
61 61

61 61

Bulletin of the EATCS no 102, pp. 53�82, October 2010

©c European Association for Theoretical Computer Science
53

T C C C


J T́

Dept. Theoretische Informatik, Universität Ulm
Oberer Eselsberg, 89069 Ulm, Germany

jacobo.toran@uni-ulm.de

The study of the complexity of logical problems has provided a very fruitful
field of research since many decades. On the one hand researchers have
tried to classify exactly in terms of complexity classes and upper and lower
bounds the complexity of decision and other logical problems. Although in
general such problems are of high complexity, efforts have been made to de-
velop efficient algorithms to solve such problems when restricted to important
logic fragments, that are relevant in the praxis. Michael Thomas and Heribert
Vollmer survey in this excellent column recent complexity results for fragments
of languages of non-monotonic logics.
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1 Introduction
Over the past few decades, non-monotonic reasoning has developed to be one of
the most important topics in computational logic and artificial intelligence. The

∗Leibniz Universität Hannover, Institut für Theoretische Informatik,
{thomas,vollmer}@thi.uni-hannover.de. Work partially supported by DFG grant VO 630/6-
2.



62 62

62 62

BEATCS no 102 THE EATCS COLUMNS

54

non-monotonicity here refers to the fact that, while in usual (monotonic) reason-
ing adding more axioms leads to potentially more possible conclusions, in non-
monotonic reasoning adding new facts to a knowledge base may prevent previ-
ously valid conclusions. Different ways to introduce non-monotonic aspects to
classical logic have been considered:

(1) The derivation process may be extended using non-monotonic inference
rules.

(2) The logical language may be extended with non-monotonic belief operators.

(3) The definition of semantics may be changed.

In this survey we consider a logical formalism from each of the above possi-
bilities, namely

– Reiter’s default logic (as a candidate for possibility (1) above), which intro-
duces default inference rules of the form α:β

γ
, where α:β

γ
intuitively expresses

that γ can be derived from α as long as β is consistent with our knowledge;

– Moore’s autoepistemic logic (a candidate for (2)), that extends classical
logic with a modal operator L to express the beliefs of an ideal rational
agent, in the sense that Lϕ expresses that ϕ is provable;

– McCarthy’s circumscription (as candidate for (3)), which restricts the se-
mantics to the minimal models of a formula or set of formulae.

Additionally we survey abduction, where one is not interested in inferences from
a given knowledge base but in computing possible explanations for an observation
with respect to a given knowledge base.

Complexity results for different reasoning tasks for propositional variants of
these logics have been studied already in the nineties. It was shown that in each
case, the complexity is higher than for usual propositional logic (typically com-
plete for some level of the polynomial-time hierarchy). In recent years, however,
a renewed interest in complexity issues can be observed. One current focal ap-
proach is to consider parameterized problems and identify reasonable parameters
that allow for FPT algorithms. In another approach, the emphasis lies on identi-
fying fragments, i.e., restriction of the logical language, that allow more efficient
algorithms for the most important reasoning tasks.

In this survey we focus on this second aspect. We describe complexity results
for fragments of logical languages obtained by either restricting the allowed set of
operators (e.g., forbidding negations one might consider only monotone formulae)
or by considering only formulae in conjunctive normal form but with generalized
clause types (which are also called Boolean constraint satisfaction problems).
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The algorithmic problems we consider are suitable variants of satisfiability and
implication in each of the logics, but also certain counting problems, where one is
not only interested in the existence of certain objects (e.g., models of a formula)
but asks for their number.

2 Post’s Lattice
In 1941, Post showed that the sets of Boolean functions closed under projections
and arbitrary composition, called clones, form a lattice containing only countably
infinite such closed sets, and he identified a finite base for each of them [55]. The
closure operation, denoted by [·], is not arbitrarily chosen but rather captures an
intuitive understanding of expressiveness: Given a set B of Boolean functions,
[B] denotes the set of Boolean functions expressible using functions from B, or
equivalently: computable with Boolean circuits with gates performing functions
from B. Moreover, it is well behaved with respect to computational complexity;
e.g., if Π(B) is a decision problem defined over Boolean circuits with gates corre-
sponding to Boolean functions from B, then Π(B) ≤log

m Π(B′) for all finite sets B′

of Boolean functions such that all functions from B can be expressed in B′, i.e.,
B ⊆ [B′]. Similar statements hold for decision problems defined over Boolean
formulae (see [65]). Post’s lattice thus holds the key to study and classify the
computational complexity of problems parameterized by finite sets of available
Boolean functions. In this section, we will define the required terms and notation
to introduce Post’s lattice.

Let L be the set of propositional formulae, i.e., the set of formulae defined via

ϕ ::= a | f (ϕ, . . . , ϕ),

where a is a proposition and f is an n-ary Boolean function (we do not distin-
guish between connectives and their associated functions). For a finite set B set
of Boolean functions, a B-formula is a Boolean formula using functions from B
only. The set of all B-formulae is denoted by L(B).

A clone is a set of Boolean functions that is closed under superposition, i.e.,
B contains all projections (that is, the functions In

m(x1, . . . , xn) = xm for n ∈ N and
1 ≤ m ≤ n) and is closed under arbitrary composition [54]. For a set B of Boolean
functions, we denote by [B] the smallest clone containing B and call B a base for
[B]. A B-formula g is called B-representation of f if f ≡ g.

Post showed that the set of all clones ordered by inclusion together with meet
A ∧ B = [A ∩ B] and join A ∨ B = [A ∪ B] forms the lattice depicted in Figure 1.
To give the list of all the clones, we need the following properties. Say that a set
A ⊆ {0, 1}n is c-separating, c ∈ {0, 1}, if there exists an i ∈ {1, . . . , n} such that
(a1, . . . , an) ∈ A implies ai = c. Let f be an n-ary Boolean function and define the
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dual of f to be the Boolean function dual( f )(x1, . . . , xn) := ¬ f (¬x1, . . . ,¬xn). We
say that:

– f is c-reproducing if f (c, . . . , c) = c, c ∈ {0, 1};

– f is c-separating if f −1(c) is c-separating, c ∈ {0, 1};

– f is c-separating of degree m if all A ⊆ f −1(c) with |A| = m are c-separating;

– f is monotone if a1 ≤ b1, . . . , an ≤ bn implies f (a1, . . . , an) ≤ f (b1, . . . , bn);

– f is self-dual if f ≡ dual( f ); here, dual( f )(x1, . . . , xn) = ¬ f (¬x1, . . . ,¬xn);

– f is affine if f (x1, . . . , xn) ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1};

– f is essentially unary if f depends on at most one variable.

The above properties canonically extend to sets of Boolean functions. The list
of all clones is given in Table 1, where id denotes the identity I1

1 and Tn+1
n is

the (n + 1)-ary threshold function with threshold n defined as Tn+1
n (x0, . . . , xn) :=∨n

i=0(x0 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xn), i.e., Tn+1
n (x0, . . . , xn) is 1 if at least n of its

inputs are 1.
The following easy observation, which will be useful in the subsequent sec-

tions, gives a a first example of the relationship between function-restricted sets
of Boolean formulae.

Lemma 2.1 Let B be a finite set of Boolean functions and let L be a set of (B∪{1})-
formulae. Then L can be transformed in logspace into a set L′ of B-formulae such
that the number of satisfying assignments of L and L′ coincide.

