of recovering such an expressive power, we extend the

calculus with a form of process suspension called passivation. In the resulting

calculus (called HP−f) both termination and convergence are undecidable.

Limited Forwarding. We find that a substantial part of the expressive power of

a higher-order process calculus resides in the ability of forwarding a received

process within an arbitrary context. For instance, consider the process R =

a(x). b〈Px〉, where Px stands for a process P with free occurrences of a variable x.

Intuitively, R receives a process on name a and forwards it on name b. It is easy to

see that the actual structure of Px can be fairly complex. One could even “wrap”

the process to be received in x using an arbitrary number of “output layers”, i.e.,

by letting Px = b1〈b2〈. . . bk〈x〉〉 . . .〉. This nesting capability embodies a great

deal of the expressiveness of HO: in fact, the encoding of Minsky machines

in HO depends critically on nested-based counters. Therefore, investigating

limitations to the forwarding capabilities in higher-order communications is a le-

gitimate approach to assess the expressive power of higher-order concurrency.

With the above in mind, we have studied H−f, a subcalculus of HO in

which output actions are limited so as to rule out the nesting capability. In H−f,

output actions can communicate the parallel composition of two kinds of objects:

1. closed processes (i.e., processes that do not contain free variables), and

2. processes received through previously executed input actions.

1Termination and convergence are sometimes also referred to as universal and existential ter-

mination, respectively.
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Hence, the context in which the output action resides can only contribute to

communication by “appending” pieces of code that admit no inspection, available

in the form of a black-box. More precisely, the grammar of H−f processes is the

same as that of HO, except for the production for output actions, which is

replaced by the following one:

a〈x1 ‖ · · · ‖ xk ‖ P〉

where k ≥ 0 and P is a closed process. This modification directly restricts for-

warding capabilities for output processes, which in turn, leads to a more limited

structure of processes along reductions.

The limited style of higher-order communication enforced in H−f is inspired

by those cases in which a process P is communicated in a translated format [[P]],

and the translation is not compositional. That is, the cases in which, for any

process context C, the translation of C[P] cannot be seen as a function of the

translation of P, i.e., there exists no context D such that [[C[P]]] = D[P]. This

can be related to several existing programming scenarios. The simplest example

is perhaps mobility of already compiled code, on which it is not possible to apply

inverse translations (such as reverse engineering).

3.1 Some Preliminaries

The syntax of H−f is exactly the same of HO, excepting the production for

output actions, given above. All the notations and definitions given for HO

(including structural congruence) apply to H−f as expected. As for the LTS, for

technical reasons in the proof of decidability of termination we shall appeal to a

finitely branching LTS over H−f processes; see [26, Chapter 5] for details.

As usual, the internal runs of a process are given by sequences of reductions.

Given a process P, its reductions P −→ P′ are defined as P
τ
−→ P′. We denote

with −→∗ the reflexive and transitive closure of −→; notation −→ j is to stand for

a sequence of j reductions. We use P 9 to denote that there is no P′ such that

P −→ P′. Following [5] we define process convergence and process termination.

Observe that termination implies convergence while the opposite does not hold.

Definition 3.1. Let P be a H−f process. We say that P converges iff there exists

P′ such that P −→∗ P′ and P′
9. We say that P terminates iff there exist no {Pi}i∈N

such that P0=P and P j−→P j+1 for any j.

3.2 Undecidability of Convergence

We present an encoding of Minsky machines into H−f. However, unlike the en-

coding of Minsky machines in HO, the encoding into H−f is not faithful: it
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R r j [[r j = m]]M =
∏m

1 u j

I (i : Ii)

[[(i : INC(r j))]]M = !pi. (u j ‖ set j(x). (set j〈x ‖ I〉 ‖ pi+1))

[[(i : DECJ(r j, s))]]M = !pi. (loop ‖ u j. loop. set j(x). (set j〈x ‖ D〉 ‖ pi+1))

‖ !pi. set j(x). (x ‖ set j〈x〉 ‖ ps)

where

I = loop D = loop

Figure 3: Encoding of Minsky machines into H−f

may introduce computations which do not correspond to the expected behavior of

the modeled machine. Such computations are forced to be infinite and thus re-

garded as non-halting computations which are therefore ignored. More precisely,

given a Minsky machine N, its encoding [[N]] has a terminating computation if

and only if N terminates. This allows to prove that convergence is undecidable.

Encoding Minsky Machines into H−f. The encoding of Minsky machines into

H−f is denoted by [[·]]M and presented in Figure 3. As in the encoding into

HO, we use a form of input-guarded replication which can be encoded in

H−f. The encoding is assumed to execute in parallel with a process loop. D,

which represents divergent behavior that is spawned in certain cases with an out-

put on name loop. We first discuss the encodings of registers and instructions.

A register r j that stores the number m is encoded as the parallel composition

of m copies of the unit process u j. To implement the test for zero, we need to

record how many increments and decrements have been performed on the register

r j. This is done by using a process L j, which is communicated back and forth

on name set j. When an increment instruction occurs, a new copy of the process u j

is created, and the process L j is updated by adding the process I in parallel.

Similarly for decrements: a copy of u j is consumed and the process D is added

to L j. As a result, after k increments and l decrements on register r j, we have

that L j =
∏

k I ‖
∏

l D.

Each instruction (i : Ii) is a replicated process guarded by pi, which repre-

sents the program counter when p = i. Once pi is consumed, the instruction is

active and, in the case of increments and decrements, an interaction with a register

occurs. We already described the behavior of increments. Let us now focus on

decrements, the instructions that can introduce divergent —unfaithful— compu-

tations. In this case, the process can internally choose either to actually perform a

decrement and proceed with the next instruction, or to jump. This internal choice

takes place on pi; it can be seen as a guess the process makes on the actual number

stored by the register r j. Therefore, two situations can occur:
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1. The process chooses to decrement r j. In this case a process loop as well

as an input on u j become immediately available. The purpose of the latter

is to produce a synchronization with a complementary output on u j (that

represents a unit of r j).

