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1 Scientific and Community News

0. The latest CDMTCS research reports are (http://www.cs.auckland.ac.

nz/staff-cgi-bin/mjd/secondcgi.pl):

375. M.J. Dinneen, Y.-B. Kim and R. Nicolescu. P Systems and the Byzantine

Agreement. 01/2010

376. M. Andreev, I. Razenshteyn and A. Shen. Not Every Domain of a Plain

Decompressor Contains the Domain of a Prefix-Free One. 02/2010

377. Y.I. Manin. Renormalization and Computation II: Time Cut-Off and the

Halting Problem. 02/2010

378. M.J. Dinneen, Y.-B. Kim and R. Nicolescu. Synchronization in P Modules.

02/2010

379. V. Putz and K. Svozil. Can a Computer be “pushed” to Perform Faster-

Than-Light? 03/2010

380. K. Tadaki. A New Representation of Chaitin Omega Number Based on

Compressible Strings. 04/2010
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381. A.A. Abbott and C.S. Calude. Understanding the Quantum Computational

Speed-up via De-quantisation. 04/2010

2 A Dialogue about Qualitative Computing

with Professor Françoise Chatelin

Professor Françoise Chatelin http://www.cerfacs.fr/~chatelin teaches

Applied Mathematics at the University Toulouse 1- Capitole, and is the head of the

Qualitative Computing group at the Centre Européen de Recherche et de Forma-

tion Avancée au Calcul Scientifique (Cerfacs) in Toulouse, France. Her expertise

includes many areas, from spectral theory for linear operators in Banach spaces

to finite precision computation of very large matrix eigenproblems. Professor

Chatelin has supervised 31 Ph.D. theses and has authored three books which are

now classic references; the fourth one, to appear at World Scientific, Singapore,

is discussed here. Before moving to Toulouse, Professor Chatelin taught at the

Universities Grenoble 2 - Pierre Mendes-France and Paris 9 - Dauphine. She has

been a visiting researcher at Berkeley and Stanford Universities, IBM San Jose

(Ca) and Yorktown Heights (NY). For almost a decade (from 1984 to 1993) she

was a scientific manager (in charge of intensive computing) at the Centre Scien-

tifique IBM-France in Paris and the Laboratoire Central de Recherches Thales

near Paris.

Cristian Calude: Your latest book (soon to appear at World Scientific) devel-

ops a theory of computing—which you call qualitative computing—using general

multiplicative algebras. What is qualitative computing?

Françoise Chatelin: Qualitative computing is a branch of mathematics which

extends analysis and algebra over R and C by specifically looking at how the laws

of classical computation (Euler-Cauchy-Riemann-Jordan-Puiseux) are modified

when mathematical computation does not take place over a commutative field.

This fills a gap since most college-level textbooks in mathematical analysis only

consider numbers which are either real or complex. And modern abstract algebra

is not driven by computation.

CC: So we are talking about numerical computation. Why classical numbers are

not enough?

FC: Numerical in a broad sense, where “numbers" are defined as entities over

which well-defined computation can be performed on. There are important prac-

tical domains where classical numbers are too limited. Let me cite very different

examples.
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In physics, the quaternions which form a non-commutative field of numbers with

four real dimensions are the language of Maxwell’s electromagnetism and special

relativity. In computer graphics, they are essential for 3D motion pictures.

Another example is found in the booming field of numerical linear algebra: to

speed-up computation, the basic “numbers" are often taken to be square matrices

from an associative algebra (over R or C). This is essential for large computer

simulations required by high tech industries.

The third example is better known: it consists of vectors (or strings or sequences)

defined over a finite ring of scalars. The scalars {0, 1, 2, 3} in Z/4Z have a ring

structure with 2 as a zero-divisor.

CC: In the first two examples multiplication seems to be associative too. What is

the reason for dropping associativity altogether?

FC: To favour recursiveness, which enables complexification and creativity, two

properties which are ubiquitous in life’s phenomena.

