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Abstract

It has been a common belief that the standard results of universal algebra
as developed since the work of Birkhoff and others in the thirties carry over
without much change to the framework of many-sorted algebras. Perhaps
the only exception widely noticed by the community is the care needed in
the treatment of many-sorted equational logic. However, while the standard
results remain valid in essence in the many-sorted frameworks, some nu-
ances and technicalities require considerably more care in formulation and
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proof of the results. We give some examples of this, indicating how equa-
tional calculus, Birkhoff’s variety theorem and interpolation results should
be adjusted for many-sorted algebras.

1 Introduction

Since the work of Birkhoff and others in the thirties, universal algebra has been
developed as a highly influential branch of mathematics. We refer to [9] for a
handbook presentation of many ideas, concepts and results of universal algebra.
Most of the material there, as in most other mathematical literature on univer-
sal algebra, is presented in the context of single-sorted (homogeneous) algebras.
However, when the theory of algebraic specifications has been developed as a
branch of computer science (see for instance [10, 6, 12, 17] for relatively early
presentations of this area) it became clear that a version of universal algebra based
on many-sorted (heterogeneous) algebras is needed, as perhaps first explicitly in-
troduced in [11, 2].

It has been widely accepted then that many-sorted universal algebra does not
differ much from its single-sorted version. It came as a surprise when it was
realised that even the basic equational calculus needs to be adjusted when used
in the many-sorted framework. An elegant overall solution came in [7], with a
number of variants developed independently by other authors, see for instance [6],
and heated discussions over various details at the time (see e.g. [5, 8]). Later on,
other differences between many-sorted and single-sorted algebraic frameworks
have been pointed at.

In this note we try to indicate some of the standard results and ideas of univer-
sal algebra which do not carry over to the many-sorted framework in an entirely
obvious manner. We start though by recalling in Sect. 2 the basic definitions and
few basic facts of universal algebra in many-sorted formulation. Even though this
material is quite standard, we present it not only to introduce notation but also to
point out already here at some concepts that should be considered with more care
in the many-sorted framework. Then, in Sect. 3, we have a look at the famous
Birkhoff’s variety theorem, characterising equationally definable classes as vari-
eties [1]. It turns out that although the formulation of the theorem carries over
to the many-sorted framework, significant technical difficulties are caused by nu-
ances concerned with infinite sets of sorts and algebras that have carriers of some
sorts empty. In Sect. 4 we point at differences between single-sorted and many-
sorted equational calculus, following largely [7]. Finally, in Sect. 5, we look at
interpolation properties, where again, many-sorted framework requires different
than standard formulations of the interpolation properties for first-order [3] and
for equational logic [14].

We do not claim any technical novelty here: the results presented are either



��� �������	 
� ��� ����

��

available in the literature (we apologise for the highly incomplete list of refer-
ences) or in the folklore of the field. As mentioned above, the issues concerning
many-sorted equational calculus were resolved by the mid-eighties; careful for-
mulations of Birkhoff’s variety theorem in many-sorted context were given about
the same time (e.g. in [6]); a more complete understanding of interpolation for
many-sorted logic came somewhat later (see [13, 3]). However, we think that ex-
posing the nuances of many-sorted universal algebra should be useful to clarify
many misunderstandings and common inaccuracies that still may be found in the
literature.

Acknowledgements: Many thanks to Bartek Klin and Jiři Adámek for alerting
me to the problems with precise formulation of Birkhoff’s variety theorem in the
many-sorted framework, and to Tomasz Brendos and Jarosław Tworek for early
discussions on this topic.

Very special thanks to Don Sannella for long-term collaboration on these and
related topics. Some parts of the material presented here are included or hinted at
in our forthcoming monograph [15].

2 Basic Definitions and Facts

2.1 Many-sorted Sets
Let S be any set; we think of elements of S as sort names, or sorts for short.

An S -sorted set is an S -indexed family of sets X = 〈Xs〉s∈S . We say that such
an S -sorted set X is empty if Xs is empty for all s ∈ S . The empty S -sorted set will
be written (ambiguously) as ∅. We say that X is everywhere non-empty if Xs � ∅
for all s ∈ S ; otherwise we say that X is somewhere empty. Clearly, if S has at
least two elements, there are S -sorted sets that are neither empty nor everywhere
non-empty.

S -sorted set X is finite if Xs is finite for all s ∈ S and Xs = ∅ for almost all
s ∈ S (that is, for all but a finite number of s ∈ S , Xs = ∅).

Let X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S be S -sorted sets. Union, intersection, Carte-
sian product, disjoint union, inclusion (subset) and equality of X and Y are defined
component-wise in the obvious manner.

An S -sorted function f : X → Y is an S -indexed family of functions f =
〈 fs : Xs → Ys〉s∈S ; X is called the domain (or source) of f , and Y is called its
codomain (or target). An S -sorted function f : X → Y is an identity (inclusion,
surjection, injection, bijection, etc) if for every s ∈ S , the function fs : Xs → Ys is
an identity (inclusion, surjection, injection, bijection, etc). The identity S -sorted
function on X will be written as idX : X → X.

S -sorted functions compose in the usual, component-wise manner; we write
their composition in the diagrammatic order, using “;” (semicolon): for f : X → Y
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and g : Y → Z, their composition is f ;g : X → Z. The category of S -sorted sets
with S -sorted functions as morphisms will be written as SetS .

All other standard concepts of set theory (in particular, image and coimage of
a set w.r.t. a function, binary relation, equivalence, quotient set, etc) carry over
to S -sorted context as above, in the expected, component-wise manner, with the
standard notations retained. For instance, given an S -sorted set X and an S -sorted
equivalence ≡ ⊆ X × X, we write x ∈ X instead of x ∈ Xs for some sort s ∈ S , and
then [x]≡ for [x]≡s , the equivalence class of x w.r.t. ≡s.

2.2 Many-sorted Algebras
A (many-sorted) signature is a pair Σ = 〈S ,Ω〉, where:

• S is a set (of sort names); and

• Ω is an (S ∗ × S )-sorted set (of operation names)

where S ∗ is the set of finite (including empty) sequences of elements of S . When
the signature is understood, we write f : s1×· · ·×sn → s whenever s1, . . . , sn, s ∈ S
and f ∈ Ω〈s1···sn,s〉.

To avoid minor technical complications, we will assume that in each signature,
the sets inΩ are mutually disjoint (so that no overloading of operation names is al-
lowed). This is not an essential assumption for any of the technical developments
below.

For the rest of this section, let Σ = 〈S ,Ω〉 be a signature.
A Σ-algebra A consists of:

• an S -sorted set |A| of carrier sets (or carriers); and

• for f : s1×· · ·× sn → s in Σ, a function (or operation) fA : |A|s1×· · ·×|A|sn →
|A|s.

We say that A is everywhere non-empty if |A| is everywhere non-empty, i.e., |A|s �
∅ for all sorts s ∈ S ; otherwise A is somewhere empty.

Let A and B be Σ-algebras. B is a subalgebra of A if:

• |B| ⊆ |A|; and
• for f : s1 × · · · × sn → s in Σ and b1 ∈ |B|s1 , . . . , bn ∈ |B|sn , fB(b1, . . . , bn) =

fA(b1, . . . , bn).