If this operation succeeds (i.e., the guess is right as the content of r j is

greater than 0) then a synchronization between the output loop —available

at the beginning— and the input on loop that guards the update of L j takes

place. After this synchronization, the log of the register is updated (this is

represented by two synchronizations on name set j) and instruction pi+1 is

enabled. Otherwise, if the synchronization on u j fails then it is because

the content of r j is zero and the process made a wrong guess. The process

loop available at the beginning then synchronizes with the external process

loop. D, thus spawning a divergent computation.

2. The process chooses to jump to instruction ps. In this case, the encoding

checks if the actual value stored by r j is zero. To do so, the process receives

the process L j on name set j and launches it. The log contains a number

of I and D processes; depending on the actual number of increments

and decrements, two situations can occur.

In the first situation, the number of increments is equal to the number of

decrements (say k); hence, the value of the r j is indeed zero and the process

made a right guess. In this case, k synchronizations on name loop take

place and instruction ps is enabled. In the second situation, the number of

increments is greater than the number of decrements; hence, the value of

r j is greater than zero and the process made a wrong guess. As a result, at

least one of the loop signals remains active; by means of a synchronization

the process loop. D this is enough to to spawn a divergent computation.

The correctness for the encoding is stated in terms of configurations of the

Minsky machines. The encoding of a Minsky machine configuration (i,m0,m1),

according to the encodings in Table 3, is denoted [[(i,m0,m1)]]M. We omit the

formal definition of the encoding; see [26, Chapter 5] for details. Such a definition

states that, before executing the instructions, both registers in the Minsky machine

to be set to zero. This is to guarantee correctness: starting with values different

from zero in the registers (without proper initialization of the logs) can lead to

inconsistencies.

Theorem 3.1. Let N be a Minsky machine with registers r0 = m0, r1 = m1, in-

structions (1 : I1), . . . , (n : In), and configuration (i,m0,m1). Let [[(i,m0,m1)]]M

be the encoding of (i,m0,m1) into H−f. Then (i,m0,m1) terminates if and only if

process [[(i,m0,m1)]]M converges.
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As a consequence of the results above we have the following.

Corollary 3.1. Convergence is undecidable in H−f.

3.3 Decidability of Termination

In this section we discuss decidability of termination for H−f processes. This is

in sharp contrast with the analogous result for HO. This decidability result is

obtained by appealing to the theory of well-structured transition systems [8, 1, 9],

following the approach used in [5]. We begin by summarizing main definitions

and results for well-structured transition systems.

Well-Structured Transition Systems. The following results and definitions are

from [9], unless differently specified. Recall that a quasi-order (or, equivalently,

preorder) is a reflexive and transitive relation.

Definition 3.2 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order ≤

over a set X such that, for any infinite sequence x0, x1, x2 . . . ∈ X, there exist

indexes i < j such that xi ≤ x j.

Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an

infinite increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .). Thus

well-quasi-orders exclude the possibility of having infinite strictly decreasing se-

quences. We also need a definition for (finitely branching) transition systems.

Here and in the following→∗ denotes the reflexive, transitive closure of→.

Definition 3.3 (Transition system). A transition system is a structure TS = (S ,→

), where S is a set of states and→⊆ S ×S is a set of transitions. We define S ucc(s)

as the set {s′ ∈ S | s → s′} of immediate successors of S . We say that TS is finitely

branching if, for each s ∈ S , S ucc(s) is finite.

The key tool to decide several properties of computations is the notion of well-

structured transition system (or WSTS). This is a transition system equipped with

a well-quasi-order on states which is compatible with the transition relation.

Definition 3.4 (WSTS). A well-structured transition system with strong compat-

ibility is a transition system TS = (S ,→), equipped with a quasi-order ≤ on S ,

such that the two following conditions hold: (1) ≤ is a well-quasi-order; (2) ≤ is

strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all transitions

s1 → s2 , there exists a state t2 such that t1 → t2 and s2 ≤ t2 holds.

The following theorem is a special case of Theorem 4.6 in [9] and will be used

to obtain our decidability result.
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I a(x). P
a(x)
7−→ P O a〈P〉

a〈P〉
7−→ 0

A1
P1

α
7−→ P′

1

P1 ‖ P2

α
7−→ P′

1 ‖ P2

T1
P1

a〈P〉
7−→ P′

1 P2

a(x)
7−→ P′

2

P1 ‖ P2

τ
7−→ P′

1 ‖ P′
2{

P/x}

Figure 4: A finitely branching LTS for H−f. Rules A2 and T2, the symmetric

counterparts of A1 and T1, have been omitted.

Theorem 3.2. Let TS = (S ,→,≤) be a finitely branching, well-structured tran-

sition system with strong compatibility, decidable ≤, and computable S ucc. Then

the existence of an infinite computation starting from a state s ∈ S is decidable.

A WSTS for H−f. Theorem 3.2 ensures decidability of termination for generic

WSTSs. Hence, in order to prove decidability of termination for H−f we require

to instantiate the theorem appropriately, i.e., we need:

• to define an well-quasi-order ≤ and a finitely branching LTS
α
7−→ over H−f

processes;

• to show that ≤ is strongly compatible with respect to 7−→.

The detailed proof for decidability of termination is quite technical, and is

given in [26, Chapter 5]. In what follows we provide an extended sketch of it, in

which we discuss how to carry out the above two tasks.

The first step in the proof consists in defining a finitely branching LTS 7−→

over H−f processes. This is not a demanding requirement in our case; the sensible

issue here is the treatment of alpha-conversion. We thus introduce an alternative

LTS without alpha-conversion. The alternative LTS, given in Figure 4, is restricted

to closed processes. In proofs, we shall concentrate on reductions (denoted 7−→),

which are defined as the internal actions of the alternative LTS (i.e.,
τ
7−→).