CC: Why non-associativity is better suited for recursiveness and how this feature

“enables complexification and creativity”?

FC: I would rather say that the recursive definition of the 3 algebraic operations,

addition, involution, multiplication, when applied to real vectors in R2k , k > 0,

implies that multiplication becomes necessarily non-associative for k ≥ 3. This

does not happen when R is replaced by Z2, giving birth to binary sequences of

length 2k. Then involution reduces to the identity map, and multiplication remains

commutative and associative. Complexification is defined below, and creativity is

also related to paradoxes to be presented later.

CC: Is such a recursive definition for multiplicative algebras a new idea?

FC: Not at all: the idea—which goes back to the American mathematician

Dickson—is about a century old! Originally, Dickson was looking for an algo-

rithmic way to derive the multiplication table for the (non-associative) octonions

G of Graves (December 1843), from that for the (non-commutative) quaternions

H of Hamilton (October 1843). This lead him to the discovery in 1912 of the re-

cursive doubling process which defines an unbounded sequence of multiplicative

real algebras Ak (over R), k ≥ 0 in N. Let 1k (resp. 1̃k) represent the real (resp.

complex) unit in Ak, then

A0 = R, Ak = Ak−1 × 1k ⊕ Ak−1 × 1̃k, k ≥ 1,

where 1k = (1k−1, 0) and 1̃k = (0, 1k−1) satisfy 1̃ × 1̃ = −1. Starting from A0 = R,

one gets successively A1 = C = R ⊕ iR, 1̃1 = i = (0, 1) for k = 1, and A2 = H =

C ⊕ C × j, 1̃2 = j = (0 0, 1 0) for k = 2.
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In the complexification process where Ak−1 yields Ak, the complex unit 1̃k is con-

structed by assimilation of a vector foreign to Ak−1. Therefore each “complex"

algebra Ak possesses features which are not present in its “real" part Ak−1. This is

an aspect of creativity resulting from complexification, nonlinearity and induction

(k−1 7−→ k). This vastly differs from the much simpler creative process known as

mathematical induction. In Dickson algebras multiplication displays new features

for each k ≥ 0. By way of contrast, let us consider associative Clifford algebras

Ck (over R) used in high energy physics. Their structure obeys the evolution law

with period 8 given by Ck+8 � Ck ⊗ R
16×16 (Cartan, 1908). The sequence Ck is

completely determined by the eight first algebras C0 to C7.

Vectors in Ak, k ≥ 2, have been called hypercomplex numbers (Hurwitz, Dickson).

Accordingly, computation in Ak, k ≥ 2, was called hypercomputation. The origi-

nal idea of Dickson was later developed by considering scalars in other algebraic

structures than R. If one is interested in the various transformations of multipli-

cation as the dimension 2k of the numbers increases, then the case of scalars in a

finite ring (leading to discrete mathematics) is no less important than that of real

scalars (leading to continuous mathematics).

CC: Can you briefly describe the pros and cons of computing with elements in a

real Dickson algebra Ak?

FC: Hard to be brief because each Ak, k ≥ 3, has specific properties which makes

it unique in many respects. Any math student knows that analysis over C differs

greatly from analysis over R2, despite the isomorphism C � R × R. This is but

the simplest form of an underlying analytical engine in Ak, k ≥ 1, which takes a

specific form at each k.

As long as multiplication remains associative (k ≤ 2), nonlinear computation in

Ak remains classical and yields the absolute certainty that mathematicians are ac-

customed to, the very certainty that singles out mathematics from all experimen-

tal sciences. The situation changes drastically in the absence of associativity for

k ≥ 3.

In a nutshell, non-associativity induces measurement paradoxes which modify the

local geometry and challenges classical logic. Paradoxes signal a clash between

the global nonlinear viewpoint and the local linear one. It turns out that para-

doxes and freedom of choice between several computational routes can pop up

anywhere. In non-associative algebras, there only exist competing answers which

are all tentative. Their validity becomes relative to a backward analysis test elab-

orated by the computing agent. Therefore the special status of classical mathe-

matics does not hold without associativity. Maths becomes experimental: it tells

what “is possible" and no more what “it is." The analysis based on paradoxical

computation stops being deterministic without becoming random.
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CC: Please describe a measurement paradox?