In other words, any subalgebra B of A is given by an S -sorted subset |B| of |A|
that is closed under Σ-operations as defined in A. Subalgebras of any algebra A,
ordered by inclusion of their carriers, form a complete lattice. In particular, given
any set X ⊆ |A|, there is the least subalgebra of A that contains X; we write it as
〈X〉A and call it the subalgebra of A generated by X. This is well-defined since
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the intersection of any family of subalgebras of A is a subalgebra of A, which
is not true when everywhere non-empty algebras are considered: intersection of
everywhere non-empty subalgebras of A may be somewhere empty.

Given a family 〈Ai〉i∈I of Σ-algebras (indexed by any set I of indexes), its prod-
uct
∏

i∈I Ai is a Σ-algebra P defined as follows:

• |P| =∏i∈I |Ai|; and
• for f : s1 × · · · × sn → s in Σ and f1 ∈ |P|s1 , . . . , fn ∈ |P|sn , fP( f1, . . . , fn)(i) =

fAi( f1(i), . . . , fn(i)) for all i ∈ I.

We use the usual notation A × B for binary products. The product of the empty
family of Σ-algebras (the family indexed by I = ∅) is the “singleton” algebra,
which has a singleton carrier set for each sort; we write it as 1Σ (of course, this
determines 1Σ up to an isomorphism only, see below).

A Σ-homomorphism h : A → B between Σ-algebras A and B is an S -sorted
function h : |A| → |B| which preserves the operations of Σ, i.e. such that for all
f : s1 × · · · × sn → s in Σ and a1 ∈ |A|s1 , . . . , an ∈ |A|sn , hs( fA(a1, . . . , an)) =
fB(hs1(a1), . . . , hsn(an)).

Composition of Σ-homomorphisms (as functions) is a Σ-homomorphism and
the identities are Σ-homomorphisms. The category of Σ-algebras with Σ-homo-
morphisms as morphisms will be denoted by Alg(Σ). AlgNE(Σ) stands for its
full subcategory of everywhere non-empty algebras. A Σ-homomorphism is a
Σ-isomorphism if it is bijective (these are exactly isomorphisms in Alg(Σ)).

If h : A → B is a Σ-homomorphism then for any subalgebra A′ of A, the image
of A′ under h, written h(A′), is a subalgebra of B, and for any subalgebra B′ of
B, the coimage of B′ w.r.t. h, written h−1(B′) is a subalgebra of A. The latter
property does not carry over to everywhere non-empty algebras: the image of an
everywhere non-empty subalgebra is everywhere non-empty, but the coimage of
an everywhere non-empty subalgebra may be somewhere empty.

A Σ-congruence on a Σ-algebra A is an (S -sorted) equivalence ≡ on |A| which
respects the operations of Σ: for all f : s1 × · · · × sn → s in Σ and a1, a′1 ∈ |A|s1 ,
. . . , an, a′n ∈ |A|sn , if a1 ≡s1 a′1 and . . . and an ≡sn a′n then fA(a1, . . . , an) ≡s

fA(a′1, . . . , a
′
n).

Given a Σ-congruence ≡ on a Σ-algebra A, the quotient algebra A/≡ of A
modulo ≡ is the Σ-algebra Q defined by:

• |Q| = |A|/≡; and
• for f : s1 × · · · × sn → s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn , fQ([a1]≡, . . . , [an]≡) =

[ fA(a1, . . . , an)]≡.

Given a Σ-homomorphism h : A → B, its kernel ker(h) = {〈a, a′〉 | h(a) = h(a′)} ⊆
|A| × |A| is a Σ-congruence. The quotient algebra A/ker(h) is isomorphic to h(A)
via the isomorphism that maps any equivalence class [a]ker(h), a ∈ |A|, to h(a).
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A non-empty family 〈Ai〉i∈I of Σ-algebras is directed if for all i1, i2 ∈ I there is
i ∈ I such that Ai1 and Ai2 are subalgebras of Ai. Given such a family, its (directed)
sum
∐

i∈I Ai is the Σ-algebra U defined as follows:

• |U | = ⋃i∈I |Ai|, and
• for f : s1 × · · · × sn → s in Σ, fU =

⋃
i∈I fAi .

2.3 Equations

Let Σ = 〈S ,Ω〉 be an algebraic signature, fixed throughout this section.
Given an S -sorted set X such that for all distinct s, s′ ∈ S , Xs and Xs′ are

disjoint1, Σ-terms with variables in X are defined as usual, and so is the usual
Σ-algebra TΣ(X) of Σ-terms with variables in X. Let ηX : X → |TΣ(X)| be the
inclusion. Given a term t ∈ |TΣ(X)|, we write FV(t) ⊆ X for the (finite) S -sorted
set of variables that occur in t; clearly FV(t) ⊆ X, but in general the inclusion may
be proper. We say that t is ground if FV(t) = ∅. The algebra of ground terms is
written as TΣ.

If X is everywhere non-empty then so is the term algebra TΣ(X). In general
though. term algebras TΣ(X) may be somewhere empty. All Σ-algebras are every-
where non-empty (so that Alg(Σ) and AlgNE(Σ) coincide) if and only if the algebra
TΣ of ground terms is everywhere non-empty.

We say that a set of sorts S 0 ⊆ S makes a sort s ∈ S non-void in Σ if there
is a Σ-term of sort s with variables of sorts in S 0 only. A set of sorts S ′ ⊆ S is
non-void in Σ if the empty set of sorts makes each s ∈ S ′ non-void in Σ (that is,
there is a ground Σ-term of sort s). A set of sorts S ′ ⊆ S is almost non-void in Σ
if there is a finite S 0 ⊆ S ′ such that S 0 makes each sort s ∈ S ′ non-void in Σ. The
term algebra TΣ(X) is everywhere non-empty if the set of sorts {s ∈ S | Xs � ∅}
makes each sort s ∈ S non-void in Σ. The set of all sorts in Σ is almost non-void
in Σ if and only if there exists a finite S -sorted set X such that TΣ(X) is everywhere
non-empty.

The algebra TΣ(X) if free in Alg(Σ) with generators X, that is, for any Σ-
algebra A and function (valuation of variables) v : X → |A|, there exists a unique
Σ-homomorphism v� : TΣ(X) → A that extends v, that is, such that ηX;v� = v.
Then, given a term t ∈ |TΣ(X)|, we write tA(v) = v�(t) for the value of t in A under
v. The value of a term depends only on the valuation of the variables that occur
free in it: given a term t ∈ |TΣ(X)|, Σ-algebra A, and two valuations v1, v2 : X → |A|
such that v1 and v2 coincide on FV(t), we have tA(v1) = tA(v2).

1This is assumed without mention in the following as well, whenever an S -sorted set is used as
a set of variables. We add this minor assumption to avoid some technical troubles below, follow-
ing a similar assumption about the operation names in the signatures considered. For notational
convenience, we will also assume that variables are distinct from constants in the signature.
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In particular, given two S -sorted sets X and Y , and a substitution θ : X →
|TΣ(Y)| of Σ-terms (with variables Y) for variables in X, we have the unique homo-
morphism θ� : TΣ(X) → TΣ(Y), which substitutes terms θ(x) for variables x ∈ X in
any Σ-term t ∈ |TΣ(X)|; we write t[θ] for θ�(t) = tTΣ(Y)(θ).