Intuitively, the crux of the proof consists in finding an upper bound for a pro-

cess and its derivatives. This is possible in H−f because of the limited structure

allowed in output actions. We now proceed to characterize such an upper bound

and to define an ordering over H−f processes. Central to both issues is a notion

of normal form for H−f processes:

Definition 3.5 (Normal Form). Let P ∈ H−f. P is in normal form iff

P =

l∏

k=1

xk ‖

m∏

i=1

ai(yi). Pi ‖

n∏

j=1

b j〈P
′
j〉

where each Pi and P′
j are in normal form.
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We now define an ordering over normal forms. Intuitively, a process is larger

than another if it has more parallel components.

Definition 3.6 (Relation �). Let P,Q ∈ H−f. We write P � Q iff there exist

x1 . . . xl, P1 . . . Pm, P′
1 . . . P

′
n, Q1 . . .Qm, Q′

1 . . .Q
′
n, and R such that

P ≡
∏l

k=1 xk ‖
∏m

i=1 ai(yi). Pi ‖
∏n

j=1 b j〈P
′
j〉

Q ≡
∏l

k=1 xk ‖
∏m

i=1 ai(yi). Qi ‖
∏n

j=1 b j〈Q
′
j〉 ‖ R

with Pi � Qi and P′
j � Q′

j, for i ∈ [1. .m] and j ∈ [1. . n].

The normal form of a process admits an intuitive tree-like representation.

Given the process in normal form P =
∏l

k=1 xk ‖
∏m

i=1 ai(yi). Pi ‖
∏n

j=1 b j〈P
′
j〉

we shall decree its associated tree to have a root node labeled x1, . . . , xk. This

root node has m + n children, corresponding to the trees associated to processes

P1, . . . , Pm and P′
1, . . . , P

′
m; the outgoing edges connecting the root node and the

children are labeled a1(y1), . . . , am(ym) and b1, . . . , bn. As an example, the H−f

process P = x ‖ a(y). (b. y ‖ c) ‖ a〈z ‖ d. e〉 has the following tree representation:

x
a(y)

iiiiiii a
UUUUUUU

•
b

iiiiiii c
UUUUUUU

z
d

y • •
e

•

Representing processes in normal form as trees is useful to reason about the

structure of H−f terms. We say that the depth of a process corresponds to the

maximum depth of its tree representation. Moreover, given a natural number n

and a process P, PP,n denotes the set that contains all those processes in normal

form that can be built using the alphabet of P and whose depth is at most n.

When compared to processes in languages such as CCS, higher-order pro-

cesses have a more complex structure. This is because, by virtue of reductions,

an arbitrary process can take the place of possibly several occurrences of a single

variable. As a consequence, the depth of (the syntax tree of) a process cannot

be determined (or even approximated) before its execution: it can vary arbitrarily

along reductions. Crucially, in H−f it is possible to bound such a depth. Our ap-

proach is the following: rather than solely depending on the depth of a process, we

define measures on the relative position of variables within a process. Informally

speaking, such a position will be determined by the number of prefixes guarding

a variable. Since variables are allowed only at the top level of the output objects,

their relative distance will remain invariant during reductions. This allows to ob-

tain a bound on the structure of H−f processes. Finally, it is worth stressing that
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even if the same notions of normal form, depth, and distance can be defined for

HO, a finite upper bound for such a language does not exist.

Considering all the above, and defining the set Deriv(P) as {Q | P 7−→∗ Q},

we have shown the following lemma, which formalizes the upper bound on H−f

processes along reductions:

Lemma 3.1. Let P ∈ H−f. Then Deriv(P) ⊆ PP, 2·depth(P).

We have the following two results, whose proofs are omitted for space reasons

(see [26, Chapter 5] for details):

Proposition 3.1. The relation � is a quasi-order.

Theorem 3.3 (Well-quasi-order). Let P ∈ H−f be a closed process and n ≥ 0.

The relation � is a well-quasi-order over PP,n.

The final component in our proof is the strong compatibility of � with respect

to 7−→. We have the following:

Theorem 3.4 (Strong Compatibility). Let P,Q, P′ ∈ H−f. If P � Q and P 7−→ P′

then there exists Q′ such that Q 7−→ Q′ and P′ � Q′.

Proof (Sketch). By case analysis on the rule used to infer reduction P 7−→ P′. We

content ourselves with illustrating the case derived from the use of rule T1; the

other ones are similar or simpler. We then have that P = P′ ‖ P′′ with P′
a〈P1〉
7−→ N

and P′′
a(y)
7−→ P2. Hence, P ≡ a〈P1〉 ‖ a(y). P2 ‖ N. Since by hypothesis P � Q, we

obtain a similar structure for Q. Indeed, Q ≡ a〈Q1〉 ‖ a(y). Q2 ‖ N′ with P1 � Q1,

P2 � Q2, and N � N′.

Now, if P 7−→ P′ ≡ P2{P1/y} ‖ N then also Q 7−→ Q′ ≡ Q2{Q1/y} ‖ N′. It

can be shown that if P, P′,Q, and Q′ are H−f processes in normal form such that

P � P′ and Q � Q′, then it holds that P{Q/x} � P′{Q
′
/x}. Using this, we have

P2{P1/y} � Q2{Q1/y}; using this and the hypothesis the thesis follows. �

The following theorem relies on Lemma 3.1, and on Theorems 3.3 and 3.4:

Theorem 3.5. Let P ∈ H−f be a closed process. The transition system

(Deriv(P), 7−→,�)

is a finitely branching well-structured transition system with strong compatibility,

decidable �, and computable S ucc.