FC: A measurement paradox is related to the Singular Value Decomposition

(SVD) of the multiplication map. In dimension 16 and higher, a vector defining a

multiplication has several measures, with only one agreeing with Euclid’s norm.

Even more strikingly, the Euclidean norm of a non-zero vector may be computed

as 0; hence Euclidean measurements may not be reliable. As I said earlier, there

may be several different answers to the same question, depending on the chosen

computational route. The two contradictory answers 0 and 1 may well be valid

computational outputs, showing the limits of classical logic. Such a paradoxical

phenomenon evokes the celebrated measurement problem in quantum mechanics.

What looks like a logical nightmare can be interpreted as a blessing: the freedom

to choose between several computational routes favours creativity. But extreme

caution is necessary, since nonlinear computation plays havoc in classical analysis

when it becomes paradoxical.

CC: So, what do we compute?

FC: I assume that your question is about any sort of computation, as general as

we can imagine it today. If we talk about conscious computing such as arithmetic

and beyond, we should keep in mind that, if all human groups have developed

language skills, not all count beyond 1, 2, many. So conscious counting is not

necessary for survival... Computation which sustains life in organisms seems to

take place mainly at an unconscious level, in which measurements play an impor-

tant role because the flow of information has to be delicately balanced. Dreams

often express a sort of symbolic computation within the human psyche.

But I guess that your question is more concerned with our technology-based so-

ciety. For millennia, computing has been the driving force behind the develop-

ment of mathematics. However in the twentieth century, it has been used mostly

to develop the techno-science, the science only driven by technology, for which

classical mathematics is good enough. Moreover the swift computerisation of

our society is fuelled by the impressive feats of the computer science community,

which receives an invaluable help from numerical software developers. It may not

be widely known that part of the worldwide success of Google should be cred-

ited to Gene Golub. This leading figure in numerical linear algebra was a very

influential professor at Stanford for almost half a century. He was also the scien-

tific advisor for many numerical routines developed to create the 1st-rank search

engine which lead to the current supremacy of Google.

On the life side in the twenty first century, Nature and lab experiments both in-

dicate limitations. If we want to progress in our understanding of life beyond the

simplistic picture that it emerges “in principle" from physics and chemistry, it may

be wise to look seriously at the amazing properties of paradoxical computation.
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CC: Which agents compute? Does Nature compute?

FC: Because mathematics is a creation of the human mind, it seems hard to main-

tain that other living beings are endowed with a man-created ability! However the

celebrated “unreasonable effectiveness of mathematics in the natural sciences"

(Wigner, 1960) indicates that scientists can safely reason as if they did, as if Na-

ture had the ability to process information by mathematical computing. But they

should never forget that any human explanation by a theory is anthropomorphic:

it may be a far cry from “natural reality."

CC: What is the goal of computing for human beings?

FC: This is a vast question which is a matter of much debate between psycholo-

gists and neuroscientists. And there is today no consensus about what “computing

for human beings" could mean “in reality." For the sake of this dialogue, let us as-

sume that man-created computation in the broadest sense is a plausible model for

some of the uncountably many ways by which the human mind can process infor-

mation. I suggest that, deep down, we compute in an effort to understand life as

we experience it, both in the world outside and in our own inner world. We try to

order the world according to reason. The goal is to help building our imago mundi,

that is an image of the world specific to each of us, and necessary to navigate in it.

In my book, I postulate that hypercomputation is an important tool to explore the

mind’s processes which appear to us as nonlinear computations. This shows in

the subtitle of the book: “A computational journey into nonlinearity." An essential

epistemological tool for the construction in this specific context, is the notion of

algebraic irreducibility by linear derivation, which characterises the limits of any

explanation by linear causality within an inherently nonlinear algebraic context

when k ≥ 2. The dimension of the irreducible nonlinear core of Ak is by definition

the algebraic depth of Ak (over R). It can be shown that the three division algebras

R, H and G have an algebraic depth equal to 1; all other Ak, k < {0, 2, 3}, have an

algebraic depth ≥ 2.