Proof sketch. The idea is to add a fresh proposition t to L and to replace all occur-
rences of the constant 1 with t. As a result we obtain that, for problems Π defined
over sets of Boolean formulae, Π(B ∪ {1}) ≡log

m Π(B). �

3 Default Logic
Default logic is among the best known and most successful formalisms for non-
monotonic reasoning. It was proposed by Raymond Reiter in 1980 [56] and ex-
tends classical logic with default rules, i.e., defeasible inference rules with an
additional justification. These capture the process of deriving conclusions based
on inferences of the form “in the absence of contrary information, assume . . .”. As
with few exceptions most of our knowledge about the world is almost true rather
than an absolute truth, Reiter argued that his logic is an adequate formalization
of the human reasoning under the closed world assumption, which allows one to
assume the negation of all facts not derivable from the given knowledge base.
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Clone Definition Base
BF All Boolean functions {x ∧ y,¬x}
R0 { f ∈ BF | f is 0-reproducing} {x ∧ y, x ⊕ y}
R1 { f ∈ BF | f is 1-reproducing} {x ∨ y, x↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y↔ z)}
M { f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M ∩ R0 {x ∧ y, x ∨ y, 0}
M1 M ∩ R1 {x ∧ y, x ∨ y, 1}
M2 M ∩ R2 {x ∧ y, x ∨ y}
S0 { f ∈ BF | f is 0-separating} {x→ y}
Sn

0 { f ∈ BF | f is 0-separating of degree n} {x→ y, dual(Tn+1
n )}

S1 { f ∈ BF | f is 1-separating} {x9 y}
Sn

1 { f ∈ BF | f is 1-separating of degree n} {x9 y,Tn+1
n }

Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ ¬z), dual(Tn+1
n )}

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn

01 Sn
0 ∩M {dual(Tn+1

n ), 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn

00 Sn
0 ∩ R2 ∩M {x ∨ (y ∧ z), dual(Tn+1

n )}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ ¬z),Tn+1

n }

S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn

11 Sn
1 ∩M {Tn+1

n , 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩ R2 ∩M {x ∧ (y ∨ z),Tn+1

n }

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D { f ∈ BF | f is self-dual} {(x ∧ y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ ¬z) ∨ (y ∧ ¬z)}
D2 D ∩M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
L { f ∈ BF | f is affine} {x ⊕ y, 1}
L0 L ∩ R0 {x ⊕ y}
L1 L ∩ R1 {x↔ y}
L2 L ∩ R2 {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
E { f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
V { f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N { f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N ∩ D {¬x}
I { f ∈ BF | f is constant or a projection} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}

Table 1: List of all clones with definition and bases
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Figure 1: Post’s lattice
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Formally, a default rule is an expression of the form α:β
γ

, where α, β, γ are for-
mulae; α is called the premise, β is called justification, and γ is called conclusion.
Further, a default theory is a pair (W,D), where W is a set of formulae and D is
a set of default rules. The intended interpretation of default rules is that γ holds
if α can be derived and β is consistent with our knowledge and beliefs about the
world. It is this consistency condition that introduces the non-monotonicity:

Example 3.1 Consider the default theory (W,D) with W := {x},D :=
{

x:y
z

}
. Then

we should be able to derive z from (W,D), as x is a fact from W and y is consistent
with the consequences of W ∪ {z}. However, if W is extended with {¬y} then W is
no longer consistent with the justification of x:y

z and we have no right to conclude
z. The addition of ¬y to W thus invalidates the consequence z.

As another consequence, the derivable knowledge depends on the set of ap-
plied defaults:

Example 3.2 Consider the default theory (∅,D) with D :=
{

1:x
¬y ,

1:y
¬x

}
. If we apply

the left default, then ¬y is derivable while the right default is blocked, as its jus-
tifications is inconsistent with the conclusion ¬y. On the other hand, if we apply
the right default first, then ¬x is derived and the left default rule gets blocked.

Thus, to appropriately represent the knowledge derivable from a default the-
ory, we introduce the notion of stable extensions.

Definition 3.3 ([56]) Let (W,D) be a default theory and E be a set of formulae.
Let E0 := W and Ei+1 := Th(Ei) ∪

{
γ
∣∣∣∣ α:β
γ
∈ D, α ∈ Ei and ¬β < E

}
. Then E is a

stable extension of (W,D) if and only if E =
⋃

i∈N Ei.

Stable extensions can alternatively be characterized as the least fixed points of
an operator ΓW,D: For a given default theory (W,D) and a set E of formulae, let
ΓW,D(E) be the smallest set of formulae such that

1. W ⊆ Γ(E),

2. Γ(E) is deductively closed (i.e., ΓW,D(E) = Th(ΓW,D(E))), and

3. for all α:β
γ
∈ D with α ∈ ΓW,D(E) and ¬β < E, it holds that γ ∈ ΓW,D(E)

(in this case, we also say that the default α:β
γ

is applicable).

Proposition 3.4 ([56]) Let (W,D) be a default theory and a E be a set of formulae.
Then E is a stable extension of (W,D) iff E is a fixed point of ΓW,D.

We have already observed in Example 3.2 that a default theory may possess
several stable extensions; indeed, a default theory with n default rules may have
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any number of different stable extensions between 0 and 2n. Thus the following
questions naturally arise:

(Extension existence) Does a given default theory admit a stable extension?
(Credulous reasoning) Is a given formula contained in at least one stable ex-

tension of a given default theory?
(Skeptical reasoning) And, finally, is a given formula contained in all stable

extensions of a given default theory?
The computational complexity of the corresponding decision problems was

first explored by Kautz and Selman [38], and Stillman [61], who both presented
results for syntactically restricted fragments of disjunction-free default logics. In
1992, Gottlob [24] and Stillman [62] then independently showed that the com-
putational complexity of these questions is presumably higher than that of the
corresponding satisfiability and implication problem in propositional logic:

Theorem 3.5 ([24, 62]) The extension existence problem and the credulous rea-
soning problem for default logic are Σ

p
2-complete, whereas the skeptical reasoning

problem for default logic is Π
p
2-complete.

More recently, Liberatore and Schaerf [41] showed that model checking (i.e.,
the task to decide whether a given assignment is a model of any extension of a
given default theory) is Σ

p
2-complete, too. And Ben-Eliyahu-Zohary [4] extended

the complexity landscape of default logics with results on disjunction-free frag-
ments dual to those studied by Kautz and Selman, and Stillman. The study of these
fragments was motivated by embeddings of other formalisms into default logic.
However, little was known about the complexity of not-disjunction-free default
logics. In [7], the authors devise a systematic study of the fragments of default
logic obtained by restricting the set of available Boolean functions. The results
provide insight into the source of the hardness of default reasoning and reveal
the trade-off between expressivity and computational complexity of fragments of
default logic.

To present the results, let B be a finite set of Boolean functions. Say that the
default theory (W,D) is a B-default theory if W ∪

{
α, β, γ

∣∣∣∣ α:β
γ

}
⊆ L(B) and let

B-default logic denote default logic restricted to B-default theories.

Theorem 3.6 ([7]) Let B be a finite set of Boolean functions. Then the extension
existence problem for B-default logic is

1. Σ
p
2-complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆
p
2-complete if S11 ⊆ [B] ⊆ M,

3. NP-complete if [B] ∈ {N,N2, L, L0, L3},

4. P-complete if [B] ∈ {V,V0,E,E0},
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5. NL-complete if [B] ∈ {I, I0}, and

6. trivial in all other cases (that is, if [B] ⊆ R1),

via logspace many-one reductions.

A key observation to the proof of this theorem is the following lemma.

Lemma 3.7 Let B be a finite set of Boolean functions. If [B] ⊆ M then any B-
default theory has at most one stable extension; if [B] ⊆ R1 then any B-default
theory has at exactly one stable extension.

Proof. Suppose first that [B] ⊆ M. Then each function f ∈ B is either 1-reproducing
or equivalent to 0. Default rules with a justification equivalent to 0 are not appli-
cable unless W is inconsistent. As in this caseL is the only stable extension of the
default theory [56, Corollary 2.3], we w.l.o.g. suppose that all justifications are
1-reproducing, i.e., [B] ⊆ R1. Now observe that the negation of a 1-reproducing
function is not 1-reproducing while all consequents of 1-reproducing functions
are. Indeed, if [B] ⊆ R1 then any stable extension of a default theory is con-
sistent and satisfied by the assignment setting to 1 all propositions, which also
satisfies the justification of each default rule. Thus any monotone default theory
may possess at most one stable extension while any 1-reproducing default theory
possesses exactly one stable extension. �

We will sketch the proof of Theorem 3.6.