We are thus in place to state the desired result:

Corollary 3.2. Let P ∈ H−f be a closed process. Then, termination of P is

decidable.
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3.4 The Interplay of Forwarding and Process Suspension

The decidability result for termination in H−f reveals a loss of expressive power

associated to the restriction on the shape of output objects. It is therefore worth

investigating alternatives for recovering such an expressive power while preserv-

ing the essence of limited forwarding. One such alternatives is to extend H−f

with a passivation construct, an operator that allows to suspend the execution of

a process at run time. Passivation thus comes in handy to represent mechanisms

for dynamic system reconfiguration, which are common in GUC scenarios. Passi-

vation has been considered by higher-order calculi such as the Kell calculus [31]

and Homer [11], and finds several applications (see, e.g., [4]).

We consider HP−f, the extension of H−f with a passivation construct of the

form ã{P}, which represents a passivation unit named a that contains a process P

that respects the forwarding limitation of H−f. A passivation unit is a transparent

locality, in that there are no restrictions on the interactions between P and pro-

cesses surrounding a. The execution of P can be suspended at an arbitrary time;

these intuitions are formalized by the LTS for HP−f, which extends that of H−f

with the two following rules

P
α
−−→ P′

ã{P}
α
−−→ ã{P′}

L ã{P}
a〈P〉
−−−−−→ 0 P .

A Faithful Encoding of Minsky Machines into HP−f. Here we investigate

the expressiveness of HP−f by exhibiting an encoding of Minsky machines into

HP−f. Interestingly, unlike the encoding discussed before into H−f, the encoding

into HP−f is faithful. As such, in HP−f both termination and convergence are

undecidable problems. Hence, it is fair to say that the passivation construct —

even with the limitation on the shape of output processes— allows to recover the

expressive power lost in restricting HO as H−f.

The encoding is given in Figure 5; we now give some intuitions on it. A

register k with value m is represented by a passivation unit rk that contains the

encoding of number m, denoted (| m |)k. In turn, (| m |)k consists of a chain of

m nested input prefixes on name uk; it also contains other prefixes on a1 and a2

which are used for synchronization purposes during the execution of instructions.

The encoding of zero is given by an input action on zk that prefixes a trigger az.

As expected, the encoding of an increment operation on the value of register

k consists in the enlargement of the chain of nested input prefixes it contains.

For that purpose, the content of passivation unit rk is obtained with an input on

rk. We therefore need to recreate the passivation unit rk with the encoding of the

incremented value. Notice that we require an additional synchronization on ck

in order to “inject” such a previous content in a new passivation unit called rk.
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R rk [[rk = n]]M = r̃k{(| n |)k}

where

(| n |)k =

{
zk. az if n = 0

uk. (a1 ‖ a2. (| n − 1 |)k) if n > 0.

I (i : Ii)

[[(i : INC(rk))]]M = !pi. (rk(x). (ck〈x〉 ‖ r̃k{ck(y). (ap ‖ uk. (a1 ‖ a2. y))} ‖ ap. pi+1))

[[(i : DECJ(rk, s))]]M = !pi. (m(x). x

‖ d̃{uk ‖ a1.m〈s(x). d(x). (a2 ‖ pi+1)〉}

‖ s̃{zk ‖ az.m〈d(x). s(x). rk(t). (r̃k{zk. az} ‖ ps)〉})

Figure 5: Encoding of Minsky machines into HP−f.

This way, the chain of nested inputs in rk can be enlarged while respecting the

limitation on the shape of processes inside passivation units. As a result, the chain

is enlarged by putting it behind some prefixes, and the next instruction can be

invoked. This is done by a synchronization on name ap.

The encoding of a decrement of the value of register k consists of an internal,

exclusive choice implemented as two passivation units that execute in parallel:

the first one, named d, implements the behavior for decrementing the value of a

register, while the second one, named s, implements the behavior for performing

the jump to some given instruction. Unlike the encoding of Minsky machines

into H−f, this internal choice behaves faithfully with respect to the encoding in-

struction, i.e., the behavior inside d will only execute if the value in rk is greater

than zero, whereas the behavior inside s will only execute if that value is equal to

zero. It is indeed a deterministic choice in that it is not the case that both an input

prefix on uk (which triggers the “decrement branch” defined by d) and one on zk

(which triggers the “jump branch” defined by s) are available at the same time;

this is because of the way in which we encode numbers, i.e., as a chain of input

prefixes. In addition to the passivation units, the encoding of decrement features a

“manager” (implemented as a synchronization on m) that enables the behavior of

the chosen passivation unit by placing it at the top-level, and consumes both s and

d afterwards, thus leaving no residual processes after performing the instruction.

In case the value of the register is equal to some n > 0, then a decrement is im-

plemented by consuming the input prefixes on uk and a2 and the output prefix on

a1 through suitable synchronizations. It is worth noticing that these synchroniza-

tons are only possible because the passivation units containing the encoding of n

behave as transparent localities, and hence able to interact with its surrounding

context. As a result, the encoding of n − 1 remains inside rk and the next instruc-
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tion is invoked. In case the value of the register is equal to zero, the passivation

unit rk is consumed and recreated with the encoding of zero inside. The jump is

then performed by invoking the respective instruction.

A correctness statement for the faithful encoding of Minsky machines into

HP−f is along the lines of that for the encoding into HO, and we omit it. Full

details can be found in [26, Chapter 5]. As a consequence, we have:

Theorem 3.6. Termination and convergence are undecidable in HP−f.

4 The Expressiveness of (A)synchronous and Poly-

adic Communication

Here we present results on the expressive power of extensions of HO with

restriction, concentrating on fundamental questions of expressiveness in process

calculi at large: asynchronous vs. synchronous communication and polyadic vs.

monadic communication. These are well-understood issues for first-order pro-

cess calculi: several works (see, e.g., [25, 23]) have studied the asynchronous

π-calculus [3, 13] and its relationship with the (synchronous) π-calculus. Also,

the encoding of polyadic communication into monadic communication in the π-

calculus [18] is simple and very robust. However, analogous studies are lacking

for calculi in the higher-order setting.