The algebraic depth is a measure of algebraic complexity, not to be confused

with the descriptive complexity (measured by the size of a computer program) in

computer science. Let me add that the extended commutative fields R and Ĉ are

self-irreducible, or holistic, within hypercomputation, with respective algebraic

depth 1 and 2. This confirms the fundamental role that R, C, and ∞ play in

mathematics.

CC: The computational world you describe, while fascinating, is about numerical

computation, hardly suited to be the only model of imago mundi. Non-numerical

computation is as important if not more important than numerical computation.

FC: I must confess that I do not find your distinction numerical/ non-numerical

as being always helpful. The age-old mathematical tradition tends to accept as
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“numbers” all entities over which one can perform computations of some sort in a

meaningful way. Nature has more imagination than mathematicians and computer

scientists put together... And Nature’s computation is a boundless domain, which

extends far beyond what you call numerical computation (which, I suppose, refers

to real scalars only).

As open-ended as hypercomputation may be, it would be risky to claim that such

a computational mode is the only model for the inner ways of the human mind. At

best, such a model does capture some important features which are not revealed

by classical computation. It is clear to me that most features of the mind remain

outside the reach of hypercomputation.

CC: Please explain the difference between thinking in R (reals) vs. C (complex

numbers). Is this related to 1D–thinking vs. 2D–thinking?

FC: Yes, the two expressions are equivalent, where R or 1D and C or 2D equally

refer to the extended line R = R ∪ {±∞} and to the extended plane Ĉ = C ∪ {∞}.

Observe that R (resp. Ĉ) is isomorphic to a circle (resp. Riemann sphere). Each

set is associated with a different causality which shapes the corresponding human

thinking. For example, a realisation of the causality based on R is the scientific

causality where cause always precedes effect. This is the causality that shapes the

mind of an infant: the spoon invariably drops on the floor when not held in hand.

Examples of the causality based on Ĉ are not experimentally obvious. We all

know that Western science rules out any causality other than the one—originally

suggested by empiricism—which is based on R (interpreted as the physical time

line). However it is not difficult to pinpoint examples of Ĉ-causality in the act of

mathematical understanding at once, in a flash of light. This is well documented

in the writings of Poincaré (1908) and Hadamard (1945). In mathematics, un-

derstanding and discovery are global processes based on Ĉ, whereas proofs and

communication are sequential processes akin to language: they are based on R

endowed with a natural order.

CC: Your views—from the perspective of continuous mathematics—on under-

standing, discovering, proving and communicating are very interesting. I would

argue against the generalisation you made when you said “[i]n mathematics”: in

discrete mathematics, an increasing part of “mathematics”, Ĉ and R play no role

and understanding, discovering, proving and communicating appear in a different

light.

FC: Of course there are discrete versions of R- and C- thinking adapted to hyper-

computations realised on finite rings. Circles and spheres have to be replaced by

regular polygons and polyhedra. The smaller the number of vertices, the greater

the difference between certain aspects of discrete and continuous hypercomputa-

tion. Discrete thinking sheds a new light on the algorithmic role of old notions
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such as the Sierpinski’s triangle (i.e. the arithmetic triangle mod 2). A good part

of my book is devoted to the constructive interaction between the discrete and the

continuous in computation (Chapters 6, 8, 10). A remarkable example of such

a constructive interaction is provided by the Picard iteration for the fixed-point

equation x = rx(1 − x), with −1/2 ≤ x ≤ 3/2 and −2 ≤ r ≤ 4. The amazing

properties of the logistic iteration: 0 < x0 < 1, xn+1 = rxn(1 − xn), n ≥ 0 were first

reported in the West by the biologist R. May (1976). The descriptive complexity

is low, but the global dynamics is complex (not real) in relation with the roots of

w3 = −1 and z6 = 1 (Chapter 6). A complete analysis of this dynamics requires the

cooperation of results by Fermat, Euler, Riemann, Cantor, Sierpinski, Sharkovski

and Feigenbaum. These results run over a period of about three and half centuries.