Proof sketch. For S1 ⊆ [B] or D ⊆ [B], the Σ
p
2-hardness follows from Theorem 3.5

and Lemma 2.1, as [S1 ∪ {1}] = [D ∪ {1}] = BF and the upper bound easily
generalizes from {∧,∨,¬} to arbitrary sets of Boolean functions.

The case [B] ⊆ R1 follows directly from Lemma 3.7. It hence remains to
consider those sets B such that [B ∪ {1}] contains the constant 0. These are all
included in either the clone M or the clone L (or both).

For S11 ⊆ [B] ⊆ M, membership in ∆
p
2 follows similarly from Lemmas 2.1

and 3.7: the only way for a monotone default theory not to possess a stable ex-
tension is to contain a default rule α:β

γ
such that γ ≡ 0. It thus suffices to com-

pute the set of applicable defaults using subsequent calls to a coNP-oracle for
B-formula implication and to verify that their conclusions are satisfied by the as-
signment setting to 1 all propositions. It is straightforward to implement this as a
∆

p
2-algorithm. The ∆

p
2-hardness on the other hand is established using a reduction

from the sequentially nested satisfiability problem, which was first identified to be
∆

p
2-complete in [25, Theorem 3.4] (see also [40]).

If one further restricts the set B such that [B] ∈ {V,V0,E,E0} (i.e., [B ∪ {1}]
does contain the Boolean constants and either conjunctions or disjunctions), then
formula implication and the the extension existence problem become tractable [6].
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Indeed, the problem becomes P-complete, as can be shown by a reduction from a
variant of the circuit value problem.

Further restricting the set B such that [B] ∈ {I, I0} (i.e., [B∪ {1}] does only con-
tain the Boolean constants) leads to default theories with rules whose premise and
conclusion are a single proposition. As a result, the existence of a stable extension
reduces to the complement of the reachability problem in directed graphs. Simi-
larly, reachability in such graphs can be transformed into the question whether a
stable extension does not have a stable extension. As this problem is NL-complete
and NL is closed under complement, the extension existence problem for such de-
fault theories is NL-complete.

Finally, for [B] ∈ {L, L0, L3,N,N2} (i.e., ¬ ∈ [B ∪ {1}] and [B] is affine), we
observe a different situation. There may exist exponentially many different stable
extensions; yet, the verification of a candidate is tractable because implication
and satisfiability of B-formulae are [6]. Hence, the extension existence problem
becomes solvable in NP. The NP-hardness, on the other hand, is obtained by
reducing from the satisfiability problem for 3CNF formulae: given a formula ϕ ≡∧n

i=1 ci with ci ≡ `i1 ∨ `i2 ∨ `i3, we construct the default theory (∅,D) with

D :=
{1 : xi

xi
,

1 : ¬xi

¬xi

∣∣∣∣∣ xi ∈ Vars(ϕ)
}
∪

{
`i1 : `i2

`i3

∣∣∣∣∣ 1 ≤ i ≤ n
}
,

where, for a literal `, ` denotes the literal of opposite polarity, and for a formula
ϕ, Vars(ϕ) denotes the set of all variables in ϕ. It is easy to verify the correctness
of this reduction. As the above default theory can easily be written as a B-default
theory for all B such that ¬ ∈ [B], the proof is complete. �

Remark 3.8 As default rules require the justification β to be consistent with a
stable extension E (i.e., ¬β < E), another conceivable formalization of B-default
logic would be to require α and γ to be B-formulae and β to be the negation of a
B-formula. For this formalization, the extension existence problem for B-default
logic is Σ

p
2-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B], and tractable otherwise

(with this case splitting into ⊕L-complete cases and logspace-solvable cases).

Given the upper and lower bounds for the stable extension problem it is easy to
settle the complexity of the credulous and skeptical reasoning problem. Define the
credulous (resp. skeptical) reasoning problem for B-default logic as the problem to
decide, given a B-default theory (W,D) and a B-formula ϕ, whether ϕ is contained
in a stable extension (resp. all stable extensions) of (W,D).

Theorem 3.9 ([7]) Let B be a finite set of Boolean functions. Then the credulous
(resp. skeptical) reasoning problem for B-default logic is

1. Σ
p
2-complete (resp. Π

p
2-complete) if S1 ⊆ [B] or D ⊆ [B],
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2. ∆
p
2-complete if S11 ⊆ [B] ⊆ M,

3. coNP-complete if S00 ⊆ [B] ⊆ R1 or S10 ⊆ [B] ⊆ R1 or D2 ⊆ [B] ⊆ R1,

4. NP-complete (resp. coNP-complete) if [B] ∈ {N,N2, L, L0, L3},

5. P-complete if V2 ⊆ [B] ⊆ V or E2 ⊆ [B] ⊆ E or [B] ∈ {L1, L2}, and

6. NL-complete in all other cases (that is, if [B] ⊆ I),

via logspace many-one reductions.

Another possibility to study fragments of default logic, aside restricting the
available Boolean functions, is Schaefer’s framework [57]. This framework is
motivated by constraint satisfaction problem, where a set of conditions repre-
sented as logical relations has to be simultaneously satisfied. Hence, the set W
and the formulae occurring in D are assumed to be a set of applications of re-
lations from S to the variables in Vars(W) ∪ Vars(D), where Vars(D) is a short-
hand for Vars

({
α, β, γ

∣∣∣ α:β
γ
∈ D

})
. That is, W and the formulae occurring in D

are of the form {R1(x11, . . . , x1m1), . . . ,Rn(xn1, . . . , xnmn)}, where the Ri’s are rela-
tions of arity mi from a fixed set S of available relations over the domain {0, 1}
and the variables x11, . . . , xnmn are from Vars(W) ∪ Vars(D). Such a set of appli-
cations of relations is correspondingly said to be satisfied by an assignment σ if
(σ(xi1), . . . , σ(ximi)) ∈ Ri for all 1 ≤ i ≤ n. Call a relation R Schaefer if it is either

– affine (coincides with the set of models of an {⊕}-formula),

– bijunctive (coincides with the set of models of a 2CNF formula),

– Horn (coincides with the set of models of a Horn formula), or

– dual Horn (coincides with the set of models of a dual Horn formula).

And say that a set of relations is Schaefer if there is one of the above four prop-
erties that is satisfied by all relations in S . Call a default theory (W,D) such that
W ∪

{
α, β, γ

∣∣∣∣ α:β
γ

}
is a set of applications of relations from S a default theory over

relations from S .
We define the extension existence problem for default logic over relations from

S as the problem to decide, given a default theory (W,D) over relations from S ,
whether (W,D) has a stable extension. Further, define the credulous (resp. skep-
tical) reasoning problem for default logic over relations from S as the problem
to decide, given a default theory (W,D) over relations from S and a set ϕ of ap-
plications of relations from S , whether ϕ is contained in at least one (resp. any)
stable extension of (W,D). In [10], Chapdelaine et al. study the complexity of
these problems and establish the following trichotomies:

Theorem 3.10 ([10, 58]) Let S be a set of relations. Then the extension existence
problem for default logic over relations from S is
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1. Σ
p
2-complete if S is not Schaefer,

2. NP-complete if S is Schaefer but neither 0-valid or 1-valid,

3. in P in all other cases.

Theorem 3.11 ([10, 58]) Let S be a set of relations. Then the credulous (resp.
skeptical) reasoning problem for default logic over relations from S is

1. Σ
p
2-complete if S is not Schaefer,

2. NP-complete (resp. coNP-complete) if S is Schaefer but neither 0-valid nor
1-valid,

3. coNP-complete if S 0-valid or 1-valid but not Schaefer,

4. in P in all other cases.