We approach these questions in the context of HOπ, a strictly higher-order

process calculus (i.e., it has no name-passing features) [29]. We shall consider

SHO and AHO, the synchronous and asynchronous variants of HOπwith polyadic

communication (Section 4.1). SHO and AHO represent two families of higher-

order process calculi: given n ≥ 0, SHOn (resp. AHOn) denotes the synchronous

(resp. asynchronous) higher-order process calculus with n-adic communication.

A fundamental consideration in strictly higher-order process calculi is that

scope extrusions have a limited effect. In a process-passing setting, received pro-

cesses can only be executed, forwarded, or discarded. Hence, an input context

cannot gain access to the (private) names of the processes it receives; to the con-

text, received processes are much like a “black box”. Although higher-order com-

munications might lead to scope extrusion of the private names contained in the

transmitted processes, such extrusions are of little significance: without name-

passing, a receiving context can only use the names contained in a process in a re-

stricted way, namely the way decreed by the sender process.2 In a process-passing

setting, sharing of (private) names is thus rather limited.

2Here we refer to process-passing without passing of abstractions, i.e. functions from processes

to processes. As studied in [15, 26], the situation is rather different with abstraction-passing.
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We first describe results on the relationship between synchrony and asyn-

chrony. In fact, we present an encoding of SHOn into AHOn. This reveals a sim-

ilarity between first- and higher-order process calculi. Intuitively, a synchronous

output is encoded by an asynchronous output that communicates both the com-

munication object and its continuation. We then move to examine the situation

for polyadic communication. We consider variants of SHO with different arity in

communications, and study their relative expressive power. Interestingly, in the

case of polyadic communication, the absence of name-passing causes a loss in ex-

pressive power. In this case, we discuss a non-encodability result: for every n > 1,

SHOn cannot be encoded into SHOn−1. We thus obtain a hierarchy of higher-order

process calculi of strictly increasing expressiveness. Hence, polyadic communica-

tion is a striking point of contrast between first- and higher-order process calculi.

Our notion of encoding exploits a refined account of internal actions: in SHO,

the internal actions that result from synchronizations on restricted names are dis-

tinguished from those resulting from synchronizations on public names. Only the

former are considered as internal actions; the latter are regarded as visible actions.

Such a distinction is useful to focus on compositional encodings that are robust

with respect to interferences, that is, encodings that work in an arbitrary context of

the target language (i.e., not necessarily a context in the image of the encoding).

Further, the distinction is crucial in certain technical details of our proofs.

4.1 The Calculi

We define SHOn and AHOn, the two families of higher-order process calculi we

shall be working with.

Definition 4.1. Let x, y range over process variables, and a, b, . . . r, s, . . . denote

names. The language of SHO processes is given by the following syntax:

P,Q, . . . ::= a(x̃). P | ā〈Q̃〉. P | P1 ‖ P2 | νr P | x | 0

Using standard notations and properties for tuples of syntactic elements, polya-

dicity in process-passing is interpreted as expected: an output prefixed process

a〈Q̃〉. P sends the tuple of processes Q̃ on name (or channel) a and then continues

as P; an input prefixed process a(x̃). P can receive a tuple Q̃ on name a and con-

tinue as P{Q̃/x̃}. In both cases, a is said to be the subject of the action. We write

| x̃ | for the length of tuple x̃; the length of the tuples that are passed around de-

termines the actual arity in polyadic communication. In interactions, we assume

inputs and outputs have the same arity; we shall rely on notions of types and well-

typed processes as in [29]. Parallel composition allows processes to interact, and

νr P makes r private (or restricted) to the process P. Notions of bound and free

names and variables (bn(·), fn(·), bv(·), and fv(·), resp.) are defined in the usual
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I
a(x̃). P

a(x̃)
−−−→ P

O

a〈Q̃〉. P
a〈Q̃〉
−−−→ P

A1
P1

α
−→ P′

1 cond(α, P2)

P1 ‖ P2

α
−→ P′

1 ‖ P2

R
P
α
−→ P′ r < n(α)

νr P
α
−→ νr P′

O
P

(νs̃)a〈P̃′′〉
−−−−−−→ P′ r , a, r ∈ fn(P̃′′) − s̃

νr P
(νrs̃)a〈P̃′′〉
−−−−−−−→ P′

T1
P1

(νs̃)a〈P̃〉
−−−−−→ P′

1 P2

a(x̃)
−−−→ P′

2 s̃ ∩ fn(P2) = ∅

P1 ‖ P2

aτ
−−→ νs̃ (P′

1 ‖ P′
2{

P̃/x̃})
IR

P
aτ
−−→ P′

νa P
τ
−→ νa P

Figure 6: The LTS of SHO. Symmetric rules A2 and T2 are omitted.

way: an input a(x̃). P binds the free occurrences of variables in x̃ in P; similarly,

νr P binds the free occurrences of name r in P. We abbreviate a(x̃). P as a. P when

none of the variables in x̃ is in fv(P); a〈̃0〉. P as a. P; a〈Q〉. 0 as a〈Q〉; and νa νb P

as νa b P. Notation
∏k P stands for k copies of process P in parallel.

The semantics for SHO is given by the Labelled Transition System (LTS) in

Figure 6; we use cond(α, P) to abbreviate bv(α) ∩ fv(P) = ∅ ∧ bn(α) ∩ fn(P) = ∅.