They deal with numbers in N,R,C and with actual infinity. The dynamical analy-

sis blurs the three distinctions: discrete/continuous, real/complex, potential/actual

infinity. These distinctions play an essential role in our current views about nu-

merical computation. But they are intimately intermingled by the logistic iteration

and defy separation. More is happening. At the three exceptional values r = 1

(resp. −2, 4), the iterate xn can be expressed in closed form as a function of x0, n

and r by means of an exponential (resp. trigonometric ) function. The algebraic

and transcendental viewpoints coalesce at the three values r ∈ {−2, 1, 4}.

CC: The discussion of the Borel-Newcomb paradox in your book is fascinating.

Can you please summarise it?

FC: I am pleased that you ask this question because the Borel-Newcomb paradox,

which lies deep at the heart of nonlinear computation, has not yet received the

serious attention it deserves.

In 1881, the American astronomer S. Newcomb noticed with amazement that the

first decimal digit in numbers arbitrarily chosen among those produced by human

computers or by Nature was about 6.5 times more likely to be 1 than 9. A para-

dox (Chatelin, 1996) emerges when one contrasts Newcomb’s little known remark

with the much better known result by Borel (1909) fromwhich follows that all (but

the first being , 0) decimal digits of a real number x chosen at random are uni-

formly distributed with density 1/10 (i.e. x is simply normal in base 10). The para-

dox can be easily resolved by the theory of P. Lévy (1939): Borel and Newcomb

do not look at the same numbers. The reals of Borel are abstract mathematical

numbers free from any computational process. By contrast, Newcomb observes

numbers which result from various nonlinear computations performed by man or

Nature alike. And Lévy proved that computation makes the first digit more likely

to be 1. This is a fundamental, yet little known, consequence of the scientific no-

tation for a positive real x in the base b ≥ 2: x = sbν, where s ∈ [1/b, 1[ is the

significand and ν ∈ Z is the exponent. Observe that x = blogb x = b[logb x]+{logb x}, so

that s = 1
b
b{logb x}, where {logb x} ∈ [0, 1[ is the mantissa of x. According to Borel
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(resp. Lévy) {x} (resp. {logb x}) is uniformly distributed on [0, 1].

Scientific computers use a version of the scientific notation adapted to the finite

world (finite number of digits for the significand, finite range for the exponent):

this is known as the floating-point representation of machine numbers. It is quite

remarkable that floating-point computation transforms Borel-normality ({x} uni-

form) into Lévy-normality ({logb x} uniform). This indicates that the bad repu-

tation of the inexact computer arithmetic is largely undeserved. On the negative

side, the arithmetic is not exact; but the inaccuracy can be kept under control by

a careful use of reliable numerical software. On the positive side, this floating-

point arithmetic endows a piece of hardware with an epistemological value. It is

perplexing to realise that this amazing potential is either ignored or dismissed by

most scientists. Finally, let me add that the complete theory of Lévy includes the

case of scalars in any finite ring Zn, n ≥ 2.

CC: Do you subscribe to the view according to which “mathematicians think and

reason, do not compute?”

FC: Literally speaking, such a view may describe some pure mathematicians of

the twentieth century only. From Antiquity to the nineteenth century, all mathe-

maticians did compute. Fermat, Euler and Riemann are three famous examples

of computing mathematicians in the 17th, 18th and 19th centuries. But this is

looking at one side of the coin only. Since the 16th century and Viète’s idea to

use letters to denote arbitrary data or unknowns, algebra grew increasingly sym-

bolic, showing that reason is partly an abstract computation. This complementary

side of the nature of mathematics is illustrated by Bourbaki: maths is presented as

an all-axiomatic, abstract, most general formal construction based on set theory.