For detailed proofs of these results, see [58].
We like to remark that also results like these about Boolean constraint satis-

faction problems are proved using Post’s lattice. This is because the classes of
Boolean relations above (affince, bijunctive, Horn, dual Horn) can all be defined
using so called polymorphism, a kind of closure property, of Boolean relations.
These sets of polymorphism are always clones, i.e., they appear somewhere in the
lattice. To state only one example, a relation is Horn iff the set of its polymor-
phisms is the class E2. The structure of the lattice is then used in the proof to
make a case distinction on all possible sets of polymorphisms of S and determine
the complexity in each case. For more details, we refer the reader to [14].

Having settled the complexity of these decision problems, mind that these
results do only speak about the existence of objects, e.g., stable extensions. But
what about the complexity of counting them? We will conclude this survey of the
complexity of default logic with a treatment of the problem to count the number
stable extensions.

Let us introduce the relevant notions and counting complexity classes first.
For alphabets Σ and Π, let A ⊆ Σ? × Π? be a binary relation such that the set
A(x) := {y ∈ Π? | (x, y) ∈ A} is finite for all x ∈ Σ?. We write #A to denote the
following counting problem: Given x ∈ Σ?, compute |A(x)|. The class of counting
problems computable in polynomial time is denoted by FP. To characterize the
complexity of counting problems that are not known to be in FP, we follow [31]
and define an operator #·C on classes C of decision problems: #A ∈ #·C if (a)
there exists a polynomial p, such that for all x and all y ∈ A(x), |y| ≤ p(|x|) and
(b) the problem to decide, given x and y, whether y ∈ A(x) is in C. Clearly, #·P
coincides with #P, the class of functions counting the number of accepting path
of nondeterministic polynomial-time Turing machines—the natural analogue of
NP in the counting complexity context [68]. Applying #· to the classes of the
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polynomial hierarchy, we now obtain a linearly ordered hierarchy of counting
complexity classes [67, 31]: #P ⊆ #·NP ⊆ #·coNP = #·PNP ⊆ #·Σp

2 ⊆ #·Πp
2 =

#·PΣ
p
2 ⊆ · · · .

The counting complexity of default logic has, to the authors’ best knowledge,
first been considered in [66]. There, it was shown that counting the number of
stable extensions is complete for the second level of the counting polynomial hi-
erarchy, #·coNP, whenever [B ∪ {1}] = BF; becomes ∆

p
2-complete for all sets B

such that [B ∪ {1}] = M; complete for the first level of the counting hierarchy
for all affine sets B such that ¬ can be implemented from B ∪ {1}; and becomes
efficiently computable in all other cases. The counting complexity thus decreases
analogously to the complexity of the extension existence problem. However, ob-
serve that we blur over the distinction between decision problems and their char-
acteristic functions: By Lemma 3.7 any monotone B-default theory has at most
one stable extension. The problem to count the number stable extensions thus co-
incides with the characteristic function of the extension existence problem, which
∆

p
2-complete.

Theorem 3.12 ([66]) Let B be a finite set of Boolean functions. Then the problem
to count the number of stable extensions in B-default logic is

1. #·coNP-complete if S1 ⊆ [B] or D ⊆ [B],

2. ∆
p
2-complete if S11 ⊆ [B] ⊆ M,

3. #P-complete if [B] ∈ {N,N2, L, L0, L3},

4. in FP in all other cases (that is, if [B] ⊆ V or [B] ⊆ E or [B] ⊆ R1)

via parsimonious reductions.

Note that for the classification in Theorem 3.12 the conceptually simple and
well-behaved parsimonious reductions are sufficient (a counting problem #A par-
simoniously reduces to a counting problem #B if there is a polynomial-time com-
putable function f such that for all inputs x, |A(x)| = |B( f (x))| [68]), while for
related classifications in the literature less restrictive and more complicated re-
ductions had to be used (see, e.g., [18, 28, 3]).

4 Autoepistemic Logic
Autoepistemic logic was introduced by Moore [45] to overcome some of the pe-
culiarities of the non-monotonic logics devised by McDermott and Doyle [44]
and McDermott [43]. While Moore defined autoepistemic logic without refer-
ring to any particular modal system, it turned out that his logic coincides with the
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non-monotonic modal logic based on KD45 [59]. Therefore, autoepistemic logic
can be considered a popular representative among the non-monotonic modal log-
ics. The connection of these logics and particularly autoepistemic logic to default
logic has been extensively studied. The first major approach in this direction was
taken by Konolige [37], who showed that default logic can be embedded into au-
toepistemic logic using slightly different semantics for the latter. Subsequently,
Marek and Truszczynski [47, 48] showed that, using strengthened notions in au-
toepistemic logic or weakened notions in default logic, the two logics coincide in
terms of expressivity. Finally, Gottlob [26] showed that default logic can be em-
bedded into standard autoepistemic logic, while the converse direction was shown
to hold by Janhunen [32].

The intention of Moore was to create a logic modelling the beliefs of an ideally
rational agent, i.e., an agent that believes all things he can deduce and refutes
belief in everything else. To this end, autoepistemic logic extends propositional
logic with the modal operator L stating that its argument “is believed”. The set of
all autoepistemic formulae Lae is defined as

ϕ ::= a | f (ϕ, . . . , ϕ) | Lϕ,

where a is a proposition and f is a Boolean function, and the relation |= is extended
to simply treat formulae starting with an L as atomic. Similarly to default logic,
the semantics of autoepistemic logic are defined in terms of fixed points, which in
the context of autoepistemic logic are called stable expansions:

Definition 4.1 ([45]) Let Σ ⊆ Lae be a set of autoepistemic formulae. A set
∆ ⊆ Lae is a stable expansion of Σ if it satisfies the equation

∆ = Th(Σ ∪ L(∆) ∪ ¬L(Lae \ ∆)),

where L(∆) := {Lϕ | ϕ ∈ ∆} and ¬L(Lae \ ∆) := {¬Lϕ | ϕ < ∆}.

Example 4.2 Consider the set Σ = {Lx∨ y, x∨ Ly, L(x∨ y)→ z} of autoepistemic
formulae. We claim that Σ has two stable expansions, each of which containing z.
Sticking with our informal interpretation of autoepistemic logic as the logic of an
ideally rational agent’s beliefs, observe that we cannot deduce x from Σ. Hence,
we would assign Lx the value 0 and consequently be able to derive y from Lx∨ y.
This in turn allows us to conclude z from L(x ∨ y) → z, as x ∨ y is derivable
from y. Indeed, the set

⋃
i∈N ∆i of formulae recursively defined via ∆0 := {x} and

∆i := Th(Σ ∪ L(∆i−1) ∪ ¬L(Lae \ ∆i−1)) is a stable expansion of Σ that contains z.
On the other hand, we are not able to deduce y from Σ either. Hence, we could

also continue to assign to Ly the value 0 and be therefore able to derive x. Again,
we may conclude z from L(x ∨ y) → z. And just as above,

⋃
i∈N ∆′i with ∆′0 := {y}

and ∆′i defined as ∆i is a stable expansion of Σ that contains z.
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There is an important difference to default logic as stable expansions need not
be minimal fixed points:

Example 4.3 Consider Σ′ := {Lp→ p}. The set Σ′ has two stable expansions, one
stable expansion containing ¬Lp and the other one containing Lp. As an iterative
construction as in Example 4.2 is deemed to fail for the latter, it may be considered
ungrounded in the set of premises Σ.

Clearly, sets of autoepistemic formulae can also posses no or a single sta-
ble expansion. Hence, the expansion existence problem, the credulous reason-
ing problem and the skeptical reasoning problem arise just as in default logic.
The first treatment of the complexity of these problems has been performed by
Niemelä [49]. In his paper, he gave a finite characterization of stable expansions
in terms of full sets: Let SFL(Σ) denote the set of L-prefixed subformulae of for-
mulae in Σ.