As anticipated, we distinguish between internal and public synchronizations. The

former are given by synchronizations on restricted names, are the only source of

internal behavior, and are denoted as
τ
−−→. The latter are given by synchroniza-

tion on public names: a synchronization on the public name a leads to the visible

action
aτ
−→. We thus have four kinds of transitions: in addition to internal and pub-

lic synchronizations, there are input transitions P
a(x̃)
−−→ P′, and output transitions

P
(νs̃)a〈Q̃〉
−−−−−→ P′ (with extrusion of the tuple of names s̃), which have the expected

meaning. We use α to range over actions. The signature of α, sig(α), is defined

as sig(a(x̃)) = a in, sig((νs̃)a〈Q̃〉) = a out, sig(aτ) = aτ, sig(τ) = τ, and is unde-

fined otherwise. Notions of bound/free names and variables extend to actions as

expected. We use ~α to denote a sequence of actions α1, . . . , αn. Weak transitions

are defined in the usual way. We write =⇒ for the reflexive, transitive closure of
τ
−−→. Given an action α , τ, notation

α
=⇒ stands for =⇒

α
−→=⇒ and

τ
=⇒ stands for =⇒.

Given a sequence ~α = α1, . . . , αn, we define
~α
=⇒ as

α1
==⇒ · · ·

αn

==⇒.

By varying the arity in polyadic communication, Definition 4.1 actually gives

a family of higher-order process calculi. We have the following convention:

Convention 4.1. For each n > 0, SHOn is the calculus obtained from the syntax

given in Definition 4.1 in which polyadic communication has arity at most n.
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Definition 4.2. AHO corresponds to the fragment of SHO where output actions

have no continuations. All the definitions extend to AHO processes as expected;

AHOn is thus the asynchronous calculus with n-adic communication.

The following definition is standard.

Definition 4.3 (Barbs). Given a process P and a name a, we write (i) P ↓a —a

strong input barb— if P can perform an input action with subject a; and (ii) P ↓a

—a strong output barb— if P can perform an output action with subject a. Given

µ ∈ {a, a}, we define a weak barb P ⇓µ if, for some P′, P =⇒ P′ ↓µ.

4.2 The Notion of Encoding

Our definition of encoding is inspired by the notion of “good encoding” in [10].

We say that a language L is given by: (i) an algebra of processes P, with an

associated function fn(·); (ii) a labeled transition relation −→ on P, i.e., a structure

(P,A,−→) for some setA of actions (or labels) with an associated function sig(·);

and (iii) a weak behavioral equivalence ≈ such that: if P ≈ Q and P
α
=⇒ P′ then

Q
α′

==⇒ Q′, P′ ≈ Q′, and sig(α) = sig(α′). Given languages Ls = (Ps,−→s,≈s)

and Lt = (Pt,−→t,≈t), a translation of Ls into Lt is a function [[·]] : Ps → Pt.

We shall call encoding any translation that satisfies the following syntactic and

semantic conditions.

Definition 4.4 (Syntactic Conditions). Let [[·]] : Ps → Pt be a translation of Ls

into Lt. We say that [[·]] is:

1. compositional if for every k-ary operator op of Ls and for all S 1, . . . , S k

with fn(S 1, . . . , S k) = N, there exists a k-ary context CN
op ∈ Pt that depends

on N and op such that [[op(S 1, . . . , S k)]] = CN
op[[[S 1]], . . . , [[S k]]];

2. name invariant if [[σ(P)]] = σ([[P]]), for any injective renaming of names σ.

Definition 4.5 (Semantic Conditions). Let [[·]] : Ps → Pt be a translation of Ls

into Lt. We say that [[·]] is:

1. complete if for every S , S ′ ∈ Ps and α ∈ As such that S
α
=⇒s S ′, it holds

that [[S ]]
β
=⇒t ≈t [[S

′]], where β ∈ At and sig(α) = sig(β);

2. sound if for every S ∈ Ps, T ∈ Pt, β ∈ At such that [[S ]]
β
=⇒t T there

exists an S ′ ∈ Ps and an α ∈ As such that S
α
=⇒s S ′, T =⇒≈t [[S ′]], and

sig(α) = sig(β);

3. adequate if for every S , S ′ ∈ Ps, if S ≈s S ′ then [[S ]] ≈t [[S
′]];
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4. diverge-reflecting if for every S ∈ Ps, [[S ]] diverges only if S diverges.

Adequacy is crucial to obtain composability of encodings (see Prop. 4.1 be-

low). We stress that we always use weak behavioral equivalences. Some proper-

ties of our notion of encoding are given in the following proposition, whose proof

we omit for space reasons.

Proposition 4.1. Let [[·]] be an encoding of Ls into Lt. Then [[·]] satisfies:

Barb preservation For every S ∈ Ps it holds that S ⇓a (resp. S ⇓a) if and only if

[[S ]] ⇓a (resp. [[S ]] ⇓a).

Preservation of free names Let a be a name. If a ∈ fn(P) then a ∈ fn([[P]]).

Composability If C[[·]] is an encoding of L1 into L2, and D[[·]] is an encoding of

L2 into L3 then their composition (D · C)[[·]] is an encoding of L1 into L3.

4.3 An Encodability Result for Synchronous Communication

Here we study the relationship between synchronous and asynchronous commu-

nication. While it is easy to define an encoding of SHOn into AHOn+1 (i.e., by

sending the communication object and the continuation of the output action in a

single synchronization, the continuation being an additional parameter), an en-

coding of asynchronous process-passing into synchronous communication of the

same arity is much more challenging. We now describe such an encoding. Intu-

itively, the idea is to send a single process consisting of a guarded choice between

a communication object and the continuation of the synchronous output. For the

monadic case the encoding is as follows:

[[a〈P〉. S ]] = νk l (a〈k. ([[P]] ‖ k) + l. ([[S ]] ‖ k)〉 ‖ l) [[a(x).R]] = a(x). (x ‖ [[R]])

where “+” stands for the encoding of disjoint choice proposed for HO [14];

k, l are names not in fn(P, S ); and [[·]] is an homomorphism for the other operators

in SHO1. The encoding exploits the fact that the continuation should be executed

exactly once, while the communication object can be executed zero or more times.