Both aspects are equally at work in mathematics, but they are unevenly distributed

among mathematicians.

CC: The twentieth century “paradigm shift” in computing appeared when, to cite

from your book, the “notion of mathematical computability, crafted over mil-

lennia, was abandoned in favour of mechanical computability . . . ” What is the

“millennia old” mathematical computability?

FC: The red thread which runs through the historical development of mathematics

has been the crucial question of which entities could be accepted as numbers, so

that one could confidently compute over them and get meaningful results. This

epistemological question is “mathematical computability." Before they could be

accepted as bona fide numbers, the status of the following entities has been pas-

sionately scrutinised: irrational numbers, zero and ∞ = 1
0
, negative numbers,

complex numbers, quaternions, to name a few familiar examples. The list of num-

bers is open-ended; it contains increasingly symbolic “numbers", most of which

are yet to be thought of.
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CC: We talk about numbers—old, new, or yet to be discovered, but computing is

not about numbers only. Computability theory, developed in the twentieth century,

is a mathematical theory of mechanical computing. It shows that one can compute

non only with numbers (of any type), but also with strings over alphabets. The

digital revolution has its main roots in the “computer on paper” imagined and stud-

ied in this field. The universal Turing machine is the theoretical model justifying

the very existence of our current computers, from laptops to the super-computers.

Gödel’s incompleteness theorem (and many other results which followed) was

proved in this framework. Still, you seem to hold strong negative feelings against

this field. . .

FC: First, let me slightly disagree with you. Why should letters in an alphabet be

considered of a different nature than numbers, if they enable well-defined compu-

tations? They are both symbols conceived by man. In the past century, Poincaré

and Hilbert pioneered the use of group to characterise all isometric transforma-

tion in geometry. Should we call these “numbers" or “letters"? Either way is fine

of course. Under the influence of cybernetics and molecular biology, the more

encompassing but vaguer term “information" seems to gain interdisciplinary ac-

ceptance.

The sweeping success of computers in our society owes something to the theory of

computability. Arguably, it owes also to the floating-point arithmetic of scientific

computers. In addition to 1936 Turing’s paper, in my view, the origin of the

computer revolution could be assigned to the year 1914 which saw the first known

design of a floating-point computer arithmetic, by L. Torres y Quevedo in Madrid.

According to Knuth, the scientific notation was used implicitly in Sumer four

millennia ago! Moreover, if scientific computers were to disappear tomorrow, this

would deal a severe blow to the development of the scientific know-how at the

two extreme scales, large and small, such as cosmology and high energy physics.

Second, I want to protest. I certainly hold no negative feelings against the re-

spectable field of computability theory. It is very important to delineate the pre-

cise limits of mechanical computing, the limits of formal axiomatic systems. My

reservations only concern the claims of some researchers which extend to mathe-

matics, without further ado, results which have only been proved for Turing ma-

chines; they ignore the warning of Gödel himself against such a bold extrapolation

(1972).

CC: With your permission I wish to continue our disagreement. Floating-point

computer arithmetic is part of numerical computing which has many applications

in science and technology. However, we should not forget the equally (maybe

more?) important area of non-numerical computation. The use of internet, so-

cial networking and many other non-numerical computations—the largest part of

computer science daily used by laymen—are modelled by Turing computations,
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not by a computation in a commutative or non-commutative algebra.

FC: What about Boolean algebras? And is not Z2 = {0, 1} a commutative field?

Your question is a good illustration of the current cultural divide between math-

ematics and computer science. A divide which expresses only a difference in

perspective about computation. Turing’s original diagonal argument (1936) tells

us that the algebraic structure of N × N can be modified by computation: unbe-

knownst to the user, algebra creeps in...