Definition 4.4 ([49]) Let Σ ⊆ Lae be a set of autoepistemic formulae. A set
Λ ⊆ SFL(Σ) ∪ {¬Lϕ | Lϕ ∈ SFL(Σ)} is Σ-full if for all Lψ ∈ SFL(Σ):

– Σ ∪ Λ |= ψ iff Lψ ∈ Λ.

– Σ ∪ Λ 6|= ψ iff ¬Lψ ∈ Λ.

Proposition 4.5 ([49]) Let Σ ⊆ Lae be a set of autoepistemic formulae. If Λ is
a Σ-full set, then there exists exactly one stable expansion of ∆ such that Λ ⊆

L(∆) ∪ ¬L(Lae \ ∆). Vice versa, if ∆ is a stable expansion of Σ, then there exists
exactly one Σ-full set Λ such that such that Λ ⊆ L(∆) ∪ ¬L(Lae \ ∆).

Using full sets as finite representations for stable expansions, Niemelä ob-
tained a Σ

p
2 upper bound for the expansion existence problem and the credulous

reasoning problem, and a Π
p
2 upper bound for the skeptical reasoning problem:

for the expansion existence problem, simply guess a candidate for a full set and
verify the conditions given in Definition 4.4 using an oracle for formula implica-
tion. To extend this idea to the credulous and skeptical reasoning problem, one
still needs to define a consequence relation |=L that, given Σ ⊆ Lae and a Σ-full set
Λ implies exactly those formulae contained in the stable expansion corresponding
to Λ. Niemelä shows that |=L can be defined such that the problem of deciding
the relation Turing reduces to the implication problem. From this it is easy to
see that the credulous and skeptical reasoning problem are contained in Σ

p
2 and

Π
p
2 respectively. The matching lower bounds were later established by Gottlob

in [24].

Theorem 4.6 ([49, 24]) The expansion existence problem and the credulous rea-
soning problem for autoepistemic logic are Σ

p
2-complete, whereas the skeptical

reasoning problem for autoepistemic logic is Π
p
2-complete.
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The hardness is obtained using a surprisingly simple reduction form the valid-
ity problem for quantified Boolean formulae of the form ∃x1 · · · ∃xn∀y1 · · · ∀ymψ,
where ψ is a propositional formula with Vars(ψ) = {xi | 1 ≤ i ≤ n} ∪ {yi | 1 ≤ i ≤
m}. Given a formula of the above form, we transform it into a set Σ of autoepis-
temic formulae defined as

Σ := {Lxi ↔ xi | 1 ≤ i ≤ n} ∪ {Lψ}.

The idea behind the reduction is to mimic existential quantification using different
sets of beliefs such that an assignment satisfying ∀y1 · · · ∀ymψ results in a stable
expansion: If σ is an assignment that satisfies ∀y1 · · · ∀ymψ, then the Σ ∪ Λ with
Λ = {Lψ} ∪ {Lxi | 1 ≤ i ≤ n} ∪ {¬Lx1 | 1 ≤ i ≤ n} entails ψ; therefore, Λ is a
Σ-full set. On the other hand, if Λ is a full set, then we can reconstruct from it an
assignment satisfying ∀y1 · · · ∀ymψ.

Beyond this, the complexity of these problems for fragments of autoepistemic
logic has seemingly only been studied in [12]. There, it was shown that already au-
toepistemic logic using only ∧ and ∨ is Σ

p
2-complete and that tractable fragments

occur only for affine sets of Boolean functions. To present the results, say that,
for a finite set B of Boolean functions, an autoepistemic B-formula is an autoepis-
temic formula using Boolean functions from a given finite set B only, and denote
by Lae(B) the set of all autoepistemic B-formulae. Further, let B-autoepistemic
logic denote autoepistemic logic restricted to autoepistemic B-formulae and de-
fine the credulous (resp. skeptical) reasoning problem for B-autoepistemic logic
as the problem to decide, given a set Σ of autoepistemic B-formulae and an au-
toepistemic B-formula ϕ, whether ϕ is contained in a stable expansion (resp. all
stable expansions) of Σ .

Theorem 4.7 ([12]) Let B be a finite set of Boolean functions. Then the expansion
existence problem and the credulous (resp. skeptical) reasoning problem for B-
autoepistemic logic are

1. Σ
p
2-complete (resp. Π

p
2-complete) if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],

2. NP-complete (resp. coNP-complete) if V2 ⊆ [B] ⊆ V,

3. ⊕L-hard and contained in P if L2 ⊆ [B] ⊆ L,

4. in L in all other cases (that is, if [B] ⊆ E),

via logspace many-one reductions.

Note that the complexity classification of these problems substantially dif-
fers from their analogues in default logic, which can be credited to the different
approach to modelling non-monotonicity: while default logic is limited to consis-
tency testing in the justification of a default rule, autoepistemic logic is capable of



77 77

77 77

The Bulletin of the EATCS

69

both positive and negative introspection. As another result, in general the inter-
translatability of autoepistemic logic and default logic does not hold for fragments
of these logics (unless collapses considered unlikely occur).

We will briefly present the ideas behind Theorem 4.7. To start with, the proof
relies on the following lemma, which significantly reduces the number of clones
to be considered.

Lemma 4.8 Let B be a finite set of Boolean functions and Σ ⊆ Lae(B∪{0, 1}). Then
we can construct in logspace a set Σ′ ⊆ Lae(B) such that the stable expansions of
Σ and Σ′ coincide on all autoepistemic formulae over Vars(Σ).

Proof. Let Σ ⊆ Lae(B ∪ {0, 1}) be given. We first eliminate the constant 1 using
Lemma 2.1 and transform the resulting set Σ′ to Σ′′ by substituting all occurrences
of 0 with the formula L f , where f is a fresh proposition. Suppose that ∆ is a
consistent stable expansion of Σ′′. As f cannot be derived from Σ′′, ∆ has to
contain the ¬L f . Hence any satisfying assignment of ∆ sets L f to 0. �

It thus suffices to consider the complexity of the expansion existence problem
for sets B such that [B] ∈ {BF,M,E,V, L,N, I}. The key observation in the proof
of Theorem 4.7 is that the reductions from the validity problem for quantified
Boolean formulae of the form ∃x1 · · · ∃xn∀y1 · · · ∀ymψ with ψ in negation normal
form does not requires negations: Given a formula ϕ in the above form, replace
all negative literals ¬xi and ¬yi in ψ with new propositions x′i and y′i . Call the
resulting formula ϕ′. We then construct the set of autoepistemic {∧,∨}-formulae
as

Σ := {Lϕ′} ∪ {Lxi ∨ x′i , xi ∨ Lx′i | 1 ≤ i ≤ n} ∪ {yi ∨ y′i | 1 ≤ i ≤ m}.

Due to the formulae Lxi ∨ x′i , xi ∨ Lx′i , 1 ≤ i ≤ n, any stable expansion ∆ of
Σ contains either xi or x′i (but not both), while the formulae yi ∨ y′i , 1 ≤ i ≤ m,
guarantee that either yi or y′i is set to 1 in any satisfying assignment of ∆. From this,
it is easy to see that ϕ is valid iff Σ has a stable expansion.Hence, the expansion
existence problem is Σ

p
2-complete for S00 ⊆ [B], S10 ⊆ [B], or D2 ⊆ [B].

This construction can be generalized to also work for quantified Boolean for-
mulae of the form ∃x1 · · · ∃xnψ with ψ in conjunctive normal form. Hence, we
obtain NP-hardness for V2 ⊆ [B]. The corresponding upper bound follows from
the fact the formula implication of B-formulae with [B] ⊆ V is tractable.

For an argument to obtain a polynomial-time upper bound for the remaining
cases, we refer the reader to the original paper. This concludes the discussion of
Theorem 4.7.