In fact, there is only one copy of l, the trigger that executes the encoding of the

continuation. Notice that l releases both the encoding of the continuation and

a trigger for executing the encoding of the communication object (denoted k);

such an execution will only occur when the choice sent by the encoding of output

appears at the top level. This way, it is easy to see that a trigger k is always

available. This idea can be generalized as follows:
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Definition 4.6 (Synchronous to Asynchronous). For each n > 0, the encoding of

SHOn into AHOn is defined as follows:

[[a〈P1, . . . , Pn〉. S ]] = νk l (a〈[[P1]], . . . , [[Pn−1]],Tk,l[ [[Pn]], [[S ]] ]〉 ‖ l)

[[a(x1, . . . , xn).R]] = a(x1, . . . , xn). (xn ‖ [[R]])

with Tk,l[M1,M2]
de f
= k. (M1 ‖ k) + l. (M2 ‖ k), {k, l} ∩ fn(P1, . . . , Pn, S ) = ∅, and

where [[·]] is an homomorphism for the other operators in SHOn.

The encoding provides compelling evidence on the expressive power of (asyn-

chronous) process-passing. One may then wonder if a similar encoding, for the

case of polyadic into monadic communication, can be defined. In the next section

we show that this is not the case.

4.4 Separation Results for Polyadic Communication

Here we present the separation results for SHO. We discuss the notion of disjoint

forms, which are useful to capture a number of stability conditions, i.e., invariant

properties of higher-order processes with respect to their sets of private names.

Stability conditions are essential in defining the hierarchy of SHO calculi based

on polyadic communication.

Disjoint Forms The disjoint forms for SHO processes are intended to capture

the invariant structure of processes along communications, focusing on the private

names shared among the participants. Their definition exploits contexts, that is,

processes with a hole. We shall consider multi-hole contexts, that is, contexts with

more than one hole. More precisely, a multi-hole context is n-ary if at most n dif-

ferent holes [·]1, . . . , [·]n, occur in it. (A process is a 0-ary multi-hole context.) We

will assume that any hole [·]i can occur more than once in the context expression.

Notions of free and bound names for contexts are as expected and denoted bn(·)

and fn(·), respectively.

Definition 4.7. The syntax of (guarded, multihole) contexts is defined as:

C,C′, . . . ::= a(x). D | ā〈D〉. D | C ‖ C | νr C | P

D,D′, . . . ::= [·]i | C | D ‖ D | νr D

Definition 4.8 (Disjoint Form). Let T ≡ ν̃n(P ‖ C[R̃]) be a SHOm process where

(1) ñ is a set of names such that ñ ⊆ fn(P, R̃) and ñ ∩ fn(C) = ∅; (2) C is a k-ary

(guarded, multihole) context; (3) R̃ contains k closed processes. We then say that

T is in k-adic disjoint form with respect to ñ, R̃, and P.
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A disjoint form captures the fact that processes R̃ and context C do not share

private names, i.e., that their sets of names are disjoint. A disjoint form can arise

as the result of the communication between two processes that do not share private

names; processes R̃ would be then components of some process P0 that evolved

into P by communicating R̃ to C. The above definition decrees an arbitrary (but

fixed) arity for the context. We shall say that processes in such a form are in

n-adic disjoint form, or NDF. By restricting the arity of the context, this general

definition can be instantiated:

Definition 4.9 (Monadic and Zero-adic Disjoint Forms). Let T be a process in

disjoint form with respect to some ñ, R̃, and P. If | R̃ |= 1 then T is said to be in

monadic disjoint form (or MDF) with respect to ñ, R, and P. If | R̃ |= 0 then T is

said to be in zero-adic disjoint form (or ZDF) with respect to ñ and P.

Proposition 4.2 (Encodings preserve ZDFs). Let [[·]] be an encoding. If T is in

ZDF with respect to some ñ and P then [[T ]] is in ZDF with respect to ñ and [[P]].

4.4.1 Properties of Disjoint Forms I: Stability Conditions.

Stability conditions are central to capture the following insight: without name-

passing, the set of names private to a process remains invariant along computa-

tions. Hence, two processes that interact respecting the stability conditions and

do not share any private name will never be able to establish a private link. The

distinction on internal actions is essential to define stability conditions for internal

synchronizations (Lemma 4.1) and output actions (Lemma 4.2).

Lemma 4.1. Let T ≡ ν̃n (P ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and

P. If T
τ
−→ T ′ then: T ′ ≡ ν̃n (P′ ‖ C′[R̃]); fn(P′, R̃) ⊆ fn(P, R̃) and fn(C′) ⊆ fn(C);

T ′ is in NDF with respect to ñ, R̃, and P′.

The following results state that there is a stability condition for output actions,

and the way in which a ZDF evolves after a public synchronization.

Lemma 4.2. Let T ≡ ν̃n (P ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and

P. If T
(νs̃)a〈Q〉
−−−−−−→ T ′ then: there exist P′, C′, ñ′ such that T ′ ≡ ν̃n′ (P′ ‖ C′[R̃]);

fn(P′, R̃) ⊆ fn(P, R̃), fn(C′) ⊆ fn(C) and ñ′ ⊆ ñ hold; T ′ is in NDF with respect to

ñ′, R̃, and P′.

Lemma 4.3. Let T be a SHOn process in ZDF with respect to ñ and P. Suppose

T
aτ
−→ T ′ where

aτ
−→ is a public n-adic synchronization with P

(ν̃n)a〈R̃〉
−−−−−→ P′ as a

premise. Then T ′ is in n-adic disjoint form with respect to ñ, R̃, and P′.
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4.4.2 Properties of Disjoint Forms II: Origin of Actions.

We now give some properties regarding the order and origin of internal and output

actions of processes in DFs.