Now, the opinion that computer science is more (or less) important than scien-

tific computing is also a matter of perspective. Computers have certainly a visible

impact on the organisation of everyone’s life. The contribution of computer sim-

ulations in engineering is not obvious on a daily basis, but the results are highly

visible in high tech industries, from cellular phones to nanotechnologies. How-

ever, beyond academia, computers are not used as strict Turing machines. They

harmoniously combine, whenever needed, the two aspects of computation which

are logical and numerical. It is useful to contrast—but useless to oppose—these

two kinds of computers.

CC: I certainly agree with your last point of view. But language itself can con-

tribute to the mutual misunderstanding. For example, the name “scientific com-

puting” seems unfortunate: it creates the (wrong) impression that any other type

of computation is unscientific. Some terms like computability, complexity, hyper-

computation, have different meanings in computability theory and in “classical

mathematics.” For example, the meaning of hypercomputation in the sense you

cited is different (and older) than the one practiced in computer science (which

means “going beyond the computational capability of any Turing machine”).

FC: This results from natural evolution: new fields of knowledge tend to drift

away from their origin as they mature. This happened to computability theory

which in 80 years evolved away from mathematics to get closer to computer sci-

ence. Inevitably, this creates a semantic ambiguity which should be clarified when

it arises. For example, what is mechanically computable differs greatly from what

is mathematically computable.

CC: You write that “The coup de force was accomplished in the name of rigour,

neglecting the fact that rich polysemic notions are necessarily ambiguous. Only

trivialized notions can be crystal clear.” Rigour doesn’t oppose ambiguity (think

about fuzzy sets theory or polyvalent logics).

FC: You are absolutely correct about alternative logics. The example of fuzzy

logic is developed to some extent in my book (Chapter 10). My first comment

is to recall that fuzzy logic (Zadeh,1961) is extremely controversial in the West,

despite its impressive successes for smart technology. This is not surprising since

I show that it is related to Ĉ-causality, a blind spot in current science. My second
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comment is that, when the coup de force took place in the 1930s, it was explicitly

directed against geometry. It had been realised by then that geometric evidence

was not fully rigourous. But the mathematicians threw away the baby with the

bathwater, and Ĉ-causality was implicitly banned together with geometry. This

explains the paramount importance given afterwards to axiomatisation and formal

proofs in any mathematical work intended for publication (papers and textbooks).

This formal approach—duly avoiding any reference to meaning, interpretation,

not to mention significance for life—has deterred many a scientist and schoolchild

from mathematics.

CC: Citing again from your book: “Turing’s proof of the unsolvability of the halt-

ing problem is a mechanical version of Gödel’s incompleteness result: because Z

is algebraically too “poor”, there will always exist propositions written in a formal

axiomatic system which happen to be true but are not formally provable within the

system.” Unsolvability and incomputability abounds in continuous mathematics

as well. Just to quote a well-known example: Pour-El and Richards proved in

1979 that an innocent looking differential equation has uncountably many solu-

tions, but does not have a computable solution.

FC: I stress in my book that the deep reason behind Gödel (1931) and Turing

(1936) is the fact that the set of numbers that they consider has an algebraic depth

equal to 1 rather than being ≥ 2. The algebraic depth is related to the purely

algebraic notion of a derivation map. To recall, a derivation D over an arbitrary

multiplicative algebra A is a linear map which satisfies, for any x, y ∈ A the Leib-

niz formula: D(x × y) = (Dx) × y + x × (Dy). This extends the 17th century old

notion of derivative for a function to a much broader context, which can be either

discrete or continuous. Thus the question of discreteness (N or Z) versus continu-

ity (R) is not essential. For example, Rumely (1986) showed that Hilbert’s 10th

problem is solvable over algebraic integers which have an algebraic depth equal

to 2. Therefore the result of Pour-El and Richards is not surprising. However, in a

continuous context, it is important to avoid the semantic ambiguity. A precaution

not taken by these authors.

CC: Maybe the result proved by Pour-El and Richards is not surprising today,

but it belongs to a large list of undecidable problems in continuous mathematics,

analysis, real or complex, topology, differential geometry, quantum physics, to

name just a few. Apparently these results have nothing to do with algebraic depth.