Turning to the problem of counting the number of stable expansions, the reader
may easily convince himself that the reductions used to establish the NP-hardness
and Σ

p
2-hardness above are parsimonious. Hence, the complexity classification of

the counting problem is analogous to that of the expansion existence problem:
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Theorem 4.9 ([12]) Let B be a finite set of Boolean functions. Then the problem
to count the number of stable expansions in B-autoepistemic logic is

1. #·coNP-complete if D2 ⊆ [B] or S00 ⊆ [B] or S10 ⊆ [B],

2. #P-complete if V2 ⊆ [B] ⊆ V,

3. in FP in all other cases (that is, if [B] ⊆ L or [B] ⊆ E),

via parsimonious reductions.

Note that again parsimonious reductions are sufficient to obtain the complete-
ness results in Theorem 4.9.

5 Circumscription
The third non-monotonic logic we will turn to is circumscription, which instead of
extending classical logic with default rules or introspection restricts the attention
to minimal models. Circumscription was introduced by McCarthy [42] in 1980 to
overcome the qualification problem, i.e., the problem of listing all preconditions
required for an action to have its intended effect. His approach was to allow for
the conclusion that the objects that can be shown to have a certain property by
reasoning are all objects that satisfy this property. Following [39], this is achieved
by considering only those models that are minimal with respect to a preorder on
the set of assignments. For ease of notation, we will identify assignments σ with
the set {p | σ(p) = 1}.

Definition 5.1 Let P, Q, Z partition the set of propositions and let σ,σ′ : P∪Q∪
Z → {0, 1} be assignments. Define ≤(P,Z) as the preorder defined by

σ ≤(P,Z) σ
′ ⇐⇒ σ ∩ P ⊆ σ′ ∩ P and σ ∩ Q = σ′ ∩ Q.

Using ≤(P,Z), we define a consequence relation |=(P,Z) such that for an assign-
ment σ : P ∪ Q ∪ Z → {0, 1} and a set of formulae Γ with Vars(Γ) ⊆ P ∪ Q ∪ Z,
σ |=(P,Z) Γ if σ is minimal w.r.t. ≤(P,Z) among all models of Γ.. In this case, σ is
also called a circumscriptive model of Γ. Accordingly, we can define the notion
of (circumscriptive) implication: Γ |=(P,Z) ϕ if ϕ is satisfied in all circumscriptive
models of Γ. It is not hard to see that circumscription coincides with reasoning
under the extended closed world assumption, in which all formulae involving only
propositions from P that cannot be derived from Γ are assumed to be false [27].

Example 5.2 Let P := {x}, Q := ∅, Z := {y, z} and Γ := {(x ∧ ¬y) → z}. The
models of Γ are ∅, {y}, {z}, {x, y}, {y, z}, {x, z}, {y}, and {x, y, z}. Of these, only ∅,
{z}, and {y, z} are minimal with respect to ≤(P,Z). Hence, Γ ∪ {y} |=(P,Z) z, while
Γ ∪ {y} 6|= z.
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The notions of circumscriptive models and circumscriptive inference naturally
lead to the following decision problems, that received extensive study in the liter-
ature:

(Circumscriptive model checking) Given a set of formulae Γ, a preorder ≤(P,Z)

on the set of its propositions and an assignment σ, does σ |=(P,Z) Γ hold?
(Circumscriptive inference) Given a set of formulae Γ and a formula ϕ, a pre-

order ≤(P,Z) on the set of their propositions, does Γ |=(P,Z) ϕ hold?
The circumscriptive model checking is dual to a generalization of the minimal

satisfiability problem, i.e., the question whether a given formula has a model that
is strictly smaller than a given assignment with respect to a given preorder ≤(P,Z),
and known to be coNP-complete in general [9], whereas the circumscriptive infer-
ence problem was shown to be Π

p
2-complete by Eiter and Gottlob in [20]. These

results reveal that, alike default logic and autoepistemic logic, circumscription
exhibits an increase in the complexity of model checking and reasoning as com-
pared to traditional propositional logic. This increase in the complexity raises the
question for restrictions that lower the complexity of these tasks. Accordingly, the
complexity of these problems has been studied for both restricted sets of Boolean
functions and in Schaefers framework. We will consider the restrictions obtained
from Schaefer’s framework first.

Define the circumscriptive model checking problem for sets of relations from
S as the problem to decide, given a a set Γ of applications of relations from S , an
assignment σ : Vars(Γ) → {0, 1} and a partition (P,Q,Z) of Vars(Γ), whether σ is
a minimal model of Γ with respect to ≤(P,Z). In [34], Kirousis and Kolaitis showed
that using Schaefer’s framework, the circumscriptive model checking problem
restricted to Q = Z = ∅ is dichotomic, a result which was later generalized to the
general case in [36]:

Theorem 5.3 ([36]) Let S be a set of relations. Then the circumscriptive model
checking problem for sets of relations from S is

1. coNP-complete if S is not Schaefer and

2. in P in all other cases.

The tractability if S is Schaefer is easy to verify. In this case, the circumscrip-
tive model checking problem Turing reduces to the satisfiability problem, which
in this case is tractable by [57]. To show the coNP-hardness in all remaining cases,
Kirousis and Kolaitis give an involved three step reduction from 1-in-3 SAT.

In addition to that, Kirousis and Kolaitis also classified for possible sets of
available Boolean functions in an unpublished note. Define the circumscriptive
model checking problem for sets of B-formulae as the problem to decide, given
a set Γ ⊆ L(B), an assignment σ : Vars(Γ) → {0, 1} and a partition (P,Q,Z) of
Vars(Γ), whether σ is a minimal model of Γ with respect to ≤(P,Z).



80 80

80 80

BEATCS no 102 THE EATCS COLUMNS

72

Theorem 5.4 ([33]) Let B be a finite set of Boolean functions. Then the circum-
scriptive model checking problem for sets of B-formulae is

1. coNP-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B], and

2. in P in all other cases (that is, if [B] ⊆ M).

Key to the classification is that if the set B of all available Boolean functions
is monotone, then the circumscriptive model checking problem Turing-reduces to
the the model checking problem for monotone Boolean formulae. Given Γ and σ,
denote by σi the assignment obtained by setting all propositions in Z to 1 and the
ith proposition in P, which is set to 1 under σ to 0. Then σ |=(P,Z) Γ iff for all σi

obtained in this way, σi 6|=(P,Z) Γ. Thus circumscriptive model checking problem
for sets of B-formulae is tractable if [B] ⊆ M.

On the other hand, the coNP-hardness follows from the fact that all remaining
sets B satisfy [B ∪ {0, 1}] = BF, while we can simulate the Boolean constants: If
B ⊆ R1, then appealing to Lemma 2.1 suffices. If B ⊆ R1, we use the mapping
Γ 7→ Γ′ := Γ[0/ f , 1/t] ∪

{
t, f →

∧
Vars(Γ)

}
, where Γ[0/ f , 1/t] denotes the set

obtained from Γ by replacing all occurrences of 0 by the fresh proposition f and all
occurrences of 1 by the fresh proposition t. Notice that any model of Γ′ sets t to 1
and that Γ′ is satisfied by exactly those assignments that satisfy Γ and additionally
the assignment setting all propositions to 1. Thus, if B ⊆ R1, we may replace any
Boolean function in the original Γ with an equivalent (B ∪ {0, 1})-formula.

We point out that the original proof in [33] builds on results from [34], the
sketch above provides an alternative proof.