A Σ-equation ∀X. t = t′ consists of:

• an S -sorted set X (of variables), and

• two Σ-terms t, t′ ∈ |TΣ(X)|s for some sort s ∈ S .

An equation ∀X. t = t′ is finitary if X is finite; it is ground if X = ∅.
A naive Σ-equation t = t′ consists of two Σ-terms t, t′ ∈ |TΣ(X)|s for some

S -sorted set X (of variables) and sort s ∈ S ; we identify naive Σ-equation t = t′

with the Σ-equation ∀X. t = t′, where X = FV(t) ∪ FV(t′) is the set of variables
that actually occur in terms t, t′. Clearly, naive equations are finitary.

A Σ-algebra A satisfies (or, is a model of ) a Σ-equation ∀X. t = t′, written
A |=Σ ∀X. t = t′, if for every valuation v : X → |A|, tA(v) = t′A(v).

As usual, we omit the subscript Σwhenever convenient, and for any classA of
Σ-algebras, Σ-algebra A, set Φ of Σ-equations and Σ-equation ϕ, we writeA |= ϕ,
A |= Φ andA |= Φ with the obvious (conjunctive) meaning.

More crucially, we write Φ |= ϕ whenever ϕ is a semantic consequence of Φ,
that is, for all Σ-algebras A ∈ |Alg(Σ)|, if A |= Φ then also A |= ϕ.

Restricting attention to everywhere non-empty algebras, we write Φ |=NE ϕ
whenever ϕ is a semantic consequence of Φ for everywhere non-empty algebras,
that is, for all everywhere non-empty Σ-algebras A ∈ |AlgNE(Σ)|, if A |= Φ then
also A |= ϕ. Clearly, the semantic entailment implies semantic entailment for
everywhere non-empty algebras: if Φ |= ϕ then Φ |=NE ϕ — but the opposite
implication fails in general.

Given a classA of Σ-algebras, we write ETh(A) for the set2 of all Σ-equations
that are satisfied in all algebras in A; EThfin(A) stands for the set of all finitary
equations that hold in all algebras in A, and EThnaive(A) for the set of all naive
equations that hold in all algebras in A. We have EThnaive(A) ⊆ EThfin(A) ⊆
ETh(A), and both inclusions are proper (unless the signature is empty).

Given a setΦ of Σ-equations, we write Mod(Φ) for the class of all algebras that
satisfyΦ; classes of this form are called equationally definable. So, ETh(Mod(Φ))
is the set of all semantic consequences of Φ.

We also write ModNE(Φ) for the class of all everywhere non-empty algebras
that satisfy Φ, and call such classes everywhere non-empty equationally definable.
In general, everywhere non-empty equationally definable class need not be equa-
tionally definable, but an equationally definable class that consists of everywhere

2This indeed is a set if we presume that variables in equations are selected from a predefined,
sufficiently large vocabulary.
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non-empty algebras only is everywhere non-empty definable. Everywhere non-
empty equationally definable classes are everywhere non-empty definable by sets
of naive (and hence finitary) equations.

Given a Σ-equation ∀X. t = t′, if a Σ-algebra A satisfies the naive Σ-equation
t = t′ then it also satisfies ∀X. t = t′; that is: t = t′ |= ∀X. t = t′. The opposite fails
in general though. However, if A is everywhere non-empty then A |=Σ ∀X. t = t′

iff A |=Σ t = t′. Consequently, ∀X. t = t′ and t = t′ are semantically equivalent for
everywhere non-empty algebras, so that if only everywhere non-empty algebras
are considered, any equation may be replaced by a naive (and hence finitary) one.
For arbitrary algebras, this is not always possible:

Fact 2.1. Consider a Σ-equation ∀X. t = t′. If the set {s ∈ S | Xs � ∅} is almost
non-void in Σ then there is a finite X′ ⊆ X such that the finitary Σ-equation ∀X′. t =
t′ is semantically equivalent to ∀X. t = t′.
Proof sketch. Let S ′ = {s ∈ S | Xs � ∅}, and let S 0 ⊆ S ′ be a finite set of sorts
that makes each sort s ∈ S ′ non-void in Σ. Then take X′ to be FV(t) ∪ FV(t′) with
one variable from Xs0 added for each sort s0 ∈ S 0. �

2.4 Signature morphisms

A signature morphism σ : Σ → Σ′ between signatures Σ = 〈S ,Ω〉 and Σ′ =
〈S ′,Ω′〉 is a pair σ = 〈σsorts, σopns〉 where σsorts : S → S ′ and σopns is a family
of functions that map Σ-operation names to Σ′-operation names respecting their
arities and result sorts, that is σopns = 〈σw,s : Ωw,s → Ω′σ∗sorts(w),σsorts(s)

〉w∈S ∗,s∈S (where
for w = s1 . . . sn ∈ S ∗, σ∗sorts(w) = σsorts(s1) . . . σsorts(sn)). A signature morphism
σ : Σ → Σ′ is a signature inclusion σ : Σ ↪→ Σ′ if σsorts is an inclusion and σw,s is
an inclusion for all w ∈ S ∗, s ∈ S . When no confusion may arise, we omit all the
subscripts and write σ for all the components of the morphism σ.

It is easy to check that signature morphisms compose in the natural way. This
yields the category AlgSig of algebraic many-sorted signatures and their mor-
phisms. This category is well known to be cocomplete, with the empty signature
as the initial object, coproducts defined as disjoint unions of signatures, and co-
equalisers given by identifying sort and operation names in a minimal way to
coequalise the morphisms involved. Consequently, any pushout in AlgSig

Σ

Σ1 Σ2

Σ′

�
�

���

�
�
���

�
�
���

�
�
���

σ1 σ2

σ′1 σ′2



��� �������	 
� ��� ����

��

is constructed so that Σ′ is the disjoint union of Σ1 and Σ2 but with the sorts and
operation names that have a common source in Σ identified.

Signature morphismσ : Σ→ Σ′ determines aσ-reduct functor σ : Alg(Σ′) →
Alg(Σ) defined as follows:

• For any Σ′-algebra A′ ∈ |Alg(Σ′)|, A′
σ ∈ |Alg(Σ)| is defined by:

– |A′
σ|s = |A′|σ(s) for all s ∈ S ; and

– for all f : s1 × · · · × sn → s in Σ, fA′ σ
= σ( f )A′ .

• For any Σ′-homomorphism h′ : A′ → B′, h′ σ = 〈h′σ(s)〉s∈S : A′
σ → B′

σ.

In general, the reduct functor σ : Alg(Σ′) → Alg(Σ) need not be surjective (on
objects) even if σ is injective. However, given an injective signature morphism σ,
the reduct w.r.t. σ is surjective on everywhere non-empty algebras, so that we have
a functor σ : AlgNE(Σ′) → AlgNE(Σ) which is surjective on objects. In fact, such
reduct functors are also surjective on morphisms between everywhere non-empty
algebras. Moreover, the following property holds:

Fact 2.2. Consider an injective signature morphism σ : Σ→ Σ′.
For any everywhere non-empty Σ′-algebra A′ ∈ |AlgNE(Σ′)| and Σ-algebra B,

if A′
σ is a subalgebra of B then there exists an everywhere non-empty Σ′-algebra

B′ such that B′
σ = B and A′ is a subalgebra of B′.