FC: Pour-El and Richards result is a welcome reminder that there exist natu-

ral phenomena (modelled by continuous mathematics) which are mathematically

computable, but cannot be formally produced by mechanical computation. Un-

less one’s mind is fully under the spell of finite algorithms, this should not come

as a big surprise. Admittedly, the many Turing-like undecidability results in con-
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tinuous mathematics have been proved without any explicit appeal to the notion

of algebraic depth. However, this does not mean that the notion should play no

explanatory role. Indeed, Rumely’s result points in the other direction. But to

perceive such an implicit role, it is useful to think outside the Turing box, and

apply the wisdom credited to Hadamard: to fathom the reals, go complex. One

might want to expand the framework of Turing computability to the broader one of

hypercomputation, while staying within the scope of mathematical computability.

CC: Can you give your arguments refuting Church-Turing thesis?

FC: This is certainly not an absolute refutation. Our dialogue has shown the im-

portance of the algebraic context for any computability theory: binary vs. real,

rational vs. irrational, algebraic vs. transcendent, real vs. complex and so on

. . .What I question is the claim to absolute universality of the Church-Turing the-

sis. If universality is meant within today’s machines using classical technology,

then I agree that the thesis is plausible. But if universality refers to mathematical

computation, then the thesis is obviously too restrictive. It cannot account for the

simple fact that
∑∞

k=0 2
−k = 2. The real number 1.1111.... in base 2 is Turing-

computable but cannot be identified with the integer 2 by any finite algorithm.

This inability prevents the Turing machine to achieve life’s simplexity on its own.

In addition, it is telling to contrast Turing machines and scientific computers.

It is known that Borel-normal sequences appear random to any finite-state ma-

chine. Analogously, any Chaitin-normal sequence (i.e. algorithmically irreducible

in computer science parlance) appears random to any Turing machine. From an

epistemological point of view it does not pay to move from a finite-state to a

Turing machine. You can only get an aggravated form of randomness (Chaitin,

1977). This makes a sharp contrast with scientific computers!

CC: A tuatara machine (Calude, Stay, 2006) has the capability you seem to think

a Turing machine may miss.

Why do you think that, epistemologically, you don’t need Turing machines, you

can do everything with (the weaker) finite-state automata? Also, please explain

the “sharp contrast with scientific computers!”.

FC: This is not at all what I think. First, I do not say that the epistemological

alternative to a Turing machine is a finite-state automaton. I say that the alternative

is a scientific computer. The contrast between the two computers appears in full

light when one starts from a Borel-normal sequence which looks random to a

finite-state automaton. By processing the sequence on a Turing machine, one

is likely to get a Chaitin-normal sequence. Such an algorithmically irreducible

sequence is tautologic: each of its bits has a value justified by no other formal

reason than itself. In other words, the sequence is because it is; there is no deeper

reason to be found. For x chosen at random in [0,1[, the global identity x 7→ x
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becomes a string of tautologies at the bit-level inside x. Now, if we process a

Borel-normal sequence on a computer endowed with scientific notation, one is

likely to get a Lévy-normal sequence. The dynamics differs because the map

x 7→ {x} is replaced by x 7→ {logb x}. Instead of the reinforcement of the identity

that is produced by a Turing machine, the scientific computer induces a change

of viewpoint, from x to its mantissa. Interestingly, “mantissa" in Latin means

“additional weight," whereas its Greek root “manteia" means “divination".

A Turing machine is the tool of choice to analyse identity and invariance; it en-

forces the chosen law of logic. A scientific computer, on the other hand, is a tool

designed to model natural change and evolution, thanks to its floating-point arith-

metic. The goal is no more to maintain the logical coherence, but rather to explore

the evolutive diversity of Nature. In conclusion, neither of these two versions of

computers can claim supremacy over the other. Both provide an invaluable help in

the scientific approach through computation of Life’s phenomena, which combine

constructively invariance AND evolution in amazingly inventive ways.

CC: Many thanks!


