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Abstract

The Boolean Satisfiability (SAT) decision problem can be deservedly
declared a success story of computer science. Although SAT was the first
problem to be proved NP-complete, the last decade and a half have seen
dramatic improvements in the performance of SAT solvers on many prac-
tical problem instances. These performance improvements enabled a wide
range of real-world applications, several of which have key industrial sig-
nificance. This article surveys the organization of modern conflict-driven
clause learning (CDCL) SAT solvers, focusing on the principal techniques
that have contributed to this impressive performance. The article also em-
pirically evaluates these techniques on a comprehensive suite of problem
instances taken from a range of representative applications, allowing for a
better understanding of their relative contribution.
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1 Introduction

SAT solving technology has advanced significantly over the past 15 years. There
are currently dozens of SAT solvers that extend the basic DPLL framework, ex-
plained in the next section, with a combination of algorithmic enhancements and
optimized data structures. The advances have been spurred in part by regular
international competitions and a growing archive of SAT instances from a wide
range of real-world applications. Modern SAT solvers differ in many aspects, but
most of them include the following four features that have been shown, through
extensive empirical evidence, to be critical for scalability and performance:

• Conflict-driven clause learning [33, 34],
• Search restarts [26],
• Boolean constraint propagation based on lazy data structures [37], and
• Conflict-based adaptive branching [37]

The immediate aim of this article is to briefly recount the development of these
features and to experimentally characterize their contribution in solving a suite
of 1000 benchmarks chosen from 12 diverse application areas. A larger goal is
to stir the interest of the theoretical computer science community in developing
appropriate theoretical models that can explain the remarkable performance of
these modern solvers, and also to explain why they still fail in some cases. To be
sure, some efforts along these lines have already been made, but much more needs
to be done. Further progress in this field will certainly benefit from a combination
of theoretical and experimental/algorithmic developments.

Following a review, in Section 2, of the major developments in SAT tech-
nology, Section 3 describes the twelve configurations we instrumented in the
MiniSat [19] solver for the purpose of isolating the contribution of the afore-
mentioned features of modern SAT solvers. Section 4 describes the benchmark
suite we chose for this study and discusses our reasoning for the choice. The re-
sults of the study are presented and analyzed in Section 5; we also provide, in
an appendix, detailed run time distributions that compare the various solver con-
figurations for each benchmark family. The paper ends with some concluding
thoughts in Section 6.

2 A Brief History of SAT Solvers

The first practical algorithm for solving the SAT problem is usually credited to
Martin Davis and his collaborators Hilary Putnam, George Logemann, and Don-
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ald Loveland1. The context was the development of automated procedures for
proving theorems in quantification theory and entailed a) translation of a quanti-
fied first-order logic formula into a sequence of propositional formulas in conjunc-
tive normal form (CNF), and b) checking the resulting formulas for satisfiability.
The first version of the algorithm appeared in 1960. It was authored by Davis and
Putnam [15] and consisted of three basic rules:

Rule I simplifies the CNF formula by eliminating one-literal clauses.

Rule II identifies variables that occur only positively or only negatively in the
formula and deletes all clauses in which such variables occur.

Rule III eliminates variables that occur in both polarities.

In modern terminology, Rule I is referred to as the unit-clause rule and its repeated
application to simplify a formula is known as Boolean Constraint Propagation
(BCP) [54], whereas rule II is commonly referred to as the pure-literal rule. The
bulk of the algorithmic complexity is in rule III which replaces all clauses that
mention a particular variable with the resolvents involving this variable. Quoting
from [15],

III. Rule for Eliminating Atomic Formulas. Let the given formula F
be put into the form

(A ∨ p) & (B ∨ p̄) & R

where A, B, and R are free of p.
. . .
Then F is inconsistent if and only if (A ∨ B) & R is inconsistent.

Note that (A ∨ B) & R is what results when p is existentially quantified from F.
Note also that (A ∨ B) must be “multiplied out” to put it back into CNF2 and that
the resulting CNF clauses represent all p-resolvents in F3. The complete algo-
rithm repeatedly cycles through these three rules terminating when the resulting
formula evaluates to 1 (resp. 0) indicating satisfiability (resp. unsatisfiability) of
the original formula.