Definition 4.10. Let T = ν̃n (A ‖ C[R̃]) be a process in NDF with respect to ñ, R̃,

and A. Suppose T
α
−→ T ′ for some action α.

• Let α be an output action. We say that α originates in A if A
α′

−→ A′ occurs

as a premise in the derivation of T
α
−→ T ′, and that α originates in C if

C[R̃]
α′

−→ C′[R̃] occurs as a premise in the derivation of T
α
−→ T ′. In both

cases, α = (νs̃)α′ for some s̃.

• Let α = τ. We say that α originates in A if, for some a ∈ ñ, A
aτ
−→ A′ occurs

as a premise in the derivation of T
α
−→ T ′, or if A

τ
−→ A′ occurs as a premise

in the derivation of T
α
−→ T ′. We say that α originates in C if C[R̃]

τ
−→ C′[R̃]

occurs as a premise in the derivation of T
α
−→ T ′.

The lemma below formalizes when two actions of a disjoint form can be

swapped.

Lemma 4.4. Let T = ν̃n (A ‖ C[R̃]) be a process in NDF with respect to ñ, R̃,

and A. Consider two actions α and β that can be either output actions or internal

synchronizations. Suppose that α originates in A, β originates in C, and that there

exists a T ′ such that T
α
−→
β
−→ T ′. Then T

β
−→
α
−→ T ′ also holds, i.e., action β can be

performed before α without affecting the final behavior.

The converse of Lemma 4.4 does not hold: since an action β originated in C

can enable an action α originated in A, these cannot be swapped. We now gener-

alize Lemma 4.4 to a sequence of internal synchronizations and output actions.

Lemma 4.5. Let T = ν̃n (A ‖ C[R̃]) be a NDF with respect to ñ, R̃, and A. Suppose

T
~α
=⇒ T ′, where ~α is a sequence of output actions and internal synchronizations.

Let ~αC (resp. ~αA) be its subsequence without actions originated in A (resp. C) or

in its derivatives. Then, there exists a process T1 such that

1. T
~αC

==⇒ T1

~αA

==⇒ T ′.

2. T1 ≡ ν̃n
′ (A ‖

∏m1 R1 ‖ · · · ‖
∏mk Rk ‖ C′[R̃]), for some m1, . . . ,mk ≥ 0.
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4.4.3 A Hierarchy of Synchronous Higher-Order Process Calculi

We introduce a hierarchy of synchronous higher-order process calculi. The hier-

archy is defined in terms of the impossibility of encoding SHOn into SHOn−1. We

give details for the basic case of the hierarchy, namely that biadic process-passing

cannot be encoded into monadic process-passing (Theorem 4.1). The proof ex-

ploits the notion of MDF and its associated stability conditions. The general re-

sult, i.e., the impossibility of encoding SHOn+1 into SHOn (Theorem 4.2), results

as a generalization of the base case.

Theorem 4.1. There is no encoding of SHO2 into SHO1.

Proof (Sketch). The proof proceeds by contradiction, assuming such an encoding

does exist. Take the following SHO2 process

P0 = νm1,m2 (a〈S 1, S 2〉. 0) ‖

νb (a(x1, x2). (b〈b1. x1〉. 0 ‖ b〈b2. x2〉. 0 ‖ b(y1). b(y2). y1)

where S 1, S 2 have different observable behavior. After the communication on a,

P0 evolves into a P; it can be shown that the SHO1 process [[P]] is in MDF. Once in

P, either S 1 or S 2 is executed; this depends on a mutually exclusive choice that re-

lies on the private name b. Notice that P only involves output actions and internal

synchronizations. By completeness, P and [[P]] should be behaviorally equivalent;

during the bisimulation game, since output actions and internal synchronizations

preserve MDFs (Lemmas 4.1 and 4.2), [[P]] (and its derivatives) will be in MDF

as well. Using Lemma 4.5 it is possible to formalize the fact that certain causality

properties of the source term are lost in its encoding. As a result, the encoded term

can exhibit observable behavior that is different from the observable behavior in

the source term, thus leading to a fail in the bisimulation game and therefore to a

contradiction. �

The scheme used in the proof of Theorem 4.1 can be generalized for calculi

with arbitrary polyadicity. Therefore we have the following.

Theorem 4.2. For every n > 1, there is no encoding of SHOn into SHOn−1.

5 Final Remarks

We have presented expressiveness and decidability results for HO, a core

calculus for higher-order concurrency. Previous works on the expressiveness of

higher-order calculi (e.g. [27]) have opted for an indirect approach, as they have

largely relied on translations into a first-order language. However, as argued in the
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introduction, higher-order communication as required in emerging applications in

concurrency is often difficult (and sometimes impossible) to represent into a first-

order setting. This observation has motivated a direct approach to expressiveness,

in which basic properties of higher-order process calculi are studied directly on

them, exploiting their peculiarities. Such an approach is most convenient when

addressing issues related to expressiveness and decidability, two aspects of the

theory of calculi for higher-order concurrency that have been little explored.

We have concentrated on the study of the expressiveness of a handful of con-

cerns in the higher-order setting. They include name restriction, the shape and

capabilities of the objects in higher-order communications, forms of process sus-

pension, polyadic and asynchronous communication. Seen as a whole, they all

reveal aspects of higher-order concurrency that could shed light on the design of

abstract languages for concurrency involving a process-passing discipline. We are

of the opinion that calculi for emerging applications should result from the careful

combination of higher-order constructs and first-order features.

We regard HO as a framework for the study of the fundamental studies of

higher-order concurrency. While our interest has been the study of expressiveness

and decidability issues, HO is compact and versatile enough to be exploited

for other purposes. As a matter of fact, HO and/or variants of it have shown

useful in the study of the behavioral theory of higher-order process calculi [16],

and in the development of type systems for higher-order concurrent languages [6].
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