For any (everywhere non-empty) Σ′-algebra A′ ∈ |Alg(Σ′)|, Σ-algebra B and
surjective Σ-homomorphism h : B → A′

σ, there exist an (everywhere non-empty)
Σ′-algebra B′ and a surjective Σ′-homomorphism h′ : B′ → A′ such that h′ σ = h
(and B′

σ = B). �

A (constructive) proof may be extracted from [14]; for the first part, the restric-
tion to everywhere non-empty algebras cannot be omitted since the result may fail
if we allow A′ considered there to be somewhere empty.

The assignments Σ → Alg(Σ) and σ → σ yield a (contravariant) functor
from the category of signatures AlgSig to the (quasi-)category Cat of all cate-
gories, Alg : AlgSigop → Cat. Most crucially, this functor is continuous (maps
colimits of signatures to limits of categories), which in particular means that the
following amalgamation property holds.

Any pushout in the category AlgSig of signatures

Σ0

Σ1 Σ2

Σ

�
�
���

�
�
���

�
�
���

�
�
���

σ1 σ2

σ′1 σ′2
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admits amalgamation, that is:

• for any algebras A1 ∈ |Alg(Σ1)| and A2 ∈ |Alg(Σ2)| such that A1 σ1 = A2 σ2 ,
there exists a unique algebra A ∈ |Alg(Σ)| such that A σ′1 = A1 and A σ′2 =

A2; and

• for any homomorphisms h1 : A11 → A12 in Alg(Σ1) and h2 : A21 → A22 in
Alg(Σ2) such that h1 σ1 = h2 σ2 , there exists a unique Σ-homomorphism
h : A1 → A2 in Alg(Σ) such that h σ′1 = h1 and h σ′2 = h2.

Clearly, amalgamation property also holds when only everywhere non-empty al-
gebras are considered.

Any signature morphism σ : Σ → Σ′ determines translation of Σ-terms to Σ′-
terms. Namely, given t ∈ |TΣ(X)|s, σ(t) ∈ |TΣ′(σ(X))|σ(s), where for s′ ∈ S ′,
(σ(X))s′ =

⋃{Xs | s ∈ S , f (s) = s′}, and σ(t) is obtained from t by substituting
σ( f ) for f , for all operation names f . This naturally extends to Σ-equations:
σ(∀X. t1 = t2) = ∀σ(X). σ(t1) = σ(t2).

Translation of equations and reducts of algebras w.r.t. a signature morphism
are closely linked with each other by so-called satisfaction property. For any
signature morphism σ : Σ→ Σ′, Σ′-algebra A′ and Σ-equation ϕ:

A′
σ |= ϕ iff A′ |= σ(ϕ)

In particular, this implies that semantic consequence is preserved under translation
w.r.t. signature morphisms: given a setΦ of Σ-equations and Σ-equation ϕ, for any
signature morphism σ : Σ→ Σ′, if Φ |= ϕ then σ(Φ) |= σ(ϕ). The opposite impli-
cation may fail though. However, if the reduct functor σ : Alg(Σ′) → Alg(Σ) is
surjective on objects then also the opposite implication holds and we have equiv-
alence:

Φ |= ϕ iff σ(Φ) |= σ(ϕ)
Consequently, if we restrict attention to everywhere non-empty algebras and in-
jective signature morphisms σ, so that reduct functors are surjective on objects,
then the equivalence holds:

Φ |=NE ϕ iff σ(Φ) |=NE σ(ϕ)

3 Birkhoff’s Variety Theorem
Let Σ = 〈S ,Ω〉 be an algebraic signature.

A class of Σ-algebrasV ⊆ |Alg(Σ)| is a variety if it is closed under:

• products: if Ai ∈ V for i ∈ I, then
∏

i∈I Ai ∈ V,

• subalgebras: if A ∈ V and A0 is a subalgebra of A then A0 ∈ V, and
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• homomorphic images: if A ∈ V and h : A → B is a Σ-homomorphism then
h(A) ∈ V.

Varieties are closed under isomorphism: if A ∈ V and B is isomorphic to A
then B ∈ V (since it is the image of A under the isomorphism between them).
Moreover, every variety V is non-empty: it contains the product of the empty
family of algebras, 1Σ ∈ V (Σ-algebra with a one-element carrier of each sort).

Fact 3.1. Given a class of Σ-algebras A ⊆ |Alg(Σ)|, there is the least Σ-variety
that contains A, which consists of all homomorphic images of subalgebras of
products of algebras in A. �

A classV of Σ-algebras is finitary if it is closed under directed sums: if 〈Ai〉i∈I

is a directed family of algebras inV then also
∐

i∈I Ai ∈ V.
A class of everywhere non-empty Σ-algebrasV ⊆ |AlgNE(Σ)| is an everywhere

non-empty variety if it is closed under products, homomorphic images and ev-
erywhere non-empty subalgebras: if A ∈ V and A′ is an everywhere non-empty
subalgebra of A then A′ ∈ V. Note that an everywhere non-empty variety need not
be a variety in general, but if a variety consists of everywhere non-empty algebras
only (this is the case if the algebra of ground Σ-terms is everywhere non-empty)
then it is an everywhere non-empty variety.

It is easy to check that the class of models of any Σ-equation is closed under
products, subalgebras and homomorphic images. Moreover, the class of models
of any finitary equation is closed under directed sums. This yields:

Lemma 3.2. For any set Φ of Σ-equations, Mod(Φ) is a variety. Moreover, if all
equations in Φ are finitary then Mod(Φ) is finitary as well. �

Corollary 3.3. For any set Φ of Σ-equations, ModNE(Φ) is a finitary everywhere
non-empty variety.
Proof sketch. For everywhere non-empty algebras, any equation is equivalent to
a naive (and hence finitary) equation. �

We aim now at a complete characterisation of equationally definable classes
as varieties.