1Davis and Putnam [15] credit Wang [53] and Gilmore [24] with earlier attempts that “both
run into difficulty with some fairly simple examples.”

2Note that the form (A ∨ p) & (B ∨ p̄) & R is shorthand for
(A1 ∨ p) & · · ·& (Am ∨ p) & (B1 ∨ p̄) & · · ·& (Bn ∨ p̄) & R where each Ai and B j is a disjunc-
tion of literals other that p and p̄. Thus, (A ∨ B) = (A1& · · ·&Am) ∨ (B1& · · ·&Bm) =

(A1 ∨ B1) & · · ·& (Am ∨ Bn) .
3The p-resolvent of (Ai ∨ p) and

(
B j ∨ p̄

)
is the clause

(
Ai ∨ B j

)
which is the disjunction of all

literals in the two original clauses other that p and p̄. Note that (Ai ∨ p) &
(
B j ∨ p̄

)
→
(
Ai ∨ B j

)
.
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While appearing to solve the problem in a linear number of steps, this al-
gorithm hides the fact that the size of intermediate formulas can grow exponen-
tially, thus severely limiting its scalability. In the second version of the algorithm,
published in 1962 [14], Davis, Logemann, and Loveland replaced rule III with a
splitting rule that they referred to as rule III*. Quoting from [14],

III*. Splitting Rule. Let the given formula F be put into the form

(A ∨ p) & (B ∨ p̄) & R

where A, B, and R are free of p. Then F is inconsistent if and only if
A & R and B & R are both inconsistent.

Thus, rather than eliminating a variable as in rule III, the new variant considers,
in sequence, the two subformulas A & R (resp. B & R) which are obtained by
fixing the value of the chosen splitting variable to 0 (resp. 1). If the satisfiability
of either subformula cannot be immediately determined, splitting is repeated by
fixing additional variables. This process amounts to a depth-first exploration of
the space of truth assignments and avoids the memory blow-up inherent in the first
version of the algorithm. Completeness is insured by maintaining a stack of the
subformulas that are created by splitting and by chronologically backtracking to
them whenever later subformulas are found to be unsatisfiable. These two variants
have traditionally been referred to as DP and DLL. Recently, though, DPLL has
been increasingly used to refer to the DLL version and we follow this usage in the
remainder of the article.

The DPLL algorithm established the basic architecture for all subsequent com-
plete SAT solvers and identified the major computational steps to be:

Branching which is the mechanism for moving forward in the search space,

(Unit) Propagation which is the mechanism for deducing appropriate conse-
quences, also known as implications, of branching choices,

Backtracking which is the mechanism for retracting from regions of the search
space that do not contain satisfying assignments.

Of course, this description leaves many details unspecified including how to select
variables and values for branching and how to detect unit clauses and propagate
implications.

Until the mid 1990s, implementations of DPLL followed the original algo-
rithm rather closely, differing primarily in the heuristics used for branching [13,
17, 42, 51, 29, 6, 21, 50]. In particular, these early solvers executed chronological
backtracking, and their capacity was limited to SAT instances with variable counts
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in the low hundreds. The first major enhancement to DPLL came in 1996 with the
debut of the GRASP solver [33, 34]. Building on ideas from the Artificial Intel-
ligence (AI) and Constraint Satisfaction Problems (CSP) communities, GRASP
introduced a novel procedure for clause learning from conflicts, i.e., from partial
assignments that cause the formula to evaluate to 0. Concepts such as dependency-
directed backtracking, learning from failures, and nogoods appeared in the mid to
late 1970s in connection with the development of truth maintenance systems for
planning [20], circuit analysis [49] and medical diagnosis [45]. Similar ideas,
such as backjumping and conflict-directed backjumping, and learning were devel-
oped later for solving constraint satisfaction problems [16, 43]. The key insight in
all of these approaches is the inevitability of failure in search algorithms, i.e., the
near-certainty (and in case of unsatisfiable instances the absolute certainty) that
regardless of how clever the branching heuristics are, a search procedure cannot
avoid visiting parts of the search space that contain no solutions. These failures
occur because the set of constraints that characterize the search space are generally
incomplete in the sense that they do not explicitly capture all possible interactions
among the variables. In other words, failures, which we will henceforth refer to as
conflicts, signify missing constraints. Thus, by analyzing conflicts we can learn
additional constraints that will help avoid similar conflicts later on in the search.