As for the inference problem, the computational complexity of circumscriptive
inference was first studied in 1990 by Cadoli and Lenzerini [11], who analyzed the
complexity of reasoning under various closed world assumptions. They showed
that circumscription for various restrictions on the premises, conclusions and the
order still remains intractable and also identified tractable fragments. Yet the ex-
act complexity of circumscriptive inference remained open until Eiter and Gott-
lob [20] proved its Π

p
2-completeness. This result was further refined both in the

framework of restricted sets of available Boolean functions as well as in Schae-
fer’s framework. For the latter, Kirousis and Kolaitis [35] proved a dichotomy
separating the Π

p
2-complete cases and from those in coNP, and conjectured that

the cases in coNP could be refined into coNP-complete and tractable ones. While
the coNP-completeness for dual Horn relations or bijunctive relations was known
from [11] and Durand and Hermann showed that this also holds for for affine re-
lations [16], Nordh finally affirmatively settled Kirousis and Kolaitis’ conjecture
in [50]. For the restricted case of basic circumscription that requires Q or Z or
both to be empty, the trichotomy was established in [19]. We state here the result
from [50].
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Say that a relation R is negative Horn if it coincides with the set of models
of a Horn formula without positive literals. Define the circumscriptive inference
problem for sets of relations from S as the problem to decide, given a set Γ of
applications of relations from S , a clause ϕ and a partition (P,Q,Z) of Vars(Γ ∪
{ϕ}), whether Γ |=(P,Z) ϕ.

Theorem 5.5 ([50]) Let S be a set of relations. Then the circumscriptive inference
problem for sets of relations from S is

1. Π
p
2-complete if S is not Schaefer,

2. coNP-complete if S is Schaefer but neither negative Horn nor both bijunc-
tive and affine nor both Horn and dual Horn, and

3. in P in all other case (that is, if S is negative Horn or both bijunctive and
affine or both Horn and dual Horn).

For the approach parameterizing by the set available Boolean functions, the
circumscriptive inference problem for sets of B-formulae was classified in [64].
Define the circumscriptive inference problem for sets of B-formulae as the prob-
lem to decide, given a set Γ ⊆ L(B), a clause ϕ and a partition (P,Q,Z) of
Vars(Γ ∪ {ϕ}), whether Γ |=(P,Z) ϕ.

Theorem 5.6 ([64]) Let B be a finite set of Boolean functions. Then the circum-
scriptive inference problem for sets of B-formulae is

1. Π
p
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. coNP-complete if X ⊆ [B] ⊆ Y for some X ∈ {V2,S10,D2, L2} and Y ∈
{M, L}, and

3. in P in all other case (that is, if [B] ⊆ N or [B] ⊆ E).

Remark 5.7 Unlike the reasoning problems defined for B-default logic and B-
autoepistemic logic, here an arbitrary formula is to be tested for implication. The
complexity of deciding the circumscriptive inference of a B-formula from a set of
B-formulae is the same as above for all sets B except those satisfying L2 ⊆ [B] ⊆ L;
for these the problem is only known to be ⊕L-hard and contained in coNP.

In the remainder of this section, we will consider the counting complexity of
circumscription, namely the problem to count the number of minimal models of
a given set Γ w.r.t. to a given preorder ≤(P,Z). This problem, henceforth referred
to as the circumscriptive model counting problem, has recently gained a lot of
interest. Its restriction to Q = Z = ∅ is equivalent to the minimal model counting
problem, i.e., the problem of counting the number of minimal models w.r.t. the
coordinatewise partial order on assignments induced by 0 < 1. While the problem
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to count the number of all models of a given formula is well-known to be #P-
complete via parsimonious reduction [68], the exact complexity of the minimal
model counting problem was open for a long time. The problem is easily seen
to belong to #·coNP, since deciding whether a given assignment is among the
minimal models of a given set of formulae is in coNP. Similarly, its #P-hardness
via parsimonious reductions is apparent: the mapping ϕ 7→

{
ϕ∧

∧
xi∈Vars(ϕ)(xi⊕yi)

}
with yi < Vars(ϕ) constitutes a parsimonious reduction from the problem to count
the number of all models of a given formula. However, #·coNP-hardness could
only be established using reductions under which not all of the classes of the
counting polynomial hierarchy are closed.

In 2000, Durand, Hermann and Kolaitis [18] introduced the notion of subtrac-
tive reductions which suitably relaxed the notion of parsimonious reductions. Say
that a counting problem #A reduces to a counting problem #B via strong subtrac-
tive reduction if there exists a pair of polynomial-time computable functions f , g
such that for all x, B(g(x)) ⊆ B( f (x)) and |A(x)| = |B( f (x))| − |B(g(x))|. Subtrac-
tive reductions are the transitive closure of strong subtractive reductions, i.e., #A
reduces to #B via subtractive reductions if there exists a finite sequence (#C)1≤i≤n

such that #C1 = #A, #Cn = #B and #Ci reduces to #Ci+1 via strong subtractive
reduction for all 1 ≤ i < n. Clearly, each parsimonious reduction is also a sub-
tractive reduction. And, more importantly, #P and #·Πp

k , for all k ≥ 1, are closed
under subtractive reductions.

Theorem 5.8 ([18]) The minimal model counting problem and the circumscriptive
model counting problem are #·coNP-complete via subtractive reductions.

The counting complexity of the minimal model counting problem was further
studied in [17]. There the authors show that, using Schaefer’s framework, the
restriction to relations that are either dual Horn, bijunctive or affine reduces the
complexity of the problem to #P-completeness, whereas the restriction to Horn
relations or relations that are both bijunctive an affine yields efficiently computable
counting problems. Hence, the counting problem for the case that all relations are
both dual Horn and Horn as well as the case that all relations are negative Horn
are #P-complete while the underlying decision problems are still tractable.

The counting complexity of both the minimal model counting problem and
the circumscriptive model counting problem was further studied in [66], where the
complexity of the fragments obtained by restricting the set of Boolean functions is
classified. Here, the counting complexity decreases analogously to the complexity
of the underlying decision problem.

Theorem 5.9 ([66]) Let B be a finite set of Boolean functions. Then the minimal
model counting problem for B-formulae and the circumscriptive model counting
problem for B-formulae is
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1. #·coNP-complete via subtractive reductions if S02 ⊆ [B] or S12 ⊆ [B] or
D1 ⊆ [B],

2. #P-complete via subtractive reductions if S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M
or D2 ⊆ [B] ⊆ M,

3. #P-complete via Turing reductions if V2 ⊆ [B] ⊆ V or L2 ⊆ [B] ⊆ L, and

4. in FP in all other cases (that is, if [B] ⊆ N or [B] ⊆ E).

6 Abduction
Abduction is a fundamental and important form of non-monotonic reasoning in-
troduced by Peirce [53]. It can be thought of as a form of hypothetical reason-
ing: to ask what can be abduced from an observation α is to ask for an explana-
tion, which in conjunction with the given background knowledge accounts for α.
The importance of this formalism to artificial intelligence was first emphasized
by Morgan [46] and has been fruitfully used in many areas of computer science
such as medical diagnosis [2], text analysis [30], system diagnosis [63], configu-
ration problems [1], temporal knowledge bases [5], and has connections to default
reasoning [60].

Here we will consider logic based abduction in which the background theory
is represented by a logical theory, specifically in propositional logic. Hence, the
abduction problem can in general be formulated as the problem, given a knowl-
edge base Γ ⊆ L, a set A ⊆ Vars(Γ) of propositions called hypothesis, and an
observation q ∈ Vars(Γ), to compute a set E ⊆ Lits(A) of literals over A such that
Γ ∪ E is consistent and Γ ∪ E |= q. If such a set E exists, then it is called an
explanation for the abduction problem P = (Γ, A, q).

The computational complexity of this problem has first been considered by
Selman and Levesque [60], who showed that it is NP-hard to compute an expla-
nation if Γ is restricted to Horn clauses. Independently, Friedrich, Gottlob and
Nejdl [23] studied the problem for definite Horn clauses. They show that deciding
whether a given proposition is contained in some or all explanations is tractable
whereas deciding whether a proposition is contained in a subset-minimal explana-
tion is NP-complete. It is yet tractable to compute some subset-minimal explana-
tion in this case [8]. Further results were obtained by Eshghi [22], who proved that
finding subset-minimal explanations becomes tractable if Γ is acyclic Horn and its
pseudo-completion is unit-refutable. Finally, the complexity of logic-based ab-
duction was settled by Eiter and Gottlob.