Lemma 3.4. Let V be a variety of Σ-algebras and X be an S -sorted set. Then
there exists a Σ-algebra FV(X) ∈ V with a function ηVX : X → |FV(X)| that is free
over X in V, that is, such that for any algebra A ∈ V and function v : X → |A|,
there exists a unique Σ-homomorphism v� : FV(X) → A with ηVX ;v� = v.
Proof sketch. Consider a set of Σ-algebras Ai ∈ V, i ∈ I, with functions vi : X →
|Ai| such that for any algebra A ∈ V and function v : X → A, for some i ∈ I,
we have an injective Σ-homomorphism h : Ai → A such that vi;h = v. (Such a set
exists: the algebras Ai may be chosen for instance as quotients of the term algebra
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TΣ(X).) Let then P =
∏

i∈I Ai, and ηVX : X → |P| be given by ηVX (x)(i) = vi(x) for
all x ∈ X and i ∈ I. Put FV(X) = 〈ηVX (X)〉P, the subalgebra of P generated by
the image of ηVX . Then by the construction, FV(X) ∈ V. Moreover, FV(X) with
ηVX : X → |FV(X)| is free over X in V. �

Free algebras over X inV are defined uniquely up to isomorphism. Moreover:

Corollary 3.5. Let V be a variety of Σ-algebras and X be an S -sorted set. If
Σ-algebra FV(X) ∈ V with function ηVX : X → |FV(X)| is free over X in V then
FV(X) ∈ V is generated by ηVX (X). �

Consequently, the free algebra is a quotient of the term algebra TΣ(X). Here is
the exact characterisation of the congruence on TΣ(X) that yields the free algebra:

Corollary 3.6. Given any variety V of Σ-algebras and S -sorted set X, consider
Σ-algebra FV(X) ∈ V with function ηVX : X → |FV(X)| free over X in V. For any
terms t, t′ ∈ |TΣ(X)|s, s ∈ S , tFV(X)(ηVX ) = t′FV(X)(η

V
X ) iffV |= ∀X. t = t′. �

Lemma 3.4 carries over to everywhere non-empty algebras, albeit with an ad-
ditional assumption (the same proof applies):

Lemma 3.7. Let V be an everywhere non-empty variety of Σ-algebras and X be
an S -sorted set such that TΣ(X) is everywhere non-empty. Then there exists a Σ-
algebra FV(X) ∈ V with a function ηVX : X → |FV(X)| that is free over X in V,
that is, such that for any algebra A ∈ V and function v : X → |A|, there exists a
unique Σ-homomorphism v� : FV(X) → A with ηVX ;v� = v.

Moreover, such an algebra FV(X) ∈ V is defined uniquely up to isomorphism,
FV(X) ∈ V is generated by ηVX (X), and for any terms t, t′ ∈ |TΣ(X)|s, s ∈ S ,
tFV(X)(ηVX ) = t′FV(X)(η

V
X ) iffV |= t = t′. �

Lemmas 3.4 and 3.7 do not require the classV to be closed under homomor-
phic images: it is sufficient to assumeV to be a quasi-variety, that is, closed under
products and subalgebras.

The free algebras in a variety may be “adjusted” to freely accommodate any
algebra:

Lemma 3.8. Given any variety V of Σ-algebras and Σ-algebra A, there exists a
Σ-algebra FV(A) ∈ V with a (surjective) Σ-homomorphism ηVA : A → FV(A) that
is free over A in V, that is, such that for any algebra B ∈ V and homomorphism
h : A → B, there is a unique Σ-homomorphism h�� : FV(A) → B with ηVA ;h�� = h.
Proof sketch. Consider the Σ-algebra FV(|A|) ∈ V with a function ηV|A| : |A| →
|FV(|A|)| that is free over |A| in V. Define an S -sorted relation ≡ ⊆ |A| × |A| as
follows, for s ∈ S :

≡s = {〈tFV(|A|)(ηV|A|), t
′
FV(|A|)(η

V
|A|)〉 | t, t′ ∈ |TΣ(|A|)|s, tA(id|A|) = t′A(id|A|)}.
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Then ≡ is a congruence on FV(|A|) ∈ V. Let FV(A) = FV(|A|)/≡ be the quotient
algebra. Clearly, FV(A) ∈ V. Consider the (surjective) function ηVA : |A| →
|FV(A)| defined by ηVA (a) = [ηV|A|(a)]≡. For any term t ∈ |TΣ(|A|), if tA(idA) = a
then tFV(A)(ηVA ) = [tFV(|A|)(ηV|A|)]≡ = [ηV|A|(a)]≡ = ηVA (a). This proves that ηVA is a
Σ-homomorphism ηVA : A → FV(A). Now, given any homomorphism h : A → B,
for the homomorphism h� : FV(|A|) → B such that ηV|A|;h

� = h, we have ≡ ⊆ ker(h�)
(since for t ∈ |TΣ(|A|)|, h�(tFV(|A|)(ηV|A|)) = tB(ηV|A|;h

�) = tB(h) = h(tA(id|A|))). Hence,
we have a homomorphism h�� : FV(A) → B defined by h��([a]≡) = h�(a), which is
unique such that ηVA ;h�� = h. �

As for free algebras over a set, free algebras in a variety over an algebra are
defined uniquely up to isomorphism.

Lemma 3.9. Let V be a variety of Σ-algebras and A be a Σ-algebra, and let Σ-
algebra FV(A) ∈ V with a homomorphism ηVA : A → FV(A) be free over A in V.
Then A ∈ V if and only if ηVA is injective.
Proof sketch. Using Lemma 3.8: the “if” part follows since then ηVA is bijective
and A is isomorphic to FV(A) ∈ V. For the “only if” part, just notice that if
A ∈ V then ηVA ;id��A is the identity. �

The above lemma offers a criterion for checking whether or not an algebra A is
in the variety considered. Given the explicit construction of FV(A) and ηVA : A →
FV(A) in Lemma 3.8, this has a crucial consequence:

Corollary 3.10. Given any variety V of Σ-algebras and Σ-algebra A, if A is a
model of ETh(V) then A ∈ V.
Proof sketch. By Lemma 3.9, it is enough to show that given the algebra FV(A) ∈
V with ηVA : A → FV(A) free over A in V, ηVA is injective. Consider any a, a′ ∈ |A|
and suppose that ηVA (a) = ηVA (a′). Under the notation of the proof of Lemma 3.8,
this means that ηV|A|(a) ≡ ηV|A|(a

′). So, the definition of ≡ implies that for some
terms t, t′ ∈ |TΣ(|A|)|, we have tFV

|A|
(ηV|A|) = η

V
|A|(a), t′

FV
|A|
(ηV|A|) = η

V
|A|(a

′), and tA(id|A|) =

t′A(id|A|). Hence, by Cor. 3.6, equations ∀|A|. t = a and ∀|A|. t′ = a′ hold in V,
and so in A as well. Consequently, we have a = tA(id|A|) = t′A(id|A|) = a′, which
completes the proof. �

Finally, this yields the famous Birkhoff’s variety theorem:

Theorem 3.11. A class of Σ-algebras is equationally definable if and only if it is
a variety.
Proof sketch. The “only if” part follows by Lemma 3.2. For the “if” part, con-
sider any Σ-variety V ⊆ |Alg(Σ)|. By definition we have Mod(ETh(V)) ⊇ V. The
opposite inclusion Mod(ETh(V)) ⊆ V follows by Cor. 3.10, which states that for
any A ∈ |Alg(Σ)| such that A |= ETh(V), we also have A ∈ V. �
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It is essential to consider arbitrary equations here, which in general may in-
volve variables for an infinite number of sorts. Technically, the key step in the
proof of Cor. 3.10 used equations which in general need not be finitary. A finitary
variant of the same property requires an additional assumption:

Corollary 3.12. Given any variety V of Σ-algebras and Σ-algebra A, if the set of
sorts {s ∈ S | |A|s � ∅} is almost non-void in Σ and A is a model of EThfin(V) then
A ∈ V.
Proof sketch. The proof of Cor. 3.10 carries over with additional remark that by
Fact 2.1 and the assumptions, each of the equations ∀|A|. t = a and ∀|A|. t′ = a′ is
equivalent to a finitary one. �

This yields a finitary version of Birkhoff’s variety theorem for some infinitary
signatures:

Theorem 3.13. Let Σ be such that all sets of sorts in Σ are almost non-void.
Then a class of Σ-algebras is definable by finitary equations if and only if it is a
variety. �

Corollary 3.14. Let Σ has a finite set of sort names. Then a class of Σ-algebras is
definable by finitary equations if and only if it is a variety. �

Unfortunately, the extra assumption about the signature cannot be dropped in
general; here is a simple counter-example:

Example 3.15. Consider a signature with an infinite set of sorts S and no op-
erations. Let Φ be the set of equations of the form ∀X ∪ {x, y : s}. x = y, where
s ∈ S and Xs′ � ∅ for infinitely many sorts s′ ∈ S . Then Mod(Φ) is a variety that
consists of all Σ-algebras A such that either A is a subalgebra of 1Σ (i.e., for all
sorts s ∈ S , |A|s has at most one element) or for almost all (i.e., all but finitely
many) sorts s ∈ S , |A|s = ∅. Mod(Φ) is not definable by finitary equations (for
instance because it is not closed under directed sums). �

In the example above, the set of all sorts is not almost non-void. However, in
general this is a weaker property than required in Thm. 3.13: there are signatures
where the set of all sorts is almost non-void, but some of its subsets are not. The
example above can be adapted to show this requirement cannot be weakened.

Proposition 3.16. Every Σ-variety is definable by finitary equations if and only if
every set of sorts in Σ is almost non-void.
Proof sketch. Thm. 3.13 yields the “if” part. For the “only if” part, suppose
that there is a set S ′ ⊆ S of sorts that is not almost non-void. Let Φ be the set of
equations of the form ∀X∪{x, y : s}. x = y, where s ∈ S and the set {s ∈ S | Xs′ � ∅}
is not almost non-void. Then Mod(Φ) is a variety that consists of all Σ-algebras
A such that either A is a subalgebra of 1Σ (i.e., for all sorts s ∈ S , |A|s has at most
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one element) or the set of sorts {s ∈ S | |A|s � ∅} is almost non-void. For instance,
all algebras of the form TΣ(XS 0), where S 0 ⊆ S ′ is a finite set of sorts and XS 0

contains exactly two variables (from some fixed vocabulary) of each sort s ∈ S 0

and is empty for all other sorts, satisfy Φ. But their direct sum has at least two
elements for each sort in S ′, and so does not satisfy Φ. It follows that Mod(Φ) is
not definable by finitary equations. �

The last argument in Example 3.15 and the proof of Prop. 3.16 gives a crucial
hint on the characterisation of varieties that are definable by finitary equations:

Theorem 3.17. A class of Σ-algebras is definable by a set of finitary equations if
and only if it is a finitary variety.
Proof sketch. The “only if” part follows by Lemma 3.2. For the “if” part, con-
sider any Σ-variety V ⊆ |Alg(Σ)| that is closed under directed sums. It is enough
to show Mod(EThfin(V)) ⊆ V. Consider A ∈ Mod(EThfin(V)). Let S 0 ⊆ S
be a finite set of sorts, and let |A|S 0 be the S -sorted set such that for all s ∈ S ,
(|A|S 0)s = |A|s if s ∈ S 0 and (|A|S 0)s = ∅ otherwise. Consider AS 0 = 〈|A|S 0〉A, the
subalgebra of A generated by |A|S 0 . Since A is a model of EThfin(V), so is AS 0

and hence by Cor. 3.12, AS 0 ∈ V. Moreover, the family 〈AS 0〉S 0⊆finS (indexed by all
finite S 0 ⊆fin S ) is directed and A is its (directed) sum, A =

∐
S 0⊆finS AS 0 . Since V

is closed under directed sums, we have A ∈ V, which completes the proof. �

None of the complications above arises when we deal with everywhere non-
empty algebras. Given Lemma 3.7, we get variants of Lemmas 3.8 and 3.9, and
Cor. 3.10 where V is an everywhere non-empty variety and A is an everywhere
non-empty algebra. This yields:

Theorem 3.18. A class of everywhere non-empty Σ-algebras is everywhere non-
empty equationally definable (by a set of naive equations) if and only if it is an
everywhere non-empty variety. �

4 Equational calculus
Again, let Σ = 〈S ,Ω〉 be an algebraic signature.

The standard “naive” equational calculus is given in Table 1 (with obvious
assumptions about the terms and operation names involved in the congruence
rule, and the notation for substitution of terms for variables in terms introduced in
Sect. 2.3). Given a set Φ of naive Σ-equations and a naive Σ-equation ϕ, we write
Φ �naive ϕ whenever ϕ may be derived from Φ using the rules in Table 1.

It is easy to check that the naive equational calculus is sound for everywhere
non-empty algebras:

Fact 4.1. For any set Φ of naive Σ-equations and naive Σ-equation ϕ, if Φ �naive ϕ
then Φ |=NE ϕ. �
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Reflexivity:
t = t

Symmetry:
t = t′

t′ = t

Transitivity:
t = t′ t′ = t′′

t = t′′

Congruence:
t1 = t′1 · · · tn = t′n

f (t1, . . . , tn) = f (t′1, . . . , t
′
n)

Instantiation:
t = t′

t[θ] = t′[θ]

Table 1: Naive equational calculus

However, it may come as a surprise that the naive equational calculus is not
sound for arbitrary many-sorted algebras:

Example 4.2. Let signature Σ0 have two sorts s, s′, two constants a, b : s and
unary operation f : s′ → s. Then { f (x) = a, f (x) = b} �naive a = b. However,
{ f (x) = a, f (x) = b} �|= a = b, since a Σ-algebra A with empty carrier |A|s = ∅ and
aA � bA satisfies both f (x) = a and f (x) = b, but does not satisfy a = b.

The problem here is, of course, that { f (x) = a, f (x) = b} semantically entail
∀{x: s′}. a = b, but when algebras with empty carriers are admitted, this does not
entail a = b (over the signature Σ0). �

The example above gives a crucial hint on the essence of the problem, and in-
deed a sufficient and necessary condition for the soundness of the naive equational
calculus may be easily formulated:

Proposition 4.3. The naive equational calculus is sound if and only if for each
operation name f : s1 × · · · × sn → s in Σ, {s} makes all sorts s1, . . . , sn non-void
in Σ.
Proof sketch. For the “if” part, first check that all the rules in Table 1 except
for transitivity are sound without additional assumptions on the signature. So,
consider an instance of transitivity for some Σ-terms t, t′, t′′ of a common sort s.
Using the assumption on the signature, we easily get that {s} makes all the sorts
of the variables in FV(t′) non-void in Σ. Now, given any Σ-algebra A such that
A |= t = t′ and A |= t′ = t′′, any valuation v : (FV(t) ∪ FV(t′′)) → |A| extends to
a valuation v′ : (FV(t) ∪ FV(t′′) ∪ FV(t′)) → |A|, and we have tA(v) = tA(v′) =
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t′A(v
′) = t′′A(v

′) = t′′A(v), which proves that the “naive” rule of transitivity is sound
under our assumption on Σ.