Learning from conflicts takes a particularly simple and elegant form in SAT.
A conflict is captured as a partial variable assignment, namely the assignment that
causes the CNF formula to evaluate to 0. Negating this assignment yields the
desired missing constraint in the form of a conflict-induced clause. Having the
same form as the original formula clauses, these learned clauses do not require
any special treatment and can be processed similarly to other clauses by the search
algorithm.

A significant feature of clause learning in GRASP is the way it ties together
branching, propagation, and backtracking to create effective learned clauses. To
appreciate this, note that a naive form of learning is to simply negate the entire
set of branching decisions that led to the present conflict. For deep conflicts, the
resulting learned clause would be unnecessarily long and not particularly useful
for eliminating future conflicts. Effective learning requires identifying a small set
of assignments that are sufficient to expose the conflict. GRASP identifies such
a set by keeping track of the implication sequences during propagation which it
implicitly captures as an implication graph. Nodes in this graph represent either
decision assignments or implications due to propagation. Each assignment is also
labeled with a decision level that indicates when it was created. This level is in-
cremented each time a branching decision is made, and all implied assignments
caused by that decision inherit that decision’s level. Directed edges in this graph
capture unit propagation and are labeled with the unit clauses responsible for prop-
agation. Various cuts in this graph correspond to independent sets of assignments
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each of which representing a “witness” of the conflict. In particular, GRASP in-
troduced the notion of unique implication points4 (UIPs) which correspond to the
dominators in the implication graph and demonstrated that UIP-based learning
yields short effective conflict-induced clauses. This style of clause learning also
allowed the algorithm to backtrack non-chronologically to the decision level of
the latest assigned variable in the learned clause. GRASP also introduced the
Dynamic Largest Individual Sum of literals (DLIS) branching heuristic and ex-
perimentally demonstrated its advantage over other heuristics in common use at
the time [32]. DLIS maintains counts of literals in unresolved clauses and uses for
its next branching decision the literal with the largest count. The enhancements
introduced in GRASP, particularly conflict analysis and clause learning, enabled,
for the first time, the solution of SAT instances with up to tens of thousands of
variables and hundreds of thousands of clauses.

The next milestone in the development of modern SAT solvers was triggered
by the observation that the run time distributions of DPLL solvers on satisfiable
instances tend to have heavy tails when branching is randomized [26]. This should
not be too surprising since a satisfiable SAT instance can be solved very quickly
given a perfect branching sequence (i.e., given the solution) but can also take an
exponential amount of time with a poor choice of branching decisions. To mit-
igate against this inherent variability in run times, Gomes et al [26] proposed
the use of rapid randomized restarts so that a solver can escape from bad re-
gions of the search space. Restarts are typically triggered after the solver per-
forms a given number of backtracks. Run lengths can also be varied between
restarts using a variety of policies such as Luby [1] which is based on the se-
quence 1, 1, 2, 1, 1, 2, 4, · · · . Search restarts were later shown to work effectively
with clause learning [5, 37], and to be useful even for unsatisfiable instances. In
addition, researchers continue to explore various heuristics that can improve the
effectiveness of restarts such as adaptive restarts [8] and problem-specific restart
heuristics [46].