Theorem 6.1 ([21])

1. To decide, given an abduction problem P = (Γ, A, q) and a set E ⊆ Lits(A),
whether E is an explanation for P is DP-complete.
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2. To decide, given an abduction problem P, whether there exists an explana-
tion for P is Σ

p
2-complete.

3. To decide, given an abduction problem P and a proposition p, whether all
explanations for P contain p is Π

p
2-complete.

These results also hold for subset-minimal explanations.

Eiter and Gottlob [21] also studied the complexity of abduction for preference
relations other than subset-minimality, but to include these results here would go
beyond the scope of this survey. As in most cases the complexity of the first and
the third problem in Theorem 6.1 can be derived from the question whether an
explanation exists, we will henceforth focus on the complexity of deciding the
existence of an explanation.

Due to its applications to knowledge-based systems, it is natural to consider
the complexity of this problem in Schaefer’s framework. Using this approach
Creignou and Zanuttini [15] showed that the complexity of deciding the existence
of an explanation forms a trichotomy. Define the explanation existence problem
for sets of relations from S as the problem to decide, given a set Γ of applications
of relations from S , a set A ⊆ Vars(Γ) of propositions, and a proposition q ∈
Vars(Γ) \ A, whether there exists a set E ⊆ Lits(A) such that Γ ∪ E is consistent
and Γ∪E |= q. Say that a relation R is IHS-B− if if it coincides with the models of a
CNF formula whose clauses are all of one of the following types: (xi), (¬xi1 ∨ xi2),
(¬xi1 ∨ · · · ∨ ¬xik) for some k > 0. Analogously say that a relation R is IHS-B+ if
if it coincides with the models of a CNF formula whose clauses are all of one of
the following types: (¬xi), (¬xi1 ∨ xi2), (xi1 ∨ · · · ∨ xik) for some k > 0. Clearly,
any IHS-B− formula (resp. IHS-B+) formula is Horn (resp. dual Horn).

Theorem 6.2 ([15]) Let S be a set of relations. Then the explanation existence
problem for sets of relations from S is

1. Σ
p
2-complete if S is not Schaefer,

2. NP-complete if S is either Horn or dual Horn but neither bijunctive nor
affine nor definite Horn nor IHS-B+ nor IHS-B−,

3. in P if S is bijunctive or affine or definite Horn or IHS-B+ or IHS-B−.

As for restricted sets Γ the restriction of the query q to a positive proposition
does no longer come without loss of generality, variants of this problem have
been studied, where the observation is a term (a conjunction of literals), a clause
or an arbitrary formula. For example, if one allows for the query to be a literal
instead of a proposition, then the explanation existence problem for definite Horn
relations becomes NP-complete (apart from that, the classification of Theorem 6.2
remains valid). For the case that the observation is a term, a trichotomy has been
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established in [51]: here only the case that all relations are affine remains tractable,
while Horn relations, dual Horn relations and relations expressible using either
only (¬xi1 ∨ xi2), or only (xi1 ↔ xi2) and (xi1 ∨ xi2), or only (xi1 ↔ xi2) and (¬xi1 ∨

¬xi2) lead to NP-complete fragments. Further loosening the restriction on the
observations to allow for an arbitrary formula leads to a dichotomic classification
into NP-complete fragments (if the set of relations is Schaefer) and Σ

p
2-complete

fragments (in all other cases). These results are summarized and extended to also
cover clauses and arbitrary formulae and to several restrictions on the hypothesis
in [52].

Seeking further insights into the sources of complexity, abduction has also
been studied for restricted sets of Boolean functions. In [13], Creignou, Schmidt
and Thomas completely classified the complexity of the explanation existence
problem for B-formulae, defined as the problem to decide, given a given a set
Γ ⊆ L(B) a set A ⊆ Vars(Γ) of propositions, and an observation q ∈ Vars(Γ) \ A,
whether there exists a set E ⊆ Lits(A) such that Γ∪ E is consistent and Γ∪ E |= q.

Theorem 6.3 ([13]) Let B be a finite set of Boolean functions. Then the explana-
tion existence problem for B-formulae is

1. Σ
p
2-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. NP-complete if S00 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M, and

3. in P in all other cases (that is, if [B] ⊆ E or [B] ⊆ V or [B] ⊆ L).

The complexity of this problem for observations represented by clauses, terms
and B-formula was also classified. The relaxation to clauses does not alter the
complexity classification; however, the relaxation to observations represented by
terms increases the complexity of the cases satisfying [B ∪ {0, 1}] = V to NP-
completeness. Lastly, if the observation is formalized as a B-formula then the clas-
sification becomes dichotomic with the clones above E, V or L being Σ

p
2-complete

and all remaining clones being tractable; thus skipping the intermediate NP level.
The complexity of propositional abduction has thus been systematically stud-

ied and is well understood. The counting complexity of abduction was first stud-
ied by Hermann and Pichler [28, 29]. The problems arising in this context are the
problem to count the number of all explanations as well as the problem to count the
number of minimal explanations with respect to a given preference relation, e.g.,
the subset-minimal explanations or explanations of minimal cardinality. >From
the set of counting problems for abduction studied by Hermann and Pichler, we
will consider the following two problems:

(Explanation counting) Given a set Γ ⊆ L, a set A ⊆ Vars(Γ), and a conjunc-
tion q1 ∧ · · · ∧ qn or propositions from Vars(Γ) \ A, to count the number of all sets
E ⊆ A such that Γ ∪ E is consistent and Γ ∪ E |= q1 ∧ · · · ∧ qn.
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(Subset-minimal explanation counting) Given a set Γ ⊆ L, a set A ⊆ Vars(Γ),
and a conjunction q1 ∧ · · · ∧ qn or propositions from Vars(Γ) \ A, to count the
number of all sets E ⊆ A such that Γ ∪ E is consistent and Γ ∪ E |= q1 ∧ · · · ∧ qn.

Theorem 6.4 ([28]) The explanation counting problem and the subset-minimal
explanation counting problem are #·coNP-complete via subtractive reductions.

However, if one restricts Γ be be a set of applications of relations from a fixed
set S of available relations, then the counting complexity drops by at least one
level of the counting polynomial hierarchy: The explanation counting problem
for sets of relations from S is #P-complete if S is Horn or dual Horn or bijunc-
tive; it is contained in FP if S is affine and the explanations are allowed to contain
literals instead of propositions. On the other hand, the subset-minimal explana-
tion counting problem for sets of relations from S is #P-complete in all of the
previously mentioned cases.

In addition to these results, the complexity of counting all explanations in the
case that Γ is represented by a set of B-formulae and the observation is a single
proposition was also studied in [13]. There both variants, to count the number of
(positive) explanations and to count the number of literal explanations, have been
studied.

Theorem 6.5 ([13]) Let B be a finite set of Boolean functions. Then the explana-
tion counting problem for sets of B-formulae is

1. #·coNP-complete if S02 ⊆ [B] or S12 ⊆ [B] or D1 ⊆ [B],

2. #P-complete if V2 ⊆ [B] ⊆ M or S10 ⊆ [B] ⊆ M or D2 ⊆ [B] ⊆ M, and

3. in FP in all other cases (that is, if [B] ⊆ E or [B] ⊆ L),

via subtractive reductions. If explanations are restricted to contain positive liter-
als only, then the problem is contained in FP for V2 ⊆ [B] ⊆ V and only known to
be in #P for L2 ⊆ [B] ⊆ L.

The open case in Theorem 6.5 is equivalent to the case where Γ is restricted to
a set of affine relations. This case was already left open in [28].
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