For the “only if” part, suppose that we have an operation f : s1× · · · × sn → s
where for some i = 1, . . . , n, {s} does not make si non-void. Consider the term
algebra TΣ(X), where X contains exactly two elements of sort s, and is empty for
all other sorts. Then |TΣ(X)|si = ∅ and so (naive) Σ-equations x = f (x1, . . . , xn)
and f (x1, . . . , xn) = y hold in TΣ(X), while TΣ(X) �|= x = y (for any distinct x and
y, and variables x1, . . . , xn of the appropriate sorts). �

In particular, this implies soundness of the naive equational calculus in the
single-sorted context, even if we admit algebras with empty carriers:

Corollary 4.4. Let Σ be a single-sorted signature. For any set Φ of naive Σ-
equations and naive Σ-equation ϕ, if Φ �naive ϕ then Φ |= ϕ. �

The trick to make the equational calculus sound in the many-sorted context is
to carefully keep track of the set of variables in the equations considered.

The resulting many-sorted equational calculus is given in Table 2 (with obvi-
ous assumptions about the terms and operation names involved in the congruence
rule, with substitution θ : X → |TΣ(Y)| and the notation for substitution of terms
for variables in terms in the instantiation rule). Given a set Φ of Σ-equations and a
Σ-equation ϕ, we write Φ � ϕ whenever ϕ may be derived from Φ using the rules
in Table 2.

Reflexivity: ∀X. t = t

Symmetry:
∀X. t = t′

∀X. t′ = t

Transitivity:
∀X. t = t′ ∀X. t′ = t′′

∀X. t = t′′

Congruence:
∀X. t1 = t′1 · · · ∀X. tn = t′n
∀X. f (t1,′ . . . , tn) = f (t′1, . . . , t

′
n)

Instantiation:
∀X. t = t′

∀Y. t[θ] = t′[θ]

Table 2: Many-sorted equational calculus

The set of variables in the equations considered may be manipulated only by
the instantiation rule. Apart from the obvious role (to substitute terms for variables
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that actually occur in the equated terms) this rule can also be used to remove
variables that do not occur in these terms. This is possible when we have a term
to be “substituted” for each such a variable, that is, if the sorts of the variables
to be removed are made non-void by the set of sorts of the variables that remain
in the equation. It can be easily checked that removing such variables is sound,
even if many-sorted algebras with some carriers empty are considered. Indeed,
the many-sorted calculus of Table 2 is sound:

Fact 4.5. For any setΦ of Σ-equations and Σ-equation ϕ, ifΦ � ϕ thenΦ |= ϕ. �

The many-sorted equational calculus as given in Table 2 is also complete:

Theorem 4.6. Given a set Φ of Σ-equations and a Σ-equation ϕ, Φ � ϕ if and only
if Φ |= ϕ.
Proof sketch. The “only if” part is Fact 4.5. For the “if” part, consider any set Φ
of Σ-equations and Σ-equation ∀X. t = t′ such that Φ |= ∀X. t = t′. Consider also
the term algebra TΣ(X) and a binary relation ≈ on its carrier such that t1 ≈ t2 iff
Φ � ∀X. t1 = t2. It is easy to check that ≈ is a congruence on TΣ(X), so we can
consider the quotient algebra TΣ,Φ(X) = TΣ(X)/≈.

Now, for any S -sorted set Y, term t1 ∈ |TΣ(Y)| and valuation v : Y → |TΣ,Φ(X)|
with substitution θv : Y → |TΣ(X)| such that v(y) = [θ(y)]≈ for all y ∈ Y, we have
(t1)TΣ,Φ(X)(v) = [t1[θv]]≈. Hence, for any equation ∀Y. t1 = t′1 in Φ and valuation
v : Y → |TΣ,Φ(X)| with substitution θv : Y → |TΣ(X)| as above, (t1)TΣ,Φ(X)(v) =
[t1[θv]]≈ = [t′1[θv]]≈ = (t1)TΣ,Φ(X)(v) since Φ � ∀X. t1[θv] = t′1[θv] by the rule of
instantiation. It follows that TΣ,Φ(X) satisfies all equations in Φ, and so TΣ,Φ(X) |=
∀X. t = t′. Consequently, [t]≈ = tTΣ,Φ(idX) = t′TΣ,Φ(idX) = [t′]≈, and so t ≈ t′. By
definition this means that Φ � ∀X. t = t′, which completes the proof. �

An easy comparison of the calculi in Tables 1 and 2, respectively, shows that
for any set Φ of naive equations, if Φ � ∀X. t = t′ then also Φ �naive t = t′.
Thus, Theorem 4.6 (and Fact 4.1) implies completeness of the naive calculus for
everywhere non-empty semantic consequence:

Corollary 4.7. Given a set Φ of naive Σ-equations and a naive Σ-equation ϕ,
Φ �naive ϕ if and only if Φ |=NE ϕ. �

By the same argument, but using Prop. 4.3, we get:

Corollary 4.8. If (and only if) for each operation name f : s1 × · · · × sn → s in Σ,
{s} makes all sorts s1, . . . , sn non-void in Σ then for any set Φ of naive Σ-equations
and naive Σ-equation ϕ, Φ �naive ϕ if and only if Φ |= ϕ. �
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5 Interpolation
The well-known interpolation property for first-order logic may be stated as fol-
lows [4]: for any sentences ϕ over signature Σ1 and ψ over signature Σ2 such that
ϕ |= ψ (over signature Σ1 ∪ Σ2) there is a sentence δ (the interpolant) over the sig-
nature Σ1 ∩ Σ2 such that ϕ |= δ (over signature Σ1) and δ |= ψ (over signature Σ2).
In a sense, this is the interpolation property over the following (pushout) diagram
of inclusions:

Σ1 ∩ Σ2

Σ1 Σ2

Σ1 ∪ Σ2

�
�
���

�
�
���

�
�
���

�
�

���

It is only natural to generalise this property to an arbitrary pushout square, as put
forward in [16]. What is surprising then is that interpolation property for first-
order logic fails in general, and holds only under additional assumptions about the
signature morphisms involved.

Theorem 5.1. Given a pushout in the category of signatures:

Σ

Σ1 Σ2

Σ′

�
�
���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ′1 σ′2

such that at least one of σ1 or σ2 is injective on sorts, for any first-order Σ1-
sentence ϕ and first-order Σ2-sentence ψ such that σ′1(ϕ) |=Σ′ σ′2(ψ), there exists a
first-order Σ-sentence δ such that ϕ |=Σ1 σ1(δ) and σ2(δ) |=Σ2 ψ. �

The proof of this property is beyond the scope of this paper, but see [3] (also
for a counterexample showing that if both morphisms are non-injective on sorts
then the interpolation property as formulated above may fail).