Modern SAT solvers took their final shape with two further enhancements that
were introduced in the Chaff solver [37]. Both enhancements were motivated by
the desire to significantly reduce the computational cost of branching and prop-
agation which dominated the overall run time of conflict-driven solvers such as
GRASP. The first enhancement replaced counter-based procedures for identify-
ing unit clauses and performing BCP with a clever algorithm that has come to
be known as the two-watched-literals scheme. In this scheme, which generalizes
a similar idea in the SATO solver [55], the status of a clause is maintained by
“watching” just two of its literals that are not currently assigned to 0 regardless

4A notion inspired by unique sensitization points from the field of automatic test pattern gen-
eration [23].
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of how many other literals it may have. The status is updated only when one of
the watched literals is assigned to 0. In that case, another literal that is not cur-
rently assigned to 0 must be found and watched; the clause becomes unit if no
such literal can be found except the other watched literal. The key idea in this
scheme is to lazily update the status of a clause since we only need to know when
it becomes unit; assignments to literals that are not watched are irrelevant and do
not incur any overhead. Furthermore, assigning 1 to a watched literal, or unas-
signing it while backtracking, requires no maintenance. The performance benefit
of this scheme is most prominent when a CNF instance contains many large orig-
inal clauses or, as is more likely, the SAT solver adds large learned clauses as the
search proceeds.

The second enhancement introduced in Chaff was the Variable State Indepen-
dent Decaying Sum, or VSIDS, branching heuristic [37]. Unlike earlier branching
heuristics, VSIDS was designed to leverage clause learning. Specifically, noting
that difficult instances tend to generate many conflicts, and corresponding conflict-
induced learned clauses, the heuristic leans towards choosing variables that occur
with higher frequency in the most recent conflicts. Quoting from [37], VSIDS
consists of the following five steps:

(1) Each variable in each polarity has a counter, initialized to 0.

(2) When a clause is added to the database, the counter associated
with each literal in the clause is incremented.

(3) The (unassigned) variable and polarity with the highest counter
is chosen at each decision.

(4) Ties are broken randomly by default, although this is config-
urable.

(5) Periodically, all counters are divided by a constant.

The adaptation of branching choices to conflict-driven learning has the additional
benefit of low overhead since variable count statistics need to be updated only
upon the occurrence of conflicts. This is in marked contrast to other branching
heuristics, such as DLIS, which require much more frequent updating of literal
counts.

The above narrative was not meant to be comprehensive. Other enhancements,
such as learned clause minimization [48], learned clause deletion policies [25],
search restart strategies [8, 46], formula simplification [18], and literal phase sav-
ing [40], etc., have been, and continue to be, suggested. However, it is fair to
say that the four enhancements described in this section, namely a) GRASP-like
conflict-driven clause learning, b) restarts, c) Chaff-like two-watched-literal prop-
agation, and d) Chaff-like VSIDS branching, have had the most impact in improv-
ing the performance and capacity of modern SAT solvers. It is now standard to
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refer to solvers that incorporate these features as conflict-driven clause learning,
or CDCL, solvers.

3 MiniSat Configurations
MiniSat [19] is one of the best implementations of conflict-driven clause learning.
It has a history of winning in SAT competitions, is open-source, and is particu-
larly easy to modify and adapt for various uses. In this study we instrumented
MiniSat 2.2.0 5to run in the twelve configurations listed in Table 1. The base con-
figuration emulates the DPLL algorithm: it uses the DLIS branching heuristic,
implements BCP with counters, and backtracks chronologically. The remaining
eleven configurations are characterized by the on/off setting of the following four
options:

• Option CL (Clause Learning): When this option is chosen, MiniSat per-
forms conflict analysis, clause learning, and non-chronological backtrack-
ing; when CL is turned off, MiniSat reverts to DPLL-style chronological
backtracking search.

• Option RST (Restarts): When this option is chosen, MiniSat applies a Luby
restart strategy with a default cutoff of 100 conflicts (i.e., run lengths be-
tween restarts follow the sequence 100, 100, 200, 100, 100, 200, 400, · · · ).

• Option 2WL (Two-Watched-Literals): When this option is chosen, MiniSat
uses the watched-literals scheme for unit propagation; otherwise, it detects
unit clauses by maintaining counters of 0 literals in each clause.

• Option VSIDS (Variable State Independent Decaying Sum): When this op-
tion is chosen, MiniSat applies the VSIDS branching heuristic; otherwise,
it reverts to the DLIS heuristic.

Since VSIDS relies on clause learning, it is not clear how to apply it when
clause learning is disabled. Specifically, in the absence of clause learning,
the application of VSIDS has no effect as all literal counts remain at their
initial value (zero) causing branching decisions to become totally random.
To retain the spirit of VSIDS in this case, we allow a limited form of clause
learning, namely we allow conflict clauses to be created in order to up-
date the literal counts that VSIDS depends on, but immediately delete these
clauses to prevent them from helping avoid similar conflicts in the future.
For comparison purposes, though, we have implemented the “crippled” ver-
sion of VSIDS which will be referred to as VSIDS-.

5http://minisat.se/Main.html
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Table 1: MiniSat Configurations

Configuration CL RST 2WL VSIDS- VSIDS

DPLL N N N N N
CL Y N N N/A N
RST N Y N N N
2WL N N Y N N
VSIDS- N N N Y N
VSIDS N N N N Y
¬ CL- N Y Y Y N
¬ CL N Y Y N Y
¬ RST Y N Y N/A Y
¬ 2WL Y Y N N/A Y
¬ VSIDS Y Y Y N/A N
CDCL Y Y Y N/A Y

Other than turning the above options on and off, we ran MiniSat with default
settings for its other parameters, in particular, opt_ccmin_mode = 2 for deep
conflict clause minimization, opt_phase_saving = 2 for full phase saving, and
opt_rnd_init_act = false which sets initial literal activity to 0.

4 Benchmarks

To evaluate these twelve configurations of MiniSat we assembled a suite of 1000
CNF instances drawn from twelve diverse application domains. Table 2 lists the
benchmark families along with the number of instances selected to represent each
family. Columns SAT and UNS indicate, respectively, the number of satisfiable
and unsatisfiable instances for each family, whereas column UNK indicates the
number of instances whose satisfiability status is unknown6.

The choice of these particular problem instances was based on a number of
factors including:

• Representation of real-world problem domains where SAT had been success-
fully applied over the last decade and a half.

6The status of each instance was determined by consulting publicly-available data at various
benchmark archives. We were unable to determine the status of only 28 instances and tagged them
with UNK even though they may be known to be SAT or UNSAT.
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Table 2: Benchmark Families

Family Instances SAT UNS UNK Description

atpg 100 28 72 0 Circuit testing
bioinf 30 8 12 10 Bioinformatics
config 50 15 35 0 Product configuration
crypto 30 26 3 1 Cryptanalysis
equiv 30 5 25 0 Equvalence checking
fpga 50 25 22 3 FPGA routing
hbmc 250 88 146 16 Hardware bounded model checking
hverif 200 125 75 0 Hardware verification
netcfg 10 7 2 1 Network configuration
plan 80 51 24 5 Planning
sverif 120 57 52 11 Software verification
termrw 50 26 22 2 Term rewriting

Total: 1000 461 490 49

• Representation of benchmark archives that are used to rank solvers in SAT
Competitions7 and SAT Races8.
• Inclusion of a reasonable number of easy problem instances to enable all solver

configurations to finish on at least some instances.
• Weighting the participation of each family (in terms of the number of instances

representing it) by the relative success of applying SAT solving technology to
that family in the recent past.

The atpg, plan, equiv and fpga families represent SAT applications dating from
the early and mid 1990s [30, 44, 38]. Of these, atpg is the one domain where
SAT solvers have had the most impact. The config family represents automa-
tive product configuration benchmarks [47], an area where SAT has been applied
over the years [27]. Most of the remaining benchmarks were taken from the SAT
competitions, again reflecting the relative impact of each practical application.
The most sucessful applications of SAT include hardware bounded model check-
ing (hbmc) [9], hardware verification (hverif) [52, 31], and software verification
(sverif) [4]. More recent applications include network configuration problems
(netcfg) [39], termination problems in term rewriting systems (termrw) [22],
cryptanalysis (crypto) [35], and bioinformatics (bioinf) [10, 12]. Finally, it is

7http://www.satcompetition.org/.
8http://baldur.iti.uka.de/sat-race-2010/.
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worth noting that we are not including in this study randomly-generated bench-
marks a) because such benchmarks, especially random 3-SAT instances, have
been studied extensively, particularly when the clause-to-variable ratio is approxi-
mately 4.25 (the so-called phase-transition region) [36], and b) because real-world
benchmarks are rarely random. As we argue later, much work is needed to under-
stand the structure of SAT instances that are derived from actual applications and
how such structure affects the behavior of modern SAT solvers.