The equational logic does not have the interpolation property in the above
form; however, it is often claimed that it does have an interpolation property in
a version where sets of sentences and sets of interpolants are allowed. Unfor-
tunately, this is not true in general in the many-sorted context, even if we limit
attention to the pushouts of signature inclusions, as in the first formulation above:

Example 5.2. Let Σ be a signature with three sorts s, s1 and s2, and two constants
a, b : s. Let Σ1 and Σ2 extend Σ by a constant e : s1 and by a unary operation
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f : s1 → s2 respectively. Then Σ = Σ1 ∩ Σ2 and let Σ′ = Σ1 ∪ Σ2. Consider Σ1-
equation ∀{x: s2}. a = b and Σ2-equation a = b. Clearly, ∀{x: s2}. a = b |=Σ′ a = b
(since all Σ′-algebras are everywhere non-empty).

Suppose that we have a set of Σ-equations Δ such that ∀{x: s2}. a = b |=Σ1 Δ
and Δ |=Σ2 a = b. Consider a Σ1-algebra A1 with the carrier of sort s2 empty
and with aA1 � bA1 . Clearly then, A1 |=Σ1 ∀{x: s2}. a = b, so A1 |=Σ1 Δ, and
consequently A1 Σ |=Σ Δ as well. Take a subalgebra of A1 Σ with the empty carrier
of sort s1, which satisfies Δ by Lemma 3.2, and consider its expansion A2 to a
Σ2-algebra. Then A2 |=Σ2 Δ but A2 �|=Σ2 a = b — contradiction. �

The key problem here is caused again by algebras with some carriers empty.
When everywhere non-empty algebras are considered, interpolation holds [14]:

Theorem 5.3. Consider any algebraic signatures Σ1 and Σ2, setΦ of Σ1-equations
and set Ψ of Σ2-equations such that Φ |=NE

Σ1∪Σ2 Ψ. Then there is a set Δ of (Σ1∩Σ2)-
equations such that Φ |=NE

Σ1
Δ and Δ |=NE

Σ2
Ψ.

Proof sketch. Let Σ = Σ1 ∩ Σ2 and Σ′ = Σ1 ∪ Σ2. Put Δ = ETh(ModNE(Φ) Σ).
Let V = ModNE(Δ) be the least everywhere non-empty Σ-variety that contains
ModNE(Φ) Σ. Clearly, Φ |=NE

Σ1
Δ.

To show Δ |=NE
Σ2
Ψ, consider an everywhere non-empty Σ2-algebra B2 such

that B2 |=Σ2 Δ; we have then B2 Σ |=Σ Δ, and so B2 Σ ∈ V. Since ModNE(Φ) is
closed under products, and products are preserved by reduct functors, it follows by
Fact 3.1 thatV consists of all Σ-algebras B such that B is a homomorphic image of
a subalgebra of A such that A ∈ ModNE(Φ) Σ. Therefore, B2 Σ is a homomorphic
image of a subalgebra of A1 Σ for some Σ1-algebra A1 ∈ ModNE(Φ). By Fact 2.2,
there is an everywhere non-empty Σ2-algebra A2 such that A2 Σ = A1 Σ and B2 is a
homomorphic image of a subalgebra of A2. Then, by the amalgamation property,
we have an everywhere non-empty Σ′-algebra A′ such that A′

Σ1 = A1 and A′
Σ2 =

A2. Since A1 |=Σ1 Φ, it follows that A′ |=Σ′ Φ, so also A′ |=Σ′ Ψ, and A2 |=Σ2 Ψ.
Consequently, B2 |=Σ2 Ψ. �

The proof of Thm. 5.3 directly carries over to a somewhat more general formu-
lation for a pushout of signature morphisms satisfying the condition which allow
us to use the crucial Fact 2.2, see [13]:

Corollary 5.4. Consider a pushout in the category of signatures:

Σ

Σ1 Σ2

Σ′

�
�
���

�
�
���

�
�
���

�
�

���

σ1 σ2

σ′1 σ′2
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such that σ2 is injective. For any sets Φ of Σ1-equations and Ψ of Σ2-equations
such that σ′1(Φ) |=NE

Σ′ σ
′
2(Ψ), there is a set Δ of Σ-equations such that Φ |=NE

Σ1
σ1(Δ)

and σ2(Δ) |=NE
Σ2
Ψ. �

The requirement in Cor. 5.4 that the ”target” morphism σ2 is injective cannot
be dropped, not even for single-sorted signatures with non-void sort:

Example 5.5. Let Σ be a signature with one sort s and constants a, b, c1, c2 : s, let
Σ1 be the extension of Σ by f : s → s with σ1 : Σ → Σ1 being the inclusion, let
Σ2 be a signature with sort s and constants a, b, c : s, and let σ2 : Σ → Σ2 map c1

and c2 to c and be identity otherwise. Consider the pushout of σ1 and σ2 as in
Cor. 5.4.

For Σ1-equations f (c1) = a and f (c2) = b and Σ2-equation a = b, we have
σ′1({ f (c1) = a, f (c2) = b}) |=Σ′ σ′2(a = b), since σ′1(c1) = σ′1(c2). However,
the least Σ-variety generated by Mod({ f (c1) = a, f (c2) = b}) σ1 contains all Σ-
algebras ({ f (c1) = a, f (c2) = b} has only trivial equational consequences over Σ).
Thus, there is no set Δ of Σ-equations such that { f (c1) = a, f (c2) = b} |=Σ1 σ1(Δ)
and σ2(Δ) |=Σ2 a = b. �

6 Final Remarks

We have presented some basic concepts and results of universal algebra in the
many-sorted (heterogeneous) versions, recalling the standard Birkhoff’s variety
theorem, equational calculus and interpolation results, and their formulations in
the many-sorted framework. We do not claim any technical originality here: the
results are standard and known either from the literature or in the folklore (with
some perhaps sharper then usual formulations following by inspection of the well-
known proofs). So, instead of trying to summarise them here again, let us stress
that in essence all the standard results of single-sorted (homogeneous) universal
algebra seem to carry over to the many-sorted framework. However, their exact
proper formulations require some care and adjustment:

• Birkhoff’s variety theorem does not hold in general in the many-sorted
framework when we allow signatures with infinite set of sorts, somewhere
empty algebras (i.e., algebras with empty carriers of some sorts) and con-
sider equations with finite set of variables only.

• Naive equational calculus is not sound for algebras that may be somewhere
empty, unless some additional restrictions on signatures are considered.

• Equational interpolation property does not hold if somewhere empty alge-
bras are considered.
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One may wonder if we really want to consider signatures with infinite set of sorts,
algebras with empty carriers, or signatures where some sorts are void. The point
is that the need for such “anomalies” arises when we model some real phenomena
in computer science. For instance, infinite signatures are needed when we want
to consider polymorphic type systems, or any other type systems where the set of
types is infinite (even if it may be finitely presented). Signatures with some sorts
void are needed when we model genericity and parametrisation, either of speci-
fications, or of programming modules. Finally, assuming all algebras to be ev-
erywhere non-empty not only makes a number of technical results more cumber-
some (we loose the existence of reachable and initial algebras then, for instance)
but again, excludes some natural models of real systems (for instance, consider
database systems initialised with the empty set of data of some sort).

Consequently, instead of adopting any ad hoc assumptions, however standard
and unproblematic they seem at first, the good practice is to formulate the concepts
and results, even those that simply restate the standard ones, with sufficient care
to take into account various nuances the many-sorted framework may bring.
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