Figures 1 and 2 provide a variety of statistics that can be useful in differentiat-
ing among the benchmark families. Specifically, Figure 1 shows the distribution
of the number of variables, number of clauses, and clause-to-variable ratio for the
instances in each family. As can be seen, the instances cover a wide range with
the smallest instance (50 variables and 159 clauses) coming from the hbmc fam-
ily and the largest (2,270,930 variables and 8,901,845 clauses) representing the
netcfg family. The clause size distribution (number of clauses of a given size)
is diagrammed in Figure 2 and shows that while most instances consist of 2 and
3 literals, there is a sizable number of instances that consist of large clauses. In-
terestingly, the above-mentioned largest netcfg instance has a clause with 865
literals.

5 Evaluation

Before presenting and discussing the results of this study, a couple of caveats
are in order. In general, to obtain statistically meaningful run time data requires
that a SAT solver be applied to n > 10 randomly-ordered (both variables and
clauses) versions of each CNF instance. Performing such an extensive evaluation
was not feasible, however. Still, we believe that the data we collected provide
useful indications of trends and can serve as motivation for further investigations.
Secondly, we used a time-out limit of 1000 seconds, which is a little over 15
minutes. A longer time out, say one hour, could potentially, though not likely,
affect the conclusions of the study.

The experiments were conducted on a cluster of servers at University College
Dublin (UCD) consisting of x86_64 3GHz CPUs with 32GB memory and run-
ning the Linux operating system. A total of 12,000 separate runs were performed
representing the execution of each of the 12 MiniSat configurations in Table 1
on each of the 1000 CNF instances in our benchmark suite. The results of these
experiments are summarized in Figure 3 and Table 3.

The cactus plot in Figure 3 is a helpful way of comparing the performance of
all twelve solver configurations. The curve corresponding to each configuration
represents its run times for each of the 1000 benchmark instances. However, the
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data points for each configuration are sorted separately from smallest to largest9.
In other words, the ordering of the instances along the x-axis is different for dif-
ferent configurations.

Careful study of the data in the table and figure suggests the following conclu-
sions:

1. CDCL, the configuration that includes all four features discussed in this article,
provides the best overall performance. It solves 910 out of the 1000 instances
within the 1000 second time-out limit.

2. The configurations that represent the absence of a feature suggest that, in terms
of effectiveness, the features should be ordered according to CL > VSIDS >
2WL > RST. In other words, fewer instances are solved if CL is missing (637)
than if VSIDS is missing (714), etc. Conversely, more instances are solved if
that same feature is the only option used by the solver: 696 for CL, 451 for
VSIDS, 204 for 2WL, and 185 for RST.

3. The “crippled” VSIDS- option performs extremely poorly, completing on just
55 instances. This is not surprising since, as mentioned earlier, in the absence
of clause learning VSIDS degenerates into a random branching heuristic. Op-
tion ¬CL− which adds RST and 2WL to VSIDS- improves performance con-
siderably allowing the solution of 364 instances. A possible explanation of this
result is that RST is able to overcome the bad branching choices of VSIDS-.
This is further corroborated by noting that the average number of restarts un-
der ¬CL− (random branching) is about ten times the average number of restarts
under RST (DLIS branching).

4. The RST configuration performs worse than DPLL. This seemed to be anoma-
lous until we realized that the combination of no learning and DLIS branching
causes the same decision sequence to be retraced on every restart. Effectively,
then, in the RST mode MiniSat is repeatedly executing DPLL until it reaches
the conflict cutoff. This also confirms the need to randomize the decision se-
quence for restarts to be useful. Such randomization occurs naturally when
clause learning is enabled since the addition of clauses changes literal activity
causing the solver to follow a different decision order on each restart.

5. The performance of 2WL was suspiciously identical to that of DPLL. We ex-
pected that 2WL would show some advantage for those instances with large
clauses. It turned out, however, that 2WL timed out on those instances and its
performance edge on instances with short clauses was not significant enough
to outperform counter-based unit propagation. As with search restarts, 2WL is
not effective per se, since most problem instances have mostly short clauses.

9The data points for instances that timed out are not shown to keep the figure from becoming
too cluttered.
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However, in the presence of clause learning, the effect of 2WL becomes sig-
nificant, due to the addition of many large learned clauses.

6. The most significant difference between VSIDS and DLIS is the associated
overhead. DLIS requires all literal counters to be updated after unit propa-
gation and after backtracking. Data from the late 1990s indicated that DLIS
could account for more than 75% of the run time of GRASP [32]. In contrast,
VSIDS has very low overhead. This results in most of the time being spent in
the actual search, and so allows solving more problem instances.

7. The most difficult instances come from the bioinf family; only 15 out of
the 30 instances were solved. Next are the instances from the equiv family
(23 out of 30 solved), the plan family (65 out of 80 solved), and the sverif
family (100 out of 120 solved). The instances from the remaining eight families
are, comparatively, much easier: all instances from the atpg, config, and
netcfg families were solved, nearly all instances from the fpga and hverif
families were solved, and over 90% of the instances from the crypto, hbmc,
and termrw were solved.

8. An interesting byproduct of this study is that 28 out of the 49 UNK instances
were solved. Ironically, 25 of these were solved by the ¬VSIDS configuration:
14 from the hbmc family, 4 each from the plan and sverif families, and 1
each from the crypto, netcfg, and termrw families. The other 3, all from
the fpga family were solved by the ¬ CL configuration. It is unclear why
disabling VSIDS and CL was helpful in these cases.

Additional insights can be gleaned by examining the run time data for each
benchmark family separately. Cactus plots for each of the twelve benchmark fam-
ilies are provided in the appendix.

6 Conclusion
The impressive progress in the capacity and performance of SAT solvers over the
last fifteen years has accelerated their adoption as indispensable reasoning en-
gines, particularly in hardware and software verification applications. In a recent
paper, SAT-based formal methods were reported to have been successfully used
as the primary validation vehicle for the Intel Core i7 Processor Execution En-
gine [28]. In this article we tried to highlight what we think were the primary
algorithmic and implementation advances in SAT solving technology that made
this possible. But lingering questions remain. With few exceptions, very little
has been done theoretically to explain why CDCL solvers work so well. In [7],
Beame et al. show that, as a proof system, clause learning is more powerful than
regular and DP resolution. Recent work has also shown that a proof system based
on clause learning with restarts is as powerful as general resolution (e.g. [41]).
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Perhaps an easier question to answer is why CDCL works so well on certain
types of problem instances and not so well on others (see observation 8 in Sec-
tion 5). Studies that characterize the structure of CNF instances can help guide
the answers to such questions. For example, intractability may be caused by sym-
metry and approaches that break symmetry have shown some promise [2]. Other
structural attributes such as the cut width of graph representations of CNF in-
stances have been proposed as useful metrics [11]. A recently-suggested promis-
ing direction is based on “discovering” that industrial SAT instances have a scale-
free graph structure [3] and that this structure seems to be maintained throughout
the search process as assignments are made and erased and as learned clauses are
added.

In summary, the experimentalists have done quite well in the last few years.
What we need going forward is a little bit more theory to explain what has al-
ready been done and, perhaps more importantly, to guide the future course of SAT
research.
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A Detailed Run Time Distributions
Figures 4(a) through 4(l) show, separately, the run time distributions of the twelve
MiniSat configurations for each of the benchmark families.
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Figure 4: Detailed Run Time Distributions
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Figure 4: Detailed Run Time Distributions (cont.)
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(i) Run Time Distribution for the netcfg Family

Figure 4: Detailed Run Time Distributions (cont.)
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(k) Run Time Distribution for the sverif Family
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(l) Run Time Distribution for the termrw Family

Figure 4: Detailed Run Time Distributions (cont.